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Popularity bias is the tendency of recommender systems to further suggest popular items while disregarding niche ones,
hence giving no chance for items with low popularity to emerge. Although the literature is rich in debiasing techniques, it
still lacks quality measures that efectively enable their analyses and comparisons.

In this paper, we irst introduce a formal, data-driven, and parameter-free strategy for classifying items into low, medium,
and high popularity categories. Then we introduce BQS, a quality measure that rewards the debiasing techniques that
successfully push a recommender system to suggest niche items, without losing points in its predictive capability in terms of
global accuracy.

We conduct tests of BQS on three distinct baseline collaborative iltering (CF) frameworks: one based on history-embedding
and two on user/item-embedding modeling. These evaluations are performed on multiple benchmark datasets and against
various state-of-the-art competitors, demonstrating the efectiveness of BQS.

CCS Concepts: · General and reference → Metrics; Evaluation; Metrics; · Information systems → Recommender

systems; Retrieval efectiveness; Information retrieval diversity; Collaborative iltering.

1 INTRODUCTION

Recommender Systems based on collaborative iltering [6] are afected by a relevant problem: they are prone
to suggest very popular items and neglect niche ones [9, 26, 46]. This phenomenon is known as popularity bias
and it is a direct consequence of the underlying data distribution used for training the recommender. Within
scenarios involving sparse interactions among large amounts of users and items, we typically observe a long tail
distribution following the so-called 80-20 rule, referring to the fact that 80% of users express preferences for only
20% of the available items. As a consequence, within the recommendation framework, the most popular items
become more and more popular, while the items with low popularity do not get adequate exposure.

The literature ofers numerous techniques to mitigate the popularity bias in recommendation. In particular, the
most popular solutions embed procedures to enhance long-tail recommendations, while minimizing the impact
on the math and implementation of their underlying algorithms.
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However, currently, there are no existing metrics that efectively capture both the mitigation ability and the
capability to generate high-quality recommendation lists, thus limiting the in-depth analysis and comparison of
debiasing techniques. In other words, there is no measure that adequately assesses both the exposure of items in
the long tail and the predictive ability of a recommender system.
In this paper, we present the Balanced Quality Score (BQS) measure that ills this gap. The objective of BQS

is to reward debiasing techniques that boost low-popular item exposure, without degrading global accuracy.
We claim that, diferently from standard metrics used for measuring popularity debiasing (that we reviewed in
Section 3.3), BQS quantiies the underlying beneits of overexposing long-tail items, still taking into account the
global accuracy.
The proposed metric is based on a partition of items into popularity classes. The standard approach in the

literature is to rely on the 80%-20% method introduced by [1, 2]. However, this method does not necessarily it the
underlying data distribution. We overcome it by proposing a novel data-driven strategy that formally categorizes
items as either low-, medium-, and high- popular, based on the intrinsic popularity distribution shape.
To prove the efectiveness of BQS, we apply several mitigation techniques (see Section 3.6) on three distinct

baseline CF frameworks based on pairwise comparison and embedding modeling. Two rely on user-/item-
embedding modeling, hence combining both users and items embeddings for producing the preferences; the
third one relies on history-embedding modeling, computing preferences by projecting the user’s history into the
latent space. Paradigmatic of the irst approach is BPR (Bayesian Personalized Ranking) [14, 17, 30, 31, 40], which
translates users and items relatedness into geometric closeness within the latent space. Belonging to the family of
user-/item-embedding approaches as well, we also consider SimGCL [44] which embeds users and items through
graph convolutional layers and employs an additional self-supervised loss to improve the model robustness.

Representative of the second modeling approach is RVAE (Ranking Variational Autoencoder) [23, 25, 32, 34, 35],
a ranking extension of Mult-VAE (Multinomial VAE) [25], which directly maps a user preference history into
latent features that can be exploited to build a suitable ranking predictor.

Our contribution can be hence summarized as follows:

• We propose a novel technique to formally categorize items into low-, medium-, and high- popular, according
to the popularity distribution shape.

• We study the efect of popularity bias for the two classes of models on an extensive set of diverse benchmark
datasets.

• Since our objective is boosting low-popular item exposure without degrading global accuracy, we introduce
a new metric in order to evaluate the improvement in low-popular items exposure, compared to the loss on
global accuracy.

• We show that the proposed strategy is efective and competitive with respect to state-of-the-art approaches.

The rest of the paper is structured as follows. Section 2 analyses the current literature that studies the popularity
bias phenomenon. The popularity-based categorization of the items and the details about BQS are discussed
in Section 3. An experimental evaluation, supporting our claims, is shown in Section 4, while, in Section 5, we
inally set some pointers for further research.

2 POPULARITY BIAS

Bias in computer systems can be deined as a łsystematic and unfair discrimination against certain individuals or
groups of individuals in favor of others.ž [16]. It is a phenomenon that deeply afects the recommendation algorithms
in various forms since they are fed with data whose gathering process is observational rather than experimental
[10]. One of the forms of bias is the so-called popularity bias, which implies an over-exposure of already high-
popular items, neglecting niche ones. This pernicious phenomenon reduces not only the personalization (i.e.,
exacerbating user experience homogenization) but also the fairness and the variety of the suggested items.
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Long-term consequences triggered by the feedback loop between the user, recommender, and data can be even
more detrimental [27, 37]. In particular, as mentioned in [3, 8], unfair recommendations are concentrated on
groups of users interested in long-tail and less popular items.
To mitigate the popularity bias, a conservative approach is to equip existing recommendation solutions with

components whose goal is to amplify the exposure of rare item, trying to match users’ interest. In particular,
in this analysis we are interested in empowering pure collaborative iltering approaches, since they only need
user-item interactions to produce suggestions. Hence, three possible strategies can be devised: (i) preprocessing
the training dataset; (ii) altering the optimization/training process; (iii) calibrating the recommendation scores.

Pre-processing techniques. A irst approach is to deliberately modify the input dataset to train a model favoring
low-frequency items. Regarding popularity debiasing, several works [15, 20] propose to resample items inversely
with the popularity to boost the presence of low-popular items in the top-k rankings. Boratto et al. [7] focus their
approach on halving the negative examples with respect to popularity by sampling equally from popular and
unpopular items.

Indeed, diferently from us, all the aforementioned approaches adopt ixed oversampling strategies, regardless
of the underlying item properties.

In-processing techniques. Another approach is to modify the learning phase of a recommender system by
slightly altering its optimization process. Seminal work was proposed by [33], which adapts the IPS framework to
preference modeling. Kamishima et al. [21] introduce a constraint aimed at minimizing the Normalized Mutual
Information between the recommendation score and the popularity of the candidate item. Boratto et al. [7]
also propose a regularization penalty that correlates the prediction of an item to its popularity in an attempt to
quantify how much the recommendation depends on the popularity, with the consequent objective to minimize
such dependency. Abdollahpouri et al. [1] propose a regularization that fairly chooses between two sets of items:
one containing the short-head items and the other containing the medium-tail items.

Chen et al. [11] implement a co-training disentangled domain adaptation network, able to co-train both biased
and unbiased models.

Ding et al. [13] propose a distillation framework that combines the losses of two models, one trained over the
original (hence biased) dataset, the other one over a controlled debiased trial. Zhu et al. [47] propose a more
sophisticated technique by reconsidering the Bayesian Personalized Ranking model [31] in an adversarial setting.
They introduce a discriminator whose task is to derive the popularity group an item belongs to. The model needs
to minimize the recommendation error while preventing the discriminator from correctly classifying the items.
Xv et al. [42] proposes a strategy that encourages all items embeddings to be orthogonal, thus disentangled

and popularity neutral.
Causal analysis is a growing research line that recently found room in debiasing recommender systems. For

instance, Zheng et al. [45] distinguish between two factors that cause the user-item interaction: the user interest in
an item and the user conformity (i.e., how much the user follows trends); while Wei et al. [41] deine a framework
that jointly models any neural recommender and the item and user biases.
Nevertheless, conversely to our conservative approaches, performing an in-processing debiasing necessarily

afects the adaptability of the strategy, since it requires retouching the model or necessarily resorting to a speciic
models category.

Post-processing techniques Strategies based on postprocessing were proposed in [2, 4, 36]. The core idea is to
calibrate the recommendation list in order to give priority to less popular objects or to detect a miscalibration
between groups of users.
Basically, these approaches try to modify the generated recommendation list to boost the exposure of low-

popular items. For instance, Abdollahpouri et al. [2] deine a gain function that alters the recommendation list
by searching for other (not recommended) items within the catalog that could still match the user’s taste. Xv
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et al. [42] propose to isolate one direction of the items embeddings to be popularity biased during training and
neutralize it in a second phase.

The risk of this kind of strategy is to reduce the predictive capability of the chosen recommendation algorithm,
thus downgrading the global performance.

3 CONTRIBUTION

Various metrics and strategies have been proposed to assess the performance of a recommendation model, such
as Hit-Rate, NDCG (Normalized Discounted Cumulative Gain), and Precision. However, besides estimating how
well the model predicts relevant content for users, in our opinion other factors should be taken into account.

One of them is the capability of the recommendation algorithm to surprise the user, by suggesting non-trivial
items, that otherwise would not be able to reach them. By incorporating unexpected recommendations, the
algorithm can improve user experience, broadening the user’s horizons, exposing them to diverse options, and
potentially introducing them to items they may have overlooked. This element of novelty and serendipity adds
an extra layer of value to the recommendation process, going beyond the mere predictive accuracy of the system.
Another factor we want to consider is the fairness in ofering equity (not equality) in exposure for the items

(and their producers). Equality means that the recommender system treats every item the same, irrespective of
their status or context. Although this may seem fair, items, supported by higher visibility or better advertising,
are more likely to reach the user. Equity means that, in some circumstances, items need to be treated diferently
in order to provide meaningful parity of opportunity in reaching users, making the latter the real judges in the
recommendation.

However, there is no standard solution on how to quantify serendipity and fairness in this context, since content
providers are not able to distinguish between items that do not match user preferences from those which are not
popular enough to be discovered. For this reason, serendipity and fairness are typically associated with the model
capability of efectively exposing items belonging to the long-tail. Thus given, it’s clear that the evaluation of a
recommendation system is inluenced by two forces pushing in opposite directions: on the one hand, we desire
to obtain suggestions that match the user preferences; on the other hand, there is the drive to look for content
that can positively surprise users who otherwise would not have visibility of niche but interesting products.
As shown in Section 2, current literature is rich in solutions that try to improve the quality of a recommender
system in such a sense, and quantify the exposure of long-tail items by adopting standard metrics, such as Average
Recommendation Popularity (��� ) [43], Average Percentage of Long Tail items (���� ) [1], and Average Coverage
of Long Tail items (���� ) [2]. Notably, such metrics focus on estimating the exposure of the long-tail items in the
recommendation list, without providing further information about the quality of such suggestions.

In the following, we aim at addressing two fundamental challenges belonging to this context:

(1) There is a lack of consensus over the portion of long-tail items to bring out;
(2) The existing metrics are not self-contained, i.e., they are not able to express both the exposure of long-tail

items and the recommendation quality.

To discuss about the challenges and the proposed solutions we are introducing the notation that will be exploited
in the rest of the work.

3.1 Notation

Given � = {1, . . . , �} a set of � users and � = {1, . . . , � } a set of � items, let X ∈ {0, 1}�×� be a preference
matrix, so that ��,� = 1 whenever user� ∈ � expressed a preference for item � ∈ � , and ��,� = 0 otherwise (the item
can be both unknown to or disliked by �). We denote by x� the �-th row in X and by �� = {� ∈ � | ��,� = 1} the set
of �� = |�� | items chosen by�. The preference matrix induces a natural ordering among items, where � ≻� � means
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that � prefers � to � , i.e., ��,� > ��,� in the rating matrix: for each user �, we denote asD� ⊂ {(�, �) | �, � ∈ � ; � ≻� �}

their associated set of pairwise comparisons.
In addition, we deine �� =

∑
�∈� ��,� as the popularity (i.e., absolute frequency) of the item � , and � =

{��1 , ��2 , . . . , ��� } as the popularity vector over the whole item catalog, where �� ∈ � , � ∈ {1, . . . , � } and
��� < ���+1 .

3.2 Choosing from the Long-Tail

To address the irst challenge, we need to understand the underlying nature and the structural properties of the
data distribution that governs the recommendation. The preference matrix of a recommender system is actually an
instantiation of Preference Networks, which have been extensively studied in the literature [29]. These networks
are characterized by a bipartite graph that connects two sets of nodes: users and items. Consequently, the degree
of an item � within the item-set represents the number of times users have interacted with it: its popularity �� .
We can consider the Complementary Cumulative Degree Distribution (CCDD) which deines the probability

� (�� ≥ �) of a generic item � in the network having a degree greater than or equal to � . Notice that this probability
can be equivalently expressed in terms of the frequency � (�) = |{� ∈ � |�� ≥ �}|, since � (�) ≈ � (�� ≥ �) · � . As
stated in [12, 28, 29], CCDDs in preference networks typically exhibits shapes resembling power-law functions,
like the ones shown in Figure 1, where the X-axis represents the item popularity � , while the Y-axis represents
the complementary cumulative frequency of the items � (�), both on a logarithmic scale. A perfectly power-law
shaped function (Figure 1a) is extremely unlikely in real preference networks. Therefore, we will focus on concave
distributions (Figure 1b).
The CCDD and � are strictly related since the former contains the same information of the latter but in an

aggregate form. Speciically, the shape of � is a sequence of steps, where each step collects all the items that
are characterized by the same popularity value. Conversely, the CCDD, through a suitable transformation1,
overlaps with �, but aggregates its steps in a unique data point (Figure 2). Hence, we can state that the shape of
� characterizes the preference networks.
The logarithmic values of � for concave CCDDs exhibit a shape that is similar to the one shown in Figure 3b,

where we have evidence of an inlection point and two elbows. The irst elbow is generated by the lat portion of
the untransformed CCDD, whose ending negative slant is cause of the second elbow. Both the elbows can be
exploited to deine a data-driven strategy to formally categorize items into popularity classes, eliminating the
reliance on biased approaches that employ ixed thresholds along the � distribution curve [1, 2]. 2 In fact, we
can deine two natural thresholds, namely �� and �� , by considering the popularity values of the elbows. These
thresholds split � into three distinct classes, highlighting the diferent item exposure: �� = {� ∈ � | �� ≤ ��} the
set of items with a very low exposure, �� = {� ∈ � | �� < �� ≤ �� } the set of items with progressively increasing
exposure, and �� = {� ∈ � | �� > �� } the set of items with an out-of-scale exposure. Without loss of generality, in
the (rare) case of a perfect power-law-shaped distribution, � will show only one elbow, as shown in Figure 3a.
Consequently, � will be split into two classes, namely low- and high-popular ones.

The set �� contains the low-popular items, which we deem to possess the highest potential in terms of novelty
and fairness, since they represent niche products or content that, on one hand, users would not naturally interact
with, and, on the other hand, would not have been able to emerge during the recommendation process. Upon
closer examination of the neighborhood around �� , we observe an abrupt shift in the growth pattern of the

1CCDD Transformation. Assume the CCDD function is encoded as � (�� ) for � ∈ {1, . . . , �}:

(1) Set �1 = 0 and �� = ��−1 + � (��−�+1 ) − � (��−� ) , for 2 ≤ � ≤ �

(2) Deine �̃ (�� ) = ��−� , for 1 ≤ � ≤ �.

The resulting �̃ (�) represents the popularity of the �-th item in the popularity rank.
2These approaches poorly it data properties, since they are the result of empirical analyses. Fixed thresholds may generate noisy popularity
classes, where either long-tail and well-exposed items, or regularly-exposed and popular items are mixed.
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(a) (b)

Fig. 1. Typical (log-log) Complementary Cumulative Degree Distributions in Preference Networks. X axis represents the

degree of the items, i.e. their popularity. Y axis maps the complementary cumulative frequency for each degree.

(a) Full representation of the popularity score �

and CCDD. (b) Zoom of the botom-let corner of Figure 2a.

Fig. 2. Overlapping of � and transformed cumulative distribution function. The red points represent the CCDD, whereas the

blue ones represent the � index. Y axis represents item popularity, in log-scale.

data distribution. On the left side, items strongly difer in exposure, while on the right side, items in �� exhibit
relatively similar popularity, that smoothly grows till �� . This dynamic casts low-popular items of the chessboard,
while items in �� can compete and potentially gain prominence.

For this reason, we state that the so-deined low-popular items are the best candidates within the long-tail to
be promoted, thereby enhancing fairness and serendipity in recommendation. Additionally, the threshold-based
strategy proposed to identify low-popular items ofers several advantages:

• It’s data-driven, relying solely on the data distribution with no human bias;
• It’s general: it can be applied in any scenario where data are represented as preference matrix;
• It’s parameter-free, eliminating the need for manual parameter tuning.

ACM Trans. Intell. Syst. Technol.



Balanced uality Score (BQS): Measuring Popularity Debiasing in Recommendation • 7

(a) � distribution for perfectly power-law shaped

CCDDs. (b) � distribution for concave shaped CCDDs.

Fig. 3. � distributions. X axis is the � index. Y axis is the item popularity, in log-scale.

Notably, these advantages are unique for the proposed strategy, as the most used approaches in the literature rely
on human-designed choices, such as employing a ixed threshold on the popularity score or a ixed number of
items composing the long-tail.

3.3 Leveraging Exposure and Predictive performance

To evaluate and quantify the efects of popularity and novelty in the ield of recommender systems, various
metrics have been developed. These metrics provide insights into how recommendation algorithms prioritize
popular items and the extent to which they incorporate novel suggestions. However, they fail to provide a
comprehensive understanding of how the suggested items it the user’s taste. While focusing on recommendation
fairness, they overlook the importance of recommendation quality and its alignment with the user’s preferences.

In this work, we review ive standard metrics used to evaluate the recommendation quality and the efectiveness
in boosting the exposure of niche items, namely Hit-Rate (HR), Normalized Discounted Cumulative Gain (NDCG),
Average Recommendation Popularity (ARP), Average Percentage of long-tail items (APLT ), Average Coverage of long-
tail items (ACLT ), (Popularity-based) Ranking-based Statistical Parity (P-RSP) and (Popularity-based) Ranking-based
Equal Opportunity (P-REO). In this analysis, we assume to have:

• A subset � ⊂ � as test users;
• A series of subsets �� ⊂ �� as test items and �+� = ��\�� as training items, for each � ∈ � ;
• A random subset Neg�,� ⊆ �\�� of negative items (i.e., items that user � did not interacted with), for each
� ∈ � and � ∈ �� ;

• A recommendation list �� ⊆ �\�+� , for each � ∈ � .

Hit-Rate. HR measures the capability of a recommendation algorithm to retrieve hidden positive items among a
large number of negative items. For each user � ∈ � and item � ∈ �� , HR counts a hit with cut-of � , if � is in the
top-� recommended items belonging to the set {�} ∪ Neg�,� . Let �

�
� be the number of hits for the user � with

cut-of � . We deine the Hit-Rate at � as:

HR@� =

∑
�∈� ��

�∑
�∈� |�� |

. (1)

As it is easy to notice, HR does not take into account the popularity of the recommended items. Its sole objective
is to successfully identify the positive items to suggest while iltering out the negative ones.
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We can trivially specialize this deinition for low-popular items, HR�@� , by considering only items in �� that
belong to that speciic class. However, both HR and HR� are not able to provide complete information about
recommendation quality and recommendation fairness. The same reasoning can be applied to other quality
measures of recommendation, such as NDCG, Precision and Recall. Unfortunately, even in these cases, a
consistent measure that balances predictive accuracy and novelty of suggestions is not achieved.

Normalized Discounted Cumulative Gain. To assess the efectiveness of recommender models in prioritizing
relevant items at the top of the recommendation list, we employ the Normalized Discounted Cumulative Gain
(NDCG) metric [38]. This metric incorporates a logarithmic discount factor based on the position of the relevant
item within the ranked list. For a given user �, we compute the Discounted Cumulative Gain (DCG) considering
the top-k items as follows:

DCG(�)@� =

�︁

�=1

��� ��

���2 ( �� + 1)
(2)

where �� represents the rank of j-th item for user �, and ��� �� is the relevance of that item for the user (i.e. 1 for a
positive item and 0 for a negative one). The value is divided by the ideal DCG (i.e. iDCG) representing a perfect
ranking to obtain the NDCG(u)@k. Then the overall NDCG value on the test set is obtained by averaging across
all users the equation 2:

NDCG@� =

1

|� |

︁

�∈�

DCG(�)@�

iDCG(�)@�
(3)

In contrast to employing a random subset Neg�,� for negative sampling, as in the case of the Hit-Rate, we consider
the ranking obtained by scoring the entire set of items �\�+� (excluding only those seen in the training set).
Notably, a recent study [19] highlights how diferent negative sampling strategies may yield contradictory
performance outcomes: we here assess the robustness of our metric by adopting two evaluation strategies.

Average Recommendation Popularity. ARP is a standard metric for evaluating popularity debiasing widely
adopted in literature [2ś4, 22]. It estimates the average popularity of the items in each recommendation list and
is deined as:

ARP@� =

1

|� |

︁

�∈�

∑
�∈�� ��

�
, (4)

where �� is the (absolute) popularity of the item � and � = |�� |.
By design, this measure can mislead the reader. The lower the value of ARP, the higher the exposure of the

long-tail items; however, there is no requirement for the model to efectively align with the user’s preferences,
making the metric diicult to employ in optimization processes.

Average Percentage of long-tail items. APLT [1] computes the average percentage of low-popular items in the
recommendation list, and is deined as follows:

APLT@� =

1

|� |

︁

�∈�

|{�, � ∈ �� ∩ ��}|

|�� |
, (5)

Again, APLT does not care if the low-popular items match user’s interest, but it limits to measure their frequency.

Average Coverage of long-tail items. [2] introduce ACLT as an evaluation measure to address a problem with
APLT, which could yield high values even if all users receive the same set of low-popular items. The authors
state that ACLT measures the fraction of long-tail items covered by the recommender and propose the following
formulation:

ACLT@� =

1

|� |

︁

�∈�

︁

�∈��

1(� ∈ ��) . (6)

ACM Trans. Intell. Syst. Technol.
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Here, 1(� ∈ ��) is an indicator function that equals 1 if the recommended item � ∈ �� (i.e., a low-popular item),
and 0 otherwise. The authors aimed at extending the concept of aggregate diversity measure (AD), which was
extensively discussed by [5], by deploying it into the popularity bias ield. AD measure is deined as the total
number of distinct items recommended across all users: However, if we consider the term

∑
�∈�� 1(� ∈ ��) in

Equation 6, we can notice that it counts, for each user � in the test set � , how many items are within the
intersection of �� and �� , thus:

︁

�∈��

1(� ∈ ��) = |{�, � ∈ �� ∩ ��}| ⇒ APLT@� =

����@�

�
(since |�� | = �) . (7)

Given their formulations, the two metrics provide the same information, but scaled by a constant. Moreover,
the aggregate diversity measure focuses on the diversity coverage of the entire catalog and fails to consider the
quality of predictions, which renders it incomplete.

(Popularity-based) Ranking-based Statistical Parity. P-RSP [47] rewards recommender algorithms that
enforce the ranking probability distributions of the diferent popularity groups of items to be the same. For each
popularity class �� ∈ {��, �� , �� }, P-RSP begins by summing the ratios between the number of suggested items
(we are assuming �� ∩ �+� = ∅) belonging to �� and the number of un-interacted items in �� across all users:

�(��)@� =

︁

�∈�

��{�, � ∈ �� ∩ ��
}��

��{�, � ∈ �� ∩ (�\�+� )
}�� , (8)

then, P-RSP is deined as the coeicient of variation of the set {�(��)@�, �(�� )@�, �(�� )@�}:

P-RSP@� =

std {�(��)@�, �(�� )@�, �(�� )@�}

mean {�(��)@�, �(�� )@�, �(�� )@�}
. (9)

Again, we do not have a ground truth match that provides us with information regarding the predictive ability of
the recommendation model.

(Popularity-based) Ranking-based Equal Opportunity. P-REO [47] recommendation metric is an evolution of
P-RSP that takes into account the prediction match with the test set. In particular, P-REO extends �(��) in �(�� |� ),
that represents the summation of the ratios between the number of suggested items, belonging to ��, that are
contained within the test set, and the number of the test set items in ��:

�(�� |� )@� =

︁

�∈�

��{�, � ∈ �� ∩ �� ∩��
}��

��{�, � ∈ �� ∩��
}�� . (10)

Similarly to Equation 9, P-REO is deined as a coeicient of variation:

P-REO@� =

��� {�(�� |� )@�, �(�� |� )@�, �(�� |� )@�}

���� {�(�� |� )@�, �(�� |� )@�, �(�� |� )@�}
. (11)

By incorporating the test set, P-REO ofers a more comprehensive view than its predecessors. However, we are
still far from deining a metric capable of clearly expressing both the predictive ability and the diversiication
ability of a recommendation algorithm. In addition, P-REO pushes the algorithm to balance among the popularity
classes, even at the expense of its predictive quality.
We stress that, despite all these well-known metrics give information related to the exposure of low-popular

items in the user list, they provide no information about the quality of such recommendations. For this reason,
we want to compare their efectiveness in evaluating debiasing with our proposal, Balanced Quality Score.

ACM Trans. Intell. Syst. Technol.
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3.4 Balanceduality Score (BQS)

In Section 2, we have seen that the literature is rich in techniques that aim at improving the ability of a baseline
model to successfully suggest long-tail items. However, as mentioned in Section 3.3, at the best of our knowledge,
there is currently no self-contained metric that ofers insights into both recommendation quality and exposure to
low-popular items. This lack of a comprehensive metric makes it challenging to compare diferent improvement
strategies.
For this reason, in this work, we propose the Balanced Quality Score (BQS) measure. The purpose of BQS is

to quantify the improvement achieved on low-popular items through the integration of a debiasing technique
within a baseline recommendation algorithm while considering the potential impact on overall recommendation
quality. In other words, BQS can measure the extent to which a debiasing model � improves upon a baseline
recommender system �, in terms of bias mitigation and recommendation quality.

Let QM be any traditional quality measure for the prediction (e.g., Hit-Rate, Recall, NDCG, ...). We deine �@�

as the diference between QM� , that represents the quality obtained by � , and QM� , that represents the quality
obtained by �, with � as cut-of:

�@� = QM�@� − QM�@� . (12)

Similarly, we can obtain ��@� by computing the quality measures over the low-popular items only. Notably,
�@� can be either positive or negative, thus representing either a gain or a loss resulting from the adoption of
the model at hand in place of the baseline. We exploit this diference in a gain/loss function Φ@� :

Φ@� =

{
�@� if �@� ≥ 0

−(� �@�)2 + �@� otherwise
, (13)

that quadratically penalizes losses, while considering linear gains.3 The constant term � > 1 is used to activate a
dramatic penalization for values lower than − 1

�
(corresponding to situations where the quadratic term dominates

on the linear one). Similarly, we can devise Φ�@� based on ��@� in Equation 13. The rationale is to ensure that
empowered exposure of the Long-tail should not excessively afect the overall quality of the recommendation,
hence, gains linearly contribute to BQS, while losses produce a quadratic cost.

Taking into account Φ@� and Φ�@� , we can deine BQS@� as the sigmoid function of their linear combination:

BQS@� = � (Φ@� + Φ�@�) , (14)

where � (�) = (1 + �−� )−1. So deined, BQS ∈ [0, 1] and denotes the balance between the relative improvement on
the low-popular items and the loss in terms of global quality. Higher values correspond to substantial improvement
in the exposure of low-popular, at the cost of negligible reductions or even gains in global accuracy.

We claim that, in comparison to other measures in the literature (discussed in Section 3.3), BQS is more efective
in highlighting the underlying beneits or drawbacks of applying a debiasing strategy both in terms of prediction
quality and Long-tail exposure. Furthermore, BQS can be used on its own to estimate the overall recommendation
quality of the debiasing algorithm, as well as the exposure provided to long-tail items, with no additional support,
making the metric suitable in optimization processes.

As a inal comment, we would like to emphasize that BQS can also be utilized to evaluate the balance between
the overall recommendation quality and the quality achieved on mid-popular items, or any speciic group of
items denoted by � , with minimal efort. Equation 12 can be in fact verticalized to compute ��@� , instead of
��@� .

3The additive term �@� guarantees the absence of singular values for diferentiability.
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3.5 Baseline Models

Wewant to validate and compare the eicacy of the metrics in capturing the debiasing capability of the techniques
without impoverishing the global prediction quality. To do so, we have chosen baseline models whose main
feature is to compare items and generate a preference ranking for each user. We identify two main families:

• User-/Item-Embeddingmodels, that combine both users and items embeddings for each expressed preference;
• History-Embedding models, that compute preferences by projecting the user’s history into a latent space.

Paradigmatic of the irst approach is the Bayesian Personalized Ranking (BPR) model introduced in [31]. Its
underlying idea is that a preference � ≻� � can be directly explained as closeness in a latent space where both
items and users can be mapped. This can be devised by computing a factorization rank p� · q� for each pair (�, �),
with p� (resp. q� ) being the user (resp. item) embedding, and modeling precedences by means of a Bernoulli
process: � ≻� � ∼ Bernoulli(�), where � = �

(
p� · (q� − q� )

)
and � (�) = (1 + �−� )−1 is the logistic function. The

optimal embeddings P = {p1, . . . , p� } and Q = {q1, . . . , q� } can hence be obtained by optimizing the loss:

ℓ��� (P,Q) = −
︁

�

︁

�, �
�≻� �

log�
(
p� · (q� − q� )

)
+ Regularization . (15)

As representative of the second algorithm family, we choose a ranking-based version of Mult-VAE framework
proposed in [23, 25, 32, 34, 35], namely Ranking Variational Autoencoder (RVAE). The latter keeps the Mult-VAE
network topology but alters the loss function by focusing on pair-wise comparisons, as follows:

ℓRVAE (�, � ) = −
︁

�

Ez∼�� ( · |x� )

[
︁

�≻� �

log �� (� ≻� � |z)

]

+ KL [�� (z|x�)∥� (z)] , (16)

where�� is the Encoder module, �� is the Decoder module, and z is the latent representation of the input data x� .
To generalize our indings, we also explore a more recent baseline, SimGCL [44], which leverages the expressive

potential of Graph Neural Networks within the collaborative iltering domain. SimGCL is optimized using the
BPR loss in Equation 15 and a self-supervised term which uses contrastive views of the user-item bipartite graphs.
We refer the reader to the original paper [44] for the details.

Learning by Negative Sampling. In the above formulation, there are some details that are worth further
discussion. In both BPR, SimGCL and RVAE models, optimizing the loss function requires that all pairs of items
are considered within Equations 15 and 16. This is unrealistic with large item bases, and it is usual to consider the
subset D� of pairwise comparisons (see Section 3.1). This way, Equation 15 and Equation 16 can be respectively
rewritten as:

ℓ��� (P,Q) = −
︁

�

︁

(�, � ) ∈D�

log�
(
p�� (q� − q� )

)
+ Regularization , (17)

ℓ���� (�, � ) = −
︁

�

Ez∼�� ( · |x� )



︁

(�, � ) ∈D�

log �� (� ≻� � |z)


+ KL [�� (z|x�)∥� (z)] . (18)

The sampling of D� represents a trade-of between accuracy and training eiciency in the underlying predictive
model. A standard approach in literature is to uniformly sample for each user � and item � , a ixed number of �
items { �1, . . . ��} ⊂ � − �� with the assumption that ∀� : � ≻� �� . If such a subset exists, � is called a positive item
and �1, . . . �� are called negative items.

ACM Trans. Intell. Syst. Technol.
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3.6 Debiasing techniques

Here we list the debiasing techniques we are going to exploit to prove the efectiveness of our proposal. We
want to point out that we have selected techniques from the literature that can be seamlessly integrated into any
recommendation system with minimal or no signiicant modiication to the underlying algorithm (in our case
BPR, SimGCL or RVAE):

• Uniform oversampling (S,u) consists in the oversampling strategy in which the number of pairwise
comparisons is kept constant during the training phase.

• Dynamic oversampling (S,d) refers to an oversampling strategy that, for each item � ∈ � , dynamically
computes the �� pairwise comparisons to sample. More details are speciied in the Appendix A.

• Ensemble (E) is an ensembling strategy that combines the pretrained baseline with a pretrained variant
that focuses on low-popular items only. The inal score is deined as ��

= Softmax(��) + � · Softmax(��),
where �� is the score vector produced by the baseline, and �� be the score produced by the low-only model.
The ensemble parameter � is computed through a greedy search (exploiting BQS, but forcing � > 0) and
Table 2 shows the optimal results for RVAE and BPR.

• Jannach (Jan) [20] adopts an oversampling strategy to increase the occurrences of low-popular items in
the training set.

• IPS (IPS) [33] weights the loss of each positive item with its inverse popularity score.
• Boratto (regularizer) (� (� ) ) [7] adds a penalty in the loss equal to the correlation between the loss residuals
and the items popularity.

• PopularityDeconfounding (PD) [39] applies the do-calculus used in causal inference to perform popularity
debiasing.

4 EXPERIMENTS

We performed an empirical analysis, aimed at corroborating the hypothesis that our metric is able to better show
the debiasing capability of the technique, thus providing information on its recommendation quality.

4.1 Datasets

We exploited the following popular benchmark datasets, coming from diferent domains and hence with speciic
features:

• Movielens-1M4, containing movies ratings by users. The ratings are on a range [1, 5]. Since we work on
implicit feedback, we binarized the data by associating to each user-item pairs, 1 if the rating provided by
the user is strictly greater than 3 and 0 otherwise.

• Amazon-GGF5, containing e-commerce review data. It is focused on products belonging to Grocery and
Gourmet Food. Again, ratings are on a [1, 5] scale and they have been binarized as for Movielens-1M.

• Pinterest6, extracted from the social media Pinterest.com, which allows users to save or pin an image (item)
to their board. The dataset denotes as 1 the pinned images for each user.

• Citeulike-a7, obtained from the homonymous service which provides a digital catalog to save and share
academic papers. A user preference is encoded as 1 if the user has saved the paper (item) in his/her library.

• Yahoo-r38, gathered from Yahoo! Music. It contains user-item ratings during normal interaction with the
service. Again, ratings are on a [1, 5] scale and they have been binarized by only keeping those strictly

4https://grouplens.org/datasets/movielens/1m/
5http://jmcauley.ucsd.edu/data/amazon/index_2014.html
6https://www.kaggle.com/minnieliang/rec-system/version/2
7https://github.com/js05212/Citeulike-a
8https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Dataset #Users #Items #Low %Low #Med %Med #High %High #Ratings Sparsity

MovieLens-1M 6031 3462 496 14.33% 2620 75.68% 346 9.99% 571450 97.25%
Amazon-GGF 74688 21800 2174 9.97% 17463 80.11% 2163 9.22% 636919 99.96%
Citeulike-a 5551 16875 2369 14.04% 12927 76.60% 1579 9.36% 204776 99.78%
Pinterest 55187 9892 1467 14.83% 7439 75.20 % 986 9.97% 1500779 99.73%
Yahoo-r3 9735 975 107 10.97% 771 79.08% 97 9.95% 117688 98.76%

Table 1. Summary statistics of benchmark datasets

greater than 3 as positives. A nice feature of this dataset is that a standard test set is pre-built to prevent
speciic biases: in fact, it is built by collecting the ratings obtained by exposing 10 random items to 5, 400
users.

Each dataset was preprocessed by removing outlier users who preferred more than 1, 000 or less than 5 items.
The general properties (number of users, items, ratings and sparsity index) and the statistics related to low-,
medium- and high-popular items are reported in Table 1.

4.2 Setings

We study the behavior of the RVAE, SimGCL and BPR model instances within the popularity classes. To do so, we
adopt the following protocols.
Let us consider RVAE irst. For each dataset (except for Yahoo-r3, where the split is predeined), the training

set is composed of 70% of randomly sampled users. Each such user is associated with x� and the set D� of
positive/negative item pairs. The remaining 30% of users is uniformly split into validation and test set. In
particular, for each user �, we consider a random subset �� ⊂ �� representing the 30% of the positive items. The
vector x� is masked to remove all elements in �� . We then feed the masked x� to obtain the score vector �� .

Concerning BPR and SimGCL, the above protocol requires some adaptation. The BPR (and SimGCL) algorithm
computes an embedding for each user (resp. item). This requires each user (resp. item) in the validation/test set
to be observed also in the training set. To ensure this requirement, for each user in the validation/test set, we
enforce the following: (i) the 70% of the items for each user is inserted in the training set, (ii) the remaining items
(i.e. the 30%) are considered when populating �� . The alignment of �� on RVAE, SimGCL and BPR guarantees that
their performances are comparable.
The three models were trained on simple architectures: the BPR architecture is a regularized embedding of

users and items (with latent size 32); while RVAE is an encoder-decoder with two layers of size 600 and 200 (as
the original MVAE proposed in [24]). SimGCL model is instantiated using the default hyper-parameters reported
in the original paper [44] and latent size equal to 32.
We choose, for each user � and item � ∈ �� , a ixed number of � = 4 negative items to populate D� , and

� ∈ {1, 5, 10} as cut-ofs since the impact of the bias efect can be easily observed with small recommendation
lists [7].

Following from the discussion in Section 3.2, we need to practically identify the popularity thresholds (namely,
�� and �� ) on the � function in an automated manner. In practice, our claim is that the properties of � itself
can be exploited to identify the popularity categories. For this purpose, we perform the following two-steps
procedure over the � distribution. First, we apply the Savgol smoothing ilter [34] to get rid of potential change
points on the curve: this is a mandatory step, since for locating the elbows of the function, we need to irst ind its
inlection points, and thus compute the derivatives. Second, in order to estimate the exact location of the elbows,
we exploit the function rotor from the kneebow package [21], which provides an ad-hoc method for the purpose
(i.e., find_elbow) based on the geometric properties of the underlying curve.
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All the code and data to reproduce the experiments are available online 9.

Dataset � RVAE� � SimGCL� � BPR�

MovieLens-1M 0.4 0.05 0.754
Amazon-GGF 0.2 0.05 0.000001
Citeulike-a 0.7 0.05 0.000001
Pinterest 0.6 0.6 0.000001
Yahoo-r3 0.55 0.75 0.000027

Table 2. Best � score per dataset for RVAE, SimGCL and BPR.

4.3 Results

Tables 3, 4 and 5, 6, 7, 8, 9, 10, 11 summarize the evaluation results of the aforementioned strategies, over all the
considered cut-ofs, by adopting RVAE, BPR and SimGCL. The tables report the scores in terms of either HR and
HR� , or NDCG and ����� , as well as ARP, APLT, P-REO and BQS.

Each experiment was obtained by averaging ive diferent runs. Values in bold and underlined onARP@{1, 5, 10},
APLT@{1, 5, 10}, P-REO@{1, 5, 10}, and BQS@{1, 5, 10} represent the best and second-best results, respectively,
according to ANOVA statistical signiicance [18]. Recalling the deinition, the metrics have to be read diferently:
the best values in terms of APLT and BQS are the highest, while they are the lowest according to ARP and P-REO.
Notice that, we are not here interested in comparing the debiasing methods: indeed, we aim at evaluating

the efectiveness of each reported metric (ARP, APLT, P-REO, and BQS) in capturing the trade-of between the
accuracy gain over low-popular items and the impact on the global performance of a given debiasing approach.

Consider the results obtained with RVAE irst (Tables 3, 4 and 5). Let us focus on Movielens-1M. We see that, in
all the given cut-ofs, either ARP, APLT, and P-REO agree in choosing the uniform oversampling as the optimal
approach. However, if we consider the global performance, we can observe that it drastically decreases, showing
a reduction of -0.13, -0.18, -0.15, respectively, in terms of ��@{1, 5, 10} over the baseline, and of -0.23, -0.21, and
-0.19, respectively, in terms of ����@{1, 5, 10}. Conversely, BQS produces really low scores, thus estimating
the uniform oversampling as the worst strategy to adopt. This is because it quadratically penalizes global losses
with respect to gain on low-popular items, thus downgrading the techniques that, despite boosting niche items,
dramatically afect the overall performance. The best strategy, according to our metric, is the model ensemble in
all the considered cut-ofs (tied with the baseline at �@1 when adopting the HR as the accuracy metric, and at
�@1, 5 in terms of NDCG). Indeed, at cut-ofs �@{5, 10}, it induces a gain over low-popular items, in spite of a
negligible loss over global accuracy.

Similar considerations can be made by looking at the results obtained on Amazon-GGF with cut-of �@1. Here,
both ARP and APLT suggest the uniform oversampling as the best model. Indeed, also in this case the global
quality is considerably afected, with a loss of about -0.18 in terms of HR, and of -0.03 in terms of NDCG, with
respect to the vanilla model. According to P-REO, instead, the best strategy to consider is Jannach, which leads to
a slight improvement over low-popular items in terms of HR, but severely afects the global quality as well.

BQS@1, instead, selects the dynamic oversampling strategy as optimal when we adopt the HR as accuracy
measure, while picking Boratto regularizer as the best approach, when NDCG is adopted.

These strategies, in fact, lead to a gain both over low-popular items (+0.01 in terms of HR� and +0.04 in terms
of NDCG�) and with respect to global quality (+0.01 over HR and +0.03 over NDCG).

9https://github.com/EricaCoppolillo/BQS
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This underlines another limitation of the other metrics that our proposal overcomes: taking into consideration
improvements in global quality as well as gains over low-popular items. Moreover, diferently from the other
debiasing metrics, our proposal is able to diversify the best strategy to adopt according to the chosen accuracy
measure (e.g., HR, NDCG), thus ofering a more lexible solution.

On Citeulike-a at �@1, instead, we can observe a further diferent case. While ARP and APLT identify Jannach
as the winner strategy, P-REO and BQS match in estimating the best approach as the uniform oversampling.
Notably, it is a pure coincidence: indeed, if we look at the second-best algorithm, P-REO chooses PD, while BQS
the dynamic oversampling. In this case, besides slightly reducing the global performance, PD produces a really
poor gain also in terms of low-popular items compared to the baseline; on the contrary, the dynamic oversampling
approach induces both a higher low-popular gain and overcomes the baseline in terms of global quality. Here is
another important limitation of the P-REO metric that our proposal solves: besides ensuring parity among the
popularity groups, it provides no certainty about the quality of such recommendations. In other words, low-value
scores could be also due to poor performances obtained over all the considered groups.

Similar comments can be made by observing the results table obtained by adopting the other backbone models,
namely BPR and SimGCL.

Let us consider the results obtained with BPR (Tables 6, 7 and 8).
On MovieLens-1M at cut-of �@1, according to ARP and APLT, the optimal approach is the uniform oversam-

pling, which induces no gain both in terms of HR� and NDCG� , but severely degrading the global accuracy. On
the other hand, P-REO selects IPS, which produces a slight improvement over low-popular items in terms of HR,
but still decreases the overall performance. On the contrary, BQS@1 identiies either the ensemble model as the
most convenient, when HR is adopted as the reference quality metric, or the dynamic oversampling strategy,
when NDCG is considered. Indeed, in the former case, the approach gains +0.02 on low-popular items over the
baseline almost without afecting global quality (-0.002); in the latter, besides not boosting the NDCG� measure,
it obtains the highest global score.

Further, on Amazon-GGF with cut-of �@5,ARP selects the dynamic oversampling method as the most efective,
while APLT and P-REO pick again the uniform oversampling as the best candidate. Here, the former approach
considerably boosts the low-popular items, gaining +0.04 on HR� , but decreases the global performance by -0.06.
The latter similarly increases the low-popular accuracy of +0.04 but similarly drops the global one, by losing
-0.04. On the contrary, BQS identiies the baseline as the best approach when HR is taken into account, suggesting
debiasing methods are not able to induce a better trade-of between the overall recommendation quality and
the niche items exposure. Similarly, when considering NDCG as reference accuracy measure, ��� selects the
baseline as the best as well, tying with the ensemble strategy that gains the same scores.
Finally, we focus on the results obtained with SimGCL (tables 9, 10, 11), from which we can draw similar

conclusions. Consider Pinterest with cut-of �@1. Here, all the competitor metrics disagree in choosing the best
debiasing approach: ARP selects the ensemble strategy, APLT the uniform oversampling, and P-REO the IPS
method. We see that especially the latter is the most inconvenient choice, since the IPS strategy gains +0.01
on HR� over the baseline (nevertheless losing -0.2 in terms of NDCG�), thus dramatically afecting the global
performance. Our BQS metric, instead, agrees with ARP in picking the ensemble as the best method, both in
terms of HR and NDCG, since this strategy greatly boosts the accuracy on low-popular items without degrading
global quality. Notice again, it is a pure coincidence that the two measures select the best candidate: if we look at
the second-best choice, indeed, ARP selects IPS, while BQS picks either the uniform oversampling (when HR is
adopted as reference accuracy metric), or PD (when NDCG is taken into account). Both the strategies, indeed,
ofer a better solution than the baseline, greatly boosting the recommendation quality over low-popular items
(+0.13 in terms of HR� and +0.02 in terms of NDCG�), without degrading global performance.

Similar considerations, that show the eicacy BQS compared to the standard metrics adopted in literature, can
be observed in all the other datasets and cut-ofs.
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Table 3. Results obtained with RVAE, by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@1. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.

5 CONCLUSIONS

In this work, we addressed the problem of evaluating and comparing debiasing techniques that enhanced
recommender systems to empower the exposure of long-tail items within a catalog.
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Table 4. Results obtained with RVAE, by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@5. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.

We irst proposed a formal methodology to categorize items into low-, medium- and high- popular, relying on
their underlying data distribution shape. To the best of our knowledge, this is the irst attempt to overcome the
standard 80/20% approach used in literature.

Next, we exploited these classes to deine the Balanced Quality Score measure (BQS) that rewards the debiasing
techniques that successfully push the recommender systems to suggest niche items, without losing points in
their predictive capability in terms of global accuracy.
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Table 5. Results obtained with RVAE, by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@10. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.

The experimentation, conducted on several benchmark datasets, three baselines and numerous competitors,
shows that the proposed strategy is the best in highlighting the debiasing techniques with the highest improve-
ments in the exposure of low-popular items without degrading global quality, exhibiting a competitive advantage
over the state-of-the-art. In fact, BQS has proven to be used in optimization processes.
Still, other aspects can be investigated in future work. Bias can occur in other contexts besides popularity,

where underexposure can result in unfair recommendations. In this context, it would be interesting to investigate
whether new mitigation strategies can be deined with the related quality measures. Also, temporal efects (e.g.
obsolescence or popularity decay) should be taken into account in implementing mitigation strategies.
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Table 6. Results obtained with BPR, by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@1. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.
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Table 7. Results obtained with BPR, by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@5. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.
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Table 8. Results obtained with BPR, by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@10. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.
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Table 9. Results obtained with SimGCL by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@1. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.
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Table 10. Results obtained with SimGCL by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@5. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.
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Table 11. Results obtained with SimGCL by comparing either HR and HR� (let Table), or NDCG and NDCG� (right Table), as

well as ARP, APLT, P-REO and BQS at cut-of �@10. Colors refer to the column values: the darker the cell, the higher the

content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed

by averaging five diferent runs and applying the ANOVA statistics test. No bold nor underlined values mean diferences are

not statistically relevant.
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A APPENDIX

Fig. 4. Item exposure during training. X axis is the item popularity. Blue points are the exposures within the baseline, while

green points represent the oversampling induced by Eq. 19. Both axes are on log-scale.

Dynamic Oversampling. The oversampling strategy consists in populating D� by progressively increasing the
exposure of positive items inversely to their popularity. Hence, rather than sampling, for each occurrence ��,� = 1
in X, a ixed number � of negative items, we can apply a stratiied sampling scheme.

Let �′� be a term that is inversely proportional to the popularity of the item, deined as:

�′� = �0
max (�)

�� ��
, (19)

where �0 is a constant (we set it equal to 4), � is the popularity distribution of all the items in � , �� is the popularity
of the item � , and �� is the discrete scaling factor that controls the sampling exposure. The latter is worthy of an
in-depth discussion.

Consider the term max (� )
��

: its approximation represents the under-exposure of an item � with respect to the
most popular one(s). The adoption of this scaling factor could in principle rebalance the exposures. The adjusted
cumulative exposure for item � , i.e. each time ��,� = 1 for all � ∈ � would become in fact:

exposure� = �0

︁

�∈�

��,�
max (�)

��
= �0

max (�)

��

︁

�∈�

��,�

= �0
max (�)

��
�� = �0 max (�) .

(20)

This would result in all positive items associated with the same number of pairwise comparisons, regardless of
their popularity (i.e., in the uniform oversampling strategy).
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We can further investigate the rebalancing capability of the term�� , by introducing a dynamic factor moderating
the over-exposure of medium- and low-popular items. We hence deine �� as:

�� =
��

max (1, ℎ)
+ 1 , (21)

where �� is the rank of the item � (ranging from 0 for the most popular item, to |� | − 1 for the least popular one),
and ℎ represents the highest rank of the set of items for which we want to preserve a certain number of pairwise
comparisons. Its value is the rank of the last high-popular item, i.e. |�� | − 1. The term ��

ℎ
indicates how far the

item � is from the top popular ones: the farther, the more �� will penalize �′� .
This dynamic sampling strategy consists in feeding the recommender with �� pairwise comparisons for each

positive occurrence of � ∈ X, where:

�� =

{⌈
�′�
⌉

if 0 < � ≤ �′� −
⌊
�′�
⌋

⌊
�′�
⌋

otherwise
, (22)

with � ∼ U(0, 1) sampled from a uniform distribution. The random process mitigates the overexposure of popular
items that are not maximally popular, which a ceiling process would produce.
By construction, the exposure of the top-popular item �top coincides with the one induced by the baseline, as

shown in the top-right corner of Figure 4, due to ��top = 1 and ��top = max (�) (see Equations 19-21). From here,
since the value of �� progressively increases, the exposure of the items is adapted according to the popularity
classes. Compared to the baseline, the exposure of high-popular items exhibits negligible changes, while medium-
and especially low-popular items gain much more relevance, while the overall popularity relationships are kept
coherent and smooth.
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