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Abstract: Long COVID syndrome has emerged as a long-lasting consequence of acute SARS-CoV-2
infection in adults. In addition, children may be affected by Long COVID, with potential clinical
issues in different fields, including problems in school performance and daily activities. Yet, the
pathophysiologic bases of Long COVID in children are largely unknown, and it is difficult to predict
who will develop the syndrome. In this multidisciplinary clinical review, we summarise the latest
scientific data regarding Long COVID and its impact on children. Special attention is given to
diagnostic tests, in order to help the physicians to find potential disease markers and quantify
impairment. Specifically, we assess the respiratory, upper airways, cardiac, neurologic and motor and
psychological aspects. Finally, we also propose a multidisciplinary clinical approach.

Keywords: Long COVID; children; lung function; otorhinolaryngology; gastrointestinal; psychological
well-being; autonomic dysfunction; neuroCOVID

1. Introduction

Since the beginning of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) [1] pandemic, approximately 646,700,000 confirmed cases have been reported [2].
The paediatric population has been estimated to represent 8.5% of the total cases [3], reach-
ing higher percentages in some countries such as the United States of America with 18.2% of
cumulative cases [4]. The adoption of various strategies for Coronavirus Infection Disease
2019 (COVID-19) containment has helped to reduce the viral shedding and the pressure on
the healthcare systems [5]. Vaccines against SARS-CoV-2 and its most important variants
have significantly reduced mortality, rate of hospital admissions and disease severity [5].
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Despite these advancements, many patients complain of long-lasting symptoms after re-
covery from COVID-19, typically involving different organs, with a waxing and waning
presentation. This clinical manifestation following SARS-CoV-2 infection with no other
medical explanation has been called Long COVID syndrome or Post-Acute Sequelae of
COVID-19 syndrome (PASC) [6]. Recent scientific reports have raised attention to the
burden of Long COVID syndrome in the paediatric population [7–9]. Although the clinical
characteristics and the course of this condition seem to be similar to those affecting adults,
there are limited data on the pathophysiologic bases [10].

We herein analyze current evidence on Long COVID syndrome in children, focusing
on a clinical multidisciplinary assessment aimed at providing practical insights.

2. Materials and Methods

We searched for articles on PubMed and Google Scholar using the following search
terms and logic for the introduction and general paragraphs on Long COVID: “COVID-19”
OR “COVID” OR “SARS-CoV-2” OR “coronavirus” OR “long-COVID” OR “post COVID”
AND “PASC” OR “post-acute” OR “persistent” OR “convalescent” OR “convalescence”
OR “sequelae” AND “pediatric” OR “young” OR “infant” OR “children” OR “adolescents”.
Additional search terms were adopted for each specialisation: for the respiratory para-
graph “lung function” OR “spirometry” OR “DLCO” OR “lung ultrasound” OR “lung
imaging”; for the gastrointestinal paragraph “gastrointestinal” OR “liver”; for the otorhino-
laryngologic paragraph “ENT” OR “Otorhinolaryngology”; for the psychologic paragraph
“psychological well-being”; for the cardiologic paragraph “Autonomic dysfunction”; for
the neurologic paragraph “neuroCOVID” OR “child neurology”. Further studies were
obtained through the references of some papers. Articles were selected according to their
title and abstract, using eligibility criteria. The inclusion criteria were being in the English
language; pediatric study population (age range 0–18 years); type of study: narrative and
systematic reviews, longitudinal retrospective and prospective studies and randomised
control trials, including adult studies. Additionally, case reports, expert opinions and
manuscripts published in a language other than English were excluded. The final reference
list was developed on the basis of originality and relevance to the broader scope of this
review.

3. Pathophysiology

There are several mechanisms that determine SARS-CoV-2 pathogenicity (Figure 1).
Once inside the host cell, the viral RNA genome triggers an immune response via pathogen-
associated molecular patterns (PAMPs), inducing the release of proinflammatory cytokines
and an inflammatory programmed death sequence called pyroptosis [11]. The dead cells
release damage-associated molecular patterns (DAMPs) into the vascular stream, recruit-
ing migrating immune system cells, such as macrophages, monocytes and T cells [12].
In predisposed individuals, these events could lead to a “cytokine storm”, which is an
uncontrolled release of pro-inflammatory cytokines, such as interleukine-2 (IL-2), IL-7,
IL-10, granulocyte-colony-stimulating factor (G-CSF), tumour necrosis factor-α (TNF-α)
and macrophage inflammatory protein 1α (MIP1α) [12].

It has been hypothesised that sustained activation of mast cells could be at the basis of
prolonged inflammatory status in Long COVID patients, as many symptoms overlap with
that of mast cell activation syndrome (MCAS), but more studies are needed to confirm this
pathogenic pathway [13].

The unbalance between pro-coagulant and anti-coagulant factors during SARS-CoV-2
infection is responsible for hypoxic tissue damage in many organs. In fact, SARS-CoV-2
dampens angiotensin-converting enzyme 2 (ACE2) protective action on endothelial cells
and its anti-atherosclerotic effects and impairs the fibrinolysis of amyloid fibrinogen micro-
clots through circulating spike proteins [14,15].
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Figure 1. SARS-CoV-2 main pathogenic pathways. The virus binds to ACE2 receptor, dampening
its anti-thrombotic and anti-atherosclerotic action and inducing vascular damage. Once inside the
cell it replicates and viral RNA is recognised by PAMPs (pathogen-associated molecular patterns)
receptor, such as Toll-like receptors (TLRs) [12,16]. Activated TLRs induce pro-inflammatory cytokines
release, triggering a cascade of events that leads to cell apoptosis (pyroptosis). Cellular debris and
cytokines in the bloodstream induce the activation of the innate and immune system, sustaining
the inflammatory process [12]. Importantly, SARS-CoV-2 can bind to cell proteins different from
ACE2 receptor, thus explaining why cells not expressing ACE2 receptor can also be infected by
the virus [17–20]. Abbreviations: ACE2 = angiotensin-converting enzyme 2; PAMPs = pathogen-
associated molecular patterns; DAMPS = damage-associated molecular patterns; TLR = toll-like
receptor; IL = interleukin; TNF-a = tumour necrosis factor α; MIP1a = macrophage inflammatory
protein 1 α; G-CSF = granulocyte-colony-stimulating factor.

T- and B-cells function is fundamental to fight SARS-CoV-2 infection. Severe patients
showed low levels of interferon-γ (IFN-γ) and TNF-α and high levels of perforin and
granzyme B, markers of T-cell exhaustion [21]. Antibodies production by B cells can
slow down the infection by preventing S protein—ACE2 interaction or by binding to
viral capsid [12]. Surprisingly, the antibody–virus complex can also facilitate the entry and
replication of the virus inside phagocytic cells, a non-well understood biological mechanism
called antibody-dependent enhancement (ADE) [22,23].

These molecular strategies adopted by the virus during acute infection seem to be
partially responsible for the subsequent development of Long COVID syndrome. In fact,
Di Sante et al. [24] found higher levels of IL-6 and IL-1 in children with PASC compared
with those who recovered completely after acute infection. This aspect would demonstrate
the persistence of inflammation in Long COVID children. In addition, the authors showed
higher levels of plasmablasts, IgD-CD27+ memory and switched to IgM-IgD-B cells, all
signs of B-cells activation [24].

Another factor which could account for symptoms persistence after acute infection is
tissue and organ damage. In particular, damage to the olfactory epithelium and ciliary cells
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in the upper airways is responsible for persistent olfactory dysfunction, that is, anosmia
and parosmia. These symptoms may persist for weeks until the olfactory mucosa is fully
regenerated [15].

In a small percentage of adult patients, a pro-fibrotic mechanism is found at pul-
monary level, mediated by pro-inflammatory cytokines, like IL-6 that activates fibroblasts.
Nowadays, no evidence shows a similar mechanism in children [25].

SARS-CoV-2 may also spread to the central nervous system (CNS) by haematogenic
or neuronal retrograde routes, causing neuroinflammation and subsequent neurological
manifestations [26]. Similarly, the diffusion of the virus to the gastrointestinal tract may
cause enterocytes desquamation, oedema and small bowel dilation [26]. The resulting
greater permeability of the GI tract facilitates the translocation of viral proteins, such as
the staphylococcal toxin-like “super antigen” segment of the spike protein, a powerful
pro-inflammatory protein which is thought to be related to multisystem inflammatory
syndrome in children (MIS-C) [15]. In addition, the microbiome composition is greatly
affected by viral infection, with peculiar alterations which are thought to predispose
inflammation in different organs (more details can be found in the following paragraph
dedicated to gastrointestinal Long COVID symptoms) [15].

4. Long COVID in Children: Background and Definition

A first case series of five children complaining of variable long-lasting non-specific
symptoms after COVID-19 in children was described in November 2020 [7]. All the children
were pauci-symptomatic during the acute infection and exhibited persistent symptoms
lasting 6–8 months, and one child had comorbidities and a history of peri-myocarditis
after COVID-19 diagnosis [7]. After this publication, more attention was given to PASC
in children. In an Italian study conducted on 129 children, the authors reported non-
specific symptoms, such as fatigue, palpitations, muscle and joint pain, headache, insomnia
and respiratory problems, in approximately 50% of patients 60 days or more after the
infection [8]. An Australian study showed an 8% prevalence of PASC in children with
asymptomatic COVID-19 infection [9]. The post-acute symptoms were mostly mild and
resolved spontaneously after 8 months of follow-up [9].

PASC symptomatology is heterogeneous in both clinical presentation and the timing
of exacerbation and resolution. The following definition was proposed through a Delphi-
consensus process: “Post-COVID-19 condition occurs in young people with a history of
confirmed SARS-CoV-2 infection, with one or more persisting physical symptoms for a
minimum duration of 12 weeks after initial testing that cannot be explained by an alterna-
tive diagnosis. The symptoms have an impact on everyday functioning, may continue or
develop after COVID-19 infection, and may fluctuate or relapse over time” [27].

The meta-analysis by Lopez-Leon et al. [28] offers a detailed and actual portrait
of paediatric Long COVID. This work, which evaluated 21 cohort studies with a total
population of 80,070, determined the persistence of Long COVID symptoms in 25.2% of
children affected by acute SARS-CoV-2 infection [28]. The most common PASC-associated
symptoms in children overlapped with those in adults: mood symptoms (e.g., sadness,
tension, anger, depression and anxiety) (16.5%), fatigue (9.7%), sleep disorders (8.4%),
headache (7.8%), respiratory symptoms (7.6%), sputum production or nasal congestion
(7.5%), cognitive symptoms (e.g., less concentration, learning difficulties, confusion and
memory loss) (6.3%), loss of appetite (6.1%), exercise intolerance (5.7%) and altered smell
(5.6%) [28]. Many studies included in this work pointed out risk factors for Long COVID
development, such as older age, female sex, severe acute-COVID-19, obesity, allergic
disease and long-term health conditions [29–32]. Symptoms appeared to resolve in 54–75%
of children within 1–5 months [33], with 4.4% of the cases reporting persistency at >4 weeks
after COVID-19 onset and 1.8% at 8 or more weeks [32].
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5. Long COVID Assessment in Children
5.1. Respiratory Assessment

In children and adolescents with Long COVID, the most frequently reported respira-
tory symptoms are persistent cough, fatigue and exertional dyspnoea.

Long-term respiratory sequelae after SARS-CoV-2 infection have been thoroughly
documented in the adult population and are mainly represented by physiological and
radiological abnormalities. Low levels of diffusion capacity for carbon monoxide (DLCO, a
marker of pulmonary vascular integrity) are the most frequently observed functional de-
fects [34], whilst the main radiological findings are represented by interstitial abnormalities,
akin to what previously described in other viral pneumonias [35]. Whilst there is emerging
evidence that children may be affected by persisting functional and radiological respiratory
involvement, the evidence is still limited [36–40].

5.1.1. Pulmonary Function Tests (PFTs)

In a study evaluating lung function impairment in a paediatric population (n = 29)
affected by persisting respiratory symptoms, Leftin Dobkin et al. [36] reported the most
frequently observed abnormality to be exercise intolerance, assessed by the six-minute
walking test (6MWT). Spirometry, plethysmography and diffusing capacity for CO (DLCO)
were normal in most patients, with unremarkable chest-X ray findings [36]. A Czech
multicentre study conducted on 39 adolescents similarly showed a low prevalence of
functional and/or structural lung anomalies at spirometry, DLCO, 6MWT, chest X-ray and
D-dimer [37]. Notably, PFTs and imaging alterations fully recovered within 1 to 8 months.

Exercise capacity abnormalities are well-characterised in the adult population. Rinaldo
et al. [41] studied a cohort of 91 adult COVID-19 survivors by cardiopulmonary exercise
testing, with the most frequently observed abnormality consisting in early anaerobic
threshold likely induced by muscle deconditioning. The patients displayed otherwise
normal PFTs and chest imaging.

In a cohort of COVID-19 hospitalised children, Esmaeilzadeh et al. [42] found the
persistence of asthma-like symptoms in 41% of the cases (n = 27). The finding is unsur-
prising, given the long-known link between viral infections and asthma inception and
exacerbation [43]. A similar finding of obstructive respiratory disorders occurred in 27 of
60 children who underwent spirometry for persisting dyspnea after COVID-19 illness [37].
More than half of these (19) exhibited a positive bronchodilator response, thus further
strengthening the suspicion of asthma.

5.1.2. Thoracic Imaging

Pulmonary sequelae of COVID-19 in children have been investigated by chest X-
ray and lung ultrasound (LUS). Whilst X-ray findings are mainly unremarkable, studies
performed with the use of LUS identified pleural irregularities, vertical artifacts or areas of
white lung and subpleural consolidations [44–46].

An Italian observational study conducted on a cohort of 607 children with a previous
SARS-CoV-2 infection described LUS abnormal findings in a few patients, mainly pleural
line irregularities (27%), B-lines (17%) and small subpleural consolidations (9%) [39]. Of
note, the frequency of artifacts decreased with increasing time since infection. Patients
symptomatic during the acute infection presented multiple B-lines, a non-specific pat-
tern [47], more frequently in the symptomatic group (19% vs. 10%). Although in adults,
several studies investigated the morphologic changes in lung parenchyma by using lung
CT; in children, this clinical condition is limited by the ionisation radiation of the technique.
Similarly, Ng et al. [48] found CT abnormalities (mostly ground-glass opacification) in 6
out of 25 asymptomatic young patients with laboratory-confirmed COVID-19 with lung
involvement also in asymptomatic patients. Denina et al. [49] performed a follow-up on
25 paediatric patients 4 months after the acute infection and reported that LUS artifacts
regressed over time. Recent studies used magnetic resonance imaging (MRI) to overcome
the limitations of ionisation radiations [50–60]. Heiss et al. [40] investigated morphologic
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and functional changes in lung parenchyma by using low-field MRI in children with Long
COVID compared with healthy controls. One subject showed linear atelectasis, whereas
a large subgroup of post-acute COVID-19 participants had a significant percentage of
functional defects, including ventilation, perfusion and combined defects.

In conclusion, children with Long COVID may experiment respiratory symptoms,
with a tendency towards complete recovery within six months. Lung function testing
is characterised by occasional, and usually mild, abnormalities and may also permit to
identify ongoing coexisting asthma and other obstructive pulmonary diseases. LUS appears
to be a safe, sensitive imaging technique to identify interstitial lung involvement in the
paediatric population [61]. Therapeutic approaches specific to Long COVID in children
other than symptomatic relief are lacking.

5.2. Upper Airway Assessment

Literature specifically dealing with the otorhinolaryngologic sequelae of COVID-19 in
children is indeed very scant. However, the pathological long-term alterations described
in other organs such as fibrotic changes due to microvascular and endothelial damage or
chronic neuroinflammation are sure to be found in the Head and Neck region and may
explain the vast heterogeneity of described Ear, Nose and Throat (ENT) symptoms [26].
Unsurprisingly, Miller et al. [30] in a cohort study on 5032 children showed that Long
COVID could indeed affect all systems with ENT symptoms at third place after general
and respiratory symptoms.

5.2.1. Olfactory Disfunction

Even though olfactory/smell impairment in the acute and early phases of COVID-19
is described anywhere between 44% and 86% of paediatric patients, the same numerosity
cannot be found in those studies dealing with Long COVID [62,63]. Indeed, in the study by
Roge et al. [64] in which 236 paediatric COVID-19 patients and a 142-strong comparison
group were enrolled, only 12.3% of children presented with anosmia/dysgeusia, while
the meta-analysis by Lopez-Leon et al. [28] attests the presence of this particular symptom
(e.g., hyposmia, anosmia, hypersomnia, parosmia and phantom smell) in 5.6%, pooling
10 studies with over 2000 patients. Furthermore, the prevalence of smell disturbances is
stated to be less persevering and of less duration than neuropsychological symptoms, such
as headache and sleep problems [31].

5.2.2. Rhinological Symptoms

As with olfactory alteration, the rhinological symptoms also could be interpreted
as a persistence of acute SARS-CoV-2 infection presentation, and nasal congestion and
rhinorrhoea are those most frequently encountered in Long COVID. In fact, Roge et al. [64]
attest the presence of nasal congestion and rhinorrhoea in 16.1% of children with persis-
tent symptoms.

5.2.3. Otological Symptoms

Even though otitis media is found as a manifestation or associated symptom of acute
COVID-19 in children [65], no literature can be found regarding longstanding infection
or concomitant hearing loss in the Long COVID corollary. However, otalgia and, with it,
tinnitus, vertigo and earache do present in Long COVID as found in the meta-analysis
of Lopez-Leon et al. [28] and are attested at around 3% prevalence. Surely, this may be
explained by the fact that Long COVID symptoms pertain more frequently to functional
alterations than to persistent infectious manifestations.

5.2.4. Pharyngeal Symptoms

Sore throat, dysphonia and dysphagia in children are also described in the corollary of
long COVID; however, their presence in the aforementioned studies and meta-analysis is
stated at around 2%, under 2% and under 1%, respectively [28,64].
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Causative factors in the development of ENT Long COVID symptoms are still very
much not studied, and knowledge surrounding the ENT presentation and risk factors
specific to the development of Long COVID is still in its infancy. Additionally, these
symptoms are by no means singular to Long COVID hindering research even further.
Nonetheless, persistence after paediatric COVID-19 infection of olfactory, otological and
rhinological alterations should be thoroughly assessed by the otolaryngologist. Diagnostic
tools include fibroscopic evaluation and specific age-appropriate smell tests, such as the
U-sniff Sniffin’ sticks. Therapeutic approaches specific to Long COVID in children other
than symptomatic relief are not described.

5.3. Gastrointestinal Assessment

Data regarding gastrointestinal manifestations of Long COVID are scarce. According
to the available information, Long COVID in children and young people shows a similar
gastrointestinal manifestation pattern compared to acute disease, but the prevalence is
lower [28,66,67].

In a recent multicentre cohort study including 582 patients with acute disease, the
prevalence of gastrointestinal symptoms was 22% [66]. In particular, the most frequent
gastrointestinal manifestations in the setting of acute disease seem to be abdominal pain
(11.76%), diarrhoea (9.2%) and vomiting (5.01%) [28].

On the other hand, a recent meta-analysis showed that gastrointestinal symptoms in
Long COVID have a prevalence of less than 5% in children and adolescents. Abdominal
pain is the most frequent manifestation, with a pooled prevalence of 2.91% of patients,
followed by constipation (2.05%), chronic diarrhoea (1.68%), nausea/vomiting (1.53%) and
dysphagia (0.46%) [67].

Other manifestations, such as liver involvement, are uncommon but have a relevant
clinical impact. Recently, a case series described two different patterns of liver injury pre-
sented later after a recovered SARS-CoV-2 infection [68]. The authors described two main
clinical scenarios: acute liver injury with acute liver failure requiring liver transplantation
and cholestatic acute hepatitis resembling the post-COVID-19 cholangiopathy reported in
adults [68].

Finally, post-infectious-functional gastrointestinal disorders are common in Long
COVID patients [69]. These include new-onset functional dyspepsia and irritable bowel
syndrome. Nevertheless, its real prevalence in children and young people is unknown.

The pathophysiologic mechanism of gastrointestinal and hepatic injury related to
COVID-19 is still debated and multiple pathways could be involved [70]. Firstly, gastroin-
testinal damage might be due to direct infection and the cytopathic effect of gastrointestinal
cells, hepatocytes and cholangiocytes [70]. Moreover, the robust constitutive expression
of ACE2 on the cholangiocytes, hepatocytes and brush border of the small intestine cells
could play a role in the development of gastrointestinal manifestations leading to an altered
cytokines production, persistent inflammation and increased intestinal permeability [69,70].

Moreover, COVID-19-related dysbiosis and unbalance in gut flora could affect and
promote neurological, respiratory and liver manifestations via the gut–lung, gut–brain and
gut–liver axes [71]. It is known that gut microbiota composition is significantly altered in
patients with COVID-19 [72]. In patients with Long COVID manifestations, higher levels
of Ruminococcus gnavus and Bacteroides vulgatus and lower levels of Faecalibacterium
prausnitzii have been found compared with non-COVID-19 patients [71]. Furthermore,
dysbiosis was persistent, lasting more than a year after the infection, because the intestine
acts as a long-term reservoir. It has been demonstrated that SARS-CoV-2 RNA persists in
up to 12.7% of patients at 4 months after diagnosis and in 3.8% of patients at 7 months
after diagnosis [73]. Moreover, antigen persistence in the gut mucosa has been observed in
patients with inflammatory disease with Long COVID symptoms [74].

Gut microbiota dysbiosis could also play a role in persistence of respiratory and
neurological symptoms [71]. In this regard, Mendes-Almeida V et al. [75] demonstrated
that transferring gut bacteria from patients with Long COVID to healthy mice resulted in
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loss of cognitive functioning and impaired lung defences in the mice, which were partially
treated with probiotic.

To date, clear diagnostic criteria and protocols are not available. In children and young
people, a gastrointestinal symptom could be classified as a post-COVID-19 condition if it
fulfils the clinical case definition of the WHO [27]. The initial management, differential
diagnosis, etiologic workup and treatment of gastrointestinal manifestation should not
change with respect to non-Long COVID patients.

Preliminary results of specific treatment with micronutrients and lactoferrin for chronic
gastrointestinal symptoms in children with Long COVID are available [76,77]. However,
there is not sufficient evidence to establish a clear recommendation.

5.4. Cardiologic Assessment

In children with Long COVID, involvement of the cardiovascular system and clinical
cardiovascular symptoms are constantly described in multiple studies. The five most
prevalent clinical cardiovascular manifestations were orthostatic intolerance (6.9%), exercise
intolerance (5.7%), chest pain (4.6%) and variations in heart rate (2.29%) [28]. Less frequently
also palpitations (1.27%) were associated with children with Long COVID [28].

Interestingly, most of the cardiovascular symptoms, such as orthostatic intolerance,
exercise intolerance, abnormal heart rate variability, tachycardia and palpitation, are also
present in dysautonomic syndromes. Dysautonomia is a dysfunction of the autonomic
nervous system and it might have a central role in the cardiovascular symptoms in patients
with Long COVID. Dysautonomia could be referred to as a direct result of the SARS-CoV-2
infection or immune-mediated processes (cytokines storm), but no link has been demon-
strated [78,79]. Postural orthostatic tachycardia syndrome (POTS) is a clinical condition
characterised by dysautonomic dysfunction. It is characterised by a sustained heart rate
increment of at least 40 beats/minute (bpm) within 10 min of standing or head-up tilt
in addition to chronic orthostatic symptoms for at least 3 months duration [80]. Clinical
manifestations similar to POTS have been described in adult patients with Long COVID
syndrome, underlying a possible common pathogenic pathway [81]. Few cases of POTS
have been described among adolescents with previous SARS-CoV-2 infection, with symp-
toms including light-headedness, palpitations, fatigue and generalised weakness [82,83].
The exact mechanism at the basis of POTS is still debated. Paediatric studies showed abnor-
mally elevated levels of vasodilating hormones (such as nitric oxide, hydrogen sulphide
and C-natriuretic peptide) when upright, causing splanchnic and lower extremities venous
pooling [80]. In PASC-affected patients, POTS might be caused by autoantibodies against
G-coupled receptors, as demonstrated in adult cases [82]. The therapeutic approach ranges
from oral medications such as β-blockers or vasopressors (i.e., midodrine) to intravenous
periodic infusions of normal saline for unresponsive patients [80].

Little is known regarding objective findings in children with Long COVID. In the adult,
Long COVID patients with suspected cardiovascular symptomatology, ECG (electrocardio-
graph) aberrations (34%) like non-specific ST-T changes and conduction anomalies were
found [84]. Nonetheless, converging clinical, neurophysiological and anatomopathological,
evidence suggests that dysautonomia plays a key role in driving neurological complica-
tions in adulthood [85–87]. Among these, neurophysiology has recently highlighted a
specific involvement of the efferent sympathetic activity in chronic pain syndromes follow-
ing SARS-CoV-2 infection [85]. These findings are also corroborated by the observation
of small-fibre loss applying in vivo corneal confocal microscopy, as well as by changes
described in skin biopsies [88,89]. Moreover, anomalous findings at transthoracic echocar-
diography (TTE) have been reported in an adult with Long COVID [84]. TEE findings were
discovered in 32% of the patients and include pericardial effusion and right ventricle dys-
function [84]. In our experience, cardiovascular Long COVID manifestations are extremely
represented with considerable fluctuation in their frequency and severity.
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5.5. Common Motor Syndromes

Long COVID in children commonly affects the motor system. According to several
studies, fatigue is among the most common disturbances, being reported by approximately
10% of affected children [90], and arthralgia and muscle soreness are also frequent [91].
Even if more rarely, dizziness and even balance problems can be found in the Long COVID
syndrome [28].

With respect to Refs. [92–96], Long COVID could even restrict children and adolescents’
participation. For example, Long COVID can affect school attendance [91], and young
people cannot keep up with sports as they did before [90]. Such an effect on participation
could be sustained not only by the Long COVID motor syndrome; regarding neurological
impairments associated with Long COVID in children, this syndrome can also present
with cognitive symptoms, which include attention and learning problems [97]. In addition,
mood alterations and sleep disorders have also been reported [28].

Follow-up of children with Long COVID by a multidisciplinary team comprising
physicians and rehabilitation therapists has been recommended [98,99]. However, several
pieces of information are still missing about this condition [28], and motor and neurological
symptoms of Long COVID in children remain to be fully understood.

The exact burden of Long COVID in children is unknown, as the prevalence of symp-
toms in children (motor symptoms included) varies enormously in the different stud-
ies [28,91]. Moreover, the various long COVID symptoms can have different durations,
which can also vary with age [100].

In diagnostic terms, it is unclear whether fatigue and joint and muscle pain have some
typical features in Long COVID. Indeed, these symptoms are not specific to Long COVID
but can be found in other conditions and are common in many viral diseases. Regarding
this, a recent study showed that fatigue duration in Long COVID is increased compared to
other viral infections [101].

Protocols are unavailable to diagnose and manage Long COVID in children [99].
About therapies, treatment is usually symptomatic [90]. For example, therapeutic exercise
can counteract fatigue and difficulty with physical activity [98], as in other conditions in
which fatigue is the main problem.

Finally, the Long COVID effects on young people with pre-existing neurological
diseases remain to be ascertained. Fatigue and learning difficulties, which, as briefly
reported above, are two common neurological impairments of Long COVID, are expected
to adversely impact the rehabilitation of the baseline disease [102].

5.6. Neurologic Assessment
5.6.1. Epidemiology, Clinical Phenotypes and Their Clinical Course

Since the first description in December 2020, SARS-CoV-2 has been associated with
a number of neurological complications during the disease course, as well as early mani-
festations at onset [103–105]. Three years after its beginning, the pandemic continues to
teach something about its neurological involvement and possible pathways [15,106]. The
incidence of neurological symptoms in children is similar to that reported in adults, as well
as clinical phenotypes. However, both neurological features and putative pathogenetic
mechanisms have been progressively changed over time, probably depending on different
viral variants as emerged during the last years. In particular, whereas several neurological
syndromes have been described in 2020, cognitive disturbances seem to characterise the last
pandemic outbreaks, both in adults and children, with a focus on visuospatial abilities and
executive functions [28,107,108]. Similarly, although underlying pathogenetic mechanisms
are numerous and heterogeneous, they seem to be shifted from a direct viral invasion
towards pro-inflammatory states and a high liability to develop autoimmunity [109].

As for adults, also for children, there is no correlation between the severity of neuro-
logical complications and the clinical course of primary respiratory disease. Moreover, a
degree of clinical variability in childhood is likely to depend on the ongoing development
of a child’s nervous system, with differential expression of cell receptor targets during
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years [110]. Up to 50% of young patients experienced headaches and an altered mental
status, probably due to a multisystemic inflammatory syndrome in children [111], whereas
about 5% of them developed more severe neurological complications, including seizures,
encephalitis, demyelinating disorders and aseptic meningitis [112–115].

5.6.2. Putative Pathogenetic Mechanisms

As described above, it has been proposed that the stronger immune response, as
observed in children compared to adults with neurological COVID-19, may be due at least in
part to the over–activation of microglia in young patients [110]; in this connection, it is worth
noting that microglial dysregulation is associated with brain aging, neurodegeneration
and a range of brain disorders [116–118]. In this scenario, it is worth also remembering
that the receptor of the angiotensin-conversion enzyme (ACE), the main gate of entrance
of SARS-CoV-2 into the cells, is highly expressed not only at the neuronal and vascular
endothelial surface but also by Schwann’s cells and central oligodendrocytes [119,120].

Conversely, in order to support direct viral damage, a prion-like mechanism of neu-
roinvasion had been previously described for other coronaviruses in animals [121,122].
Recent combined neurophysiological and histopathological findings showed an early in-
volvement of the vagus nerve and respiratory nuclei in the brainstem, probably accounting
for the respiratory failure itself during the acute phases of the illness [123–125]. Whatever
the mechanism, either direct or mediated by inflammation and autoimmunity, parenchymal
involvement of the brainstem is suspected to trigger some long-term complications, such
as movement disorders [126,127], including functional tic-like disorders in childhood [128].

5.6.3. The Strange Case of ME/CFS and What We Can Learn about Long COVID
in Children

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a clinical condition
associated with a number of viral infections, including Epstein–Barr virus (EBV) and
Human Parvovirus B-19 (HPV B-19), but it has assumed a high epidemiological relevance
with SARS-CoV-2, affecting millions of people worldwide [129–131]. It defines a long-term
illness characterised by at least six months of fatigue and exhaustion, together with post-
exertional malaise and unrefreshing sleep [132,133]. Before the COVID-19 pandemic, the
prevalence of CFS among adolescents was estimated at 0.1–1.9% in the US, with about 13%
of them experiencing a prolonged recovery [134,135]. Although the phenotype is mainly
neurological, this syndrome is often accompanied by systemic features and symptoms,
comprising anxiety, diarrhea and skin manifestations.

Apart from infectious illnesses, ME/CFS has been also associated with exposure to
environmental toxins or stressful life events [136].

Concerning specifically ME/CFS, there are three main theories about its pathophysiology:

i. a dysregulation of the 2-5A synthetase/ribonuclease L antiviral defence pathway [137];
ii. an inhibition of the hypothalamus–pituitary–adrenal (HPA) axis, thus leading to

hypocortisolism [138];
iii. an altered sympathetic nervous activity, as demonstrated by orthostatic intolerance in

these patients [139].

In some cases, autoantibodies against β-adrenergic or muscarinic cholinergic receptors
have also been demonstrated [140]. Many of these putative pathways are in common with
Long COVID, as discussed above, especially for autonomic dysfunction.

In children, specific hospital-based rehabilitation programs for ME/CFS have been
reported in detail elsewhere, which seem to be effective also when following SARS-CoV-2
infection [141,142]. In particular, cognitive behaviour therapy has been demonstrated to
be effective in adolescents [143], while acceptance and commitment treatment has been
proposed as an alternative [141]. Interestingly, a double-blind study using intravenous
immunoglobulin in adolescents showed promising findings, but it has not been replicated
so far [144]. Conversely, antiviral therapy shows no evidence of clinical benefits [145].
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5.7. Psychological Aspects

The COVID-19 pandemic has severely threatened psychological health, as well as
relational and social well-being [146,147]. Despite the lower incidence of infection and
mortality in children than in adults, the negative impact of the pandemic on psychological
well-being has been evident [148,149]. Children over the age of two were aware of the
changes caused by the spread of the virus and were afraid of their health and family
members [148]. Children experienced a state of uncertainty for a prolonged period and
suffered isolation due to the closure of schools and social gathering places. Several studies
have shown that the psychological pressure generated by social isolation and routine de-
rangement increased anxiety and depression symptomatology, irritability, mood instability,
behavioural and emotional changes and sleep disturbances [31,148–150]. Special attention
should be paid to children who have been infected by COVID-19. These children were
more susceptible to psychological difficulties due to the risks associated with infection,
isolation and the experience of hospitalisation [151]. Moreover, these complex situations
have often been compounded by the loss of a loved one and the subsequent bereavement.

Furthermore, it is noteworthy the reduction in social interaction. An Italian cohort
study including children aged 4–10 years showed that, during the pandemic, children
had more frequent attention-seeking behaviours and an increased need for parental close-
ness [152]. To attenuate the sense of loneliness, children and adolescents generally spend
more time on social media and the Internet, increasing the risk of compulsive usage and
explicit content access.

Overall, the COVID-19 pandemic had a significant negative impact on children’s
psychosocial well-being, highlighting the need to address emotional distress. As the
pandemic may have a long-term impact on the persistence of emotional reactions, it is
necessary to formulate targeted interventions based on significant influencing factors.

6. Clinical Approach: From Diagnosis to Follow-Up

Currently, there are no guidelines for Long COVID syndrome management in children.
In a recent publication, Fainardi et al. [26] proposed a schematic approach to paediatric
Long COVID divided into different steps.

The first one is represented by comprehensive medical history and physical exam-
ination. Paediatricians should actively search for Long COVID symptoms, particularly
among at-risk patients, such as adolescent females and children with comorbidities. Spe-
cific symptom-based questionnaires for Long COVID may help to investigate the presence
of long-lasting symptoms and their impact on everyday life. Validated scales have been
proposed for adult patients, such as the symptom burden questionnaire for Long COVID
(SBQ-LC) and the COVID-19 Yorkshire Rehabilitation Scale (C19-YRS) [153,154]. Unfortu-
nately, these items require to be fulfilled directly by the patients and are not suitable for
children. Other psychometric scales have been adopted to measure specific aspects of Long
COVID impact on the paediatric population, most of all the psychological health status.
Though useful in terms of follow-up and guidance of therapeutic interventions, none of the
scales currently available are validated for assessing children.

Secondly, the appropriate diagnostic test should be chosen on the basis of symptoms
and clinical signs (Figure 2). Non-invasive diagnostic tests, such as blood exams, PFTs,
ECG, sniffing tests, audiometry and 6MWT, may be helpful to exclude the alternative
diagnosis, but it should be reminded that currently there is no single diagnostic test for
Long COVID. Moreover, mild abnormalities may persist also in healthy children with past
SARS-CoV-2 infection and should be carefully evaluated on the basis of clinical presentation
and past medical history. Non-invasive tests could be adopted for children monitoring and
follow-up, as Long-COVID-related findings seem to be time-limited and generally resolve
in a few months. During the third step, the monitoring phase, symptoms’ trend should be
checked. Taking into account the actual knowledge, it seems reasonably advisable to leave
more invasive tests (e.g., computed tomography or lung MRI) to selected cases that show
persistent, atypical or worsening symptoms.
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Figure 2. Clinical approach to paediatric Long COVID. Abbreviations: 6MWT = six-minute walking
test; DLCO = diffusion lung capacity for carbon monoxide; LUS = lung ultrasound; CT = computed
tomography; EMG = electromyography; CPK = creatine phosphokinase; EEG = electroencephalogram;
MRI = magnetic resonance; ECG = electrocardiograph; TTE = transthoracic echocardiography; BNP =
brain-derived natriuretic peptide; US = ultrasound; AST = aspartate aminotransferase; ALT = alanine
aminotransferase; GGT = gamma-glutamyl transpeptidase.

Regarding Long COVID management, non-pharmaceutical interventions such as
physical rehabilitation have been proposed to treat Long COVID symptoms in the adult
population [81]. The only available randomised control trial present in the literature
found that light aerobic and breath exercises improved lung function, exercise tolerance,
quality of life and anxiety in a group of 72 elderly COVID-19 survivors [155]. Common
analgesics, such as paracetamol and non-steroidal anti-inflammatory drugs (NSAIDs), may
help to control symptoms, but there is no current effective pharmaceutical treatment for
Long COVID syndrome [81]. To date, there are no available data regarding Long COVID
treatment in the paediatric population. Anyway, it should be noted that this condition has
a limited time course and symptoms are generally mild [26].

7. Conclusions

Long COVID syndrome may have a relevant impact on the daily functioning and
overall quality of life of children. Symptoms are more frequently mild and generally resolve
spontaneously within a few months. Currently, the pathophysiologic mechanisms are
largely unknown in the paediatric population. Clinical manifestations are heterogeneous
and variable over time. Available data concerning diagnostic assessment in children are
mainly limited to respiratory symptoms, showing only minor pathologic findings in a
subgroup of them. In the absence of permanent functional abnormalities, symptoms such
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as fatigue and exercise intolerance might be explained by muscle deconditioning and
behavioural changes induced by lockdown and social isolation.

Given the mild and transient disease course in most children with Long COVID, we
suggest clinical follow-up along with the use of non-invasive and less dangerous diagnostic
tests (i.e., LUS than chest CT for respiratory problems) as the best management options,
limiting the application of more laborious tests to the few children with severe disease.
Finally, paediatric Long COVID should be assessed by paediatricians and all the involved
specialists in a multidisciplinary setting based on the clinical manifestations.
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