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Popularity bias is the tendency of recommender systems to further suggest popular items while disregarding niche ones,
hence giving no chance for items with low popularity to emerge. Although the literature is rich in debiasing techniques, it
still lacks quality measures that effectively enable their analyses and comparisons.

In this paper, we first introduce a formal, data-driven, and parameter-free strategy for classifying items into low, medium,
and high popularity categories. Then we introduce BQS, a quality measure that rewards the debiasing techniques that
successfully push a recommender system to suggest niche items, without losing points in its predictive capability in terms of
global accuracy.

We conduct tests of BOS on three distinct baseline collaborative filtering (CF) frameworks: one based on history-embedding
and two on user/item-embedding modeling. These evaluations are performed on multiple benchmark datasets and against
various state-of-the-art competitors, demonstrating the effectiveness of BOS.

CCS Concepts: » General and reference — Metrics; Evaluation; Metrics; « Information systems — Recommender
systems; Retrieval effectiveness; Information retrieval diversity; Collaborative filtering,.

1 INTRODUCTION

Recommender Systems based on collaborative filtering [6] are affected by a relevant problem: they are prone
to suggest very popular items and neglect niche ones [9, 26, 46]. This phenomenon is known as popularity bias
and it is a direct consequence of the underlying data distribution used for training the recommender. Within
scenarios involving sparse interactions among large amounts of users and items, we typically observe a long tail
distribution following the so-called 80-20 rule, referring to the fact that 80% of users express preferences for only
20% of the available items. As a consequence, within the recommendation framework, the most popular items
become more and more popular, while the items with low popularity do not get adequate exposure.

The literature offers numerous techniques to mitigate the popularity bias in recommendation. In particular, the
most popular solutions embed procedures to enhance long-tail recommendations, while minimizing the impact
on the math and implementation of their underlying algorithms.
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However, currently, there are no existing metrics that effectively capture both the mitigation ability and the
capability to generate high-quality recommendation lists, thus limiting the in-depth analysis and comparison of
debiasing techniques. In other words, there is no measure that adequately assesses both the exposure of items in
the long tail and the predictive ability of a recommender system.

In this paper, we present the Balanced Quality Score (BQS) measure that fills this gap. The objective of BQS
is to reward debiasing techniques that boost low-popular item exposure, without degrading global accuracy.
We claim that, differently from standard metrics used for measuring popularity debiasing (that we reviewed in
Section 3.3), BOS quantifies the underlying benefits of overexposing long-tail items, still taking into account the
global accuracy.

The proposed metric is based on a partition of items into popularity classes. The standard approach in the
literature is to rely on the 80%-20% method introduced by [1, 2]. However, this method does not necessarily fit the
underlying data distribution. We overcome it by proposing a novel data-driven strategy that formally categorizes
items as either low-, medium-, and high- popular, based on the intrinsic popularity distribution shape.

To prove the effectiveness of BQOS, we apply several mitigation techniques (see Section 3.6) on three distinct
baseline CF frameworks based on pairwise comparison and embedding modeling. Two rely on user-/item-
embedding modeling, hence combining both users and items embeddings for producing the preferences; the
third one relies on history-embedding modeling, computing preferences by projecting the user’s history into the
latent space. Paradigmatic of the first approach is BPR (Bayesian Personalized Ranking) [14, 17, 30, 31, 40], which
translates users and items relatedness into geometric closeness within the latent space. Belonging to the family of
user-/item-embedding approaches as well, we also consider SimGCL [44] which embeds users and items through
graph convolutional layers and employs an additional self-supervised loss to improve the model robustness.

Representative of the second modeling approach is RVAE (Ranking Variational Autoencoder) [23, 25, 32, 34, 35],
a ranking extension of Mult-VAE (Multinomial VAE) [25], which directly maps a user preference history into
latent features that can be exploited to build a suitable ranking predictor.

Our contribution can be hence summarized as follows:

e We propose a novel technique to formally categorize items into low-, medium-, and high- popular, according
to the popularity distribution shape.

o We study the effect of popularity bias for the two classes of models on an extensive set of diverse benchmark
datasets.

e Since our objective is boosting low-popular item exposure without degrading global accuracy, we introduce
a new metric in order to evaluate the improvement in low-popular items exposure, compared to the loss on
global accuracy.

o We show that the proposed strategy is effective and competitive with respect to state-of-the-art approaches.

The rest of the paper is structured as follows. Section 2 analyses the current literature that studies the popularity
bias phenomenon. The popularity-based categorization of the items and the details about BQS are discussed
in Section 3. An experimental evaluation, supporting our claims, is shown in Section 4, while, in Section 5, we
finally set some pointers for further research.

2 POPULARITY BIAS

Bias in computer systems can be defined as a “systematic and unfair discrimination against certain individuals or
groups of individuals in favor of others.” [16]. It is a phenomenon that deeply affects the recommendation algorithms
in various forms since they are fed with data whose gathering process is observational rather than experimental
[10]. One of the forms of bias is the so-called popularity bias, which implies an over-exposure of already high-
popular items, neglecting niche ones. This pernicious phenomenon reduces not only the personalization (i.e.,
exacerbating user experience homogenization) but also the fairness and the variety of the suggested items.
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Long-term consequences triggered by the feedback loop between the user, recommender, and data can be even
more detrimental [27, 37]. In particular, as mentioned in [3, 8], unfair recommendations are concentrated on
groups of users interested in long-tail and less popular items.

To mitigate the popularity bias, a conservative approach is to equip existing recommendation solutions with
components whose goal is to amplify the exposure of rare item, trying to match users’ interest. In particular,
in this analysis we are interested in empowering pure collaborative filtering approaches, since they only need
user-item interactions to produce suggestions. Hence, three possible strategies can be devised: (i) preprocessing
the training dataset; (ii) altering the optimization/training process; (iii) calibrating the recommendation scores.

Pre-processing techniques. A first approach is to deliberately modify the input dataset to train a model favoring
low-frequency items. Regarding popularity debiasing, several works [15, 20] propose to resample items inversely
with the popularity to boost the presence of low-popular items in the top-k rankings. Boratto et al. [7] focus their
approach on halving the negative examples with respect to popularity by sampling equally from popular and
unpopular items.

Indeed, differently from us, all the aforementioned approaches adopt fixed oversampling strategies, regardless
of the underlying item properties.

In-processing techniques. Another approach is to modify the learning phase of a recommender system by
slightly altering its optimization process. Seminal work was proposed by [33], which adapts the IPS framework to
preference modeling. Kamishima et al. [21] introduce a constraint aimed at minimizing the Normalized Mutual
Information between the recommendation score and the popularity of the candidate item. Boratto et al. [7]
also propose a regularization penalty that correlates the prediction of an item to its popularity in an attempt to
quantify how much the recommendation depends on the popularity, with the consequent objective to minimize
such dependency. Abdollahpouri et al. [1] propose a regularization that fairly chooses between two sets of items:
one containing the short-head items and the other containing the medium-tail items.

Chen et al. [11] implement a co-training disentangled domain adaptation network, able to co-train both biased
and unbiased models.

Ding et al. [13] propose a distillation framework that combines the losses of two models, one trained over the
original (hence biased) dataset, the other one over a controlled debiased trial. Zhu et al. [47] propose a more
sophisticated technique by reconsidering the Bayesian Personalized Ranking model [31] in an adversarial setting.
They introduce a discriminator whose task is to derive the popularity group an item belongs to. The model needs
to minimize the recommendation error while preventing the discriminator from correctly classifying the items.

Xv et al. [42] proposes a strategy that encourages all items embeddings to be orthogonal, thus disentangled
and popularity neutral.

Causal analysis is a growing research line that recently found room in debiasing recommender systems. For
instance, Zheng et al. [45] distinguish between two factors that cause the user-item interaction: the user interest in
an item and the user conformity (i.e., how much the user follows trends); while Wei et al. [41] define a framework
that jointly models any neural recommender and the item and user biases.

Nevertheless, conversely to our conservative approaches, performing an in-processing debiasing necessarily
affects the adaptability of the strategy, since it requires retouching the model or necessarily resorting to a specific
models category.

Post-processing techniques Strategies based on postprocessing were proposed in [2, 4, 36]. The core idea is to
calibrate the recommendation list in order to give priority to less popular objects or to detect a miscalibration
between groups of users.

Basically, these approaches try to modify the generated recommendation list to boost the exposure of low-
popular items. For instance, Abdollahpouri et al. [2] define a gain function that alters the recommendation list
by searching for other (not recommended) items within the catalog that could still match the user’s taste. Xv
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et al. [42] propose to isolate one direction of the items embeddings to be popularity biased during training and
neutralize it in a second phase.

The risk of this kind of strategy is to reduce the predictive capability of the chosen recommendation algorithm,
thus downgrading the global performance.

3 CONTRIBUTION

Various metrics and strategies have been proposed to assess the performance of a recommendation model, such
as Hit-Rate, NDCG (Normalized Discounted Cumulative Gain), and Precision. However, besides estimating how
well the model predicts relevant content for users, in our opinion other factors should be taken into account.

One of them is the capability of the recommendation algorithm to surprise the user, by suggesting non-trivial
items, that otherwise would not be able to reach them. By incorporating unexpected recommendations, the
algorithm can improve user experience, broadening the user’s horizons, exposing them to diverse options, and
potentially introducing them to items they may have overlooked. This element of novelty and serendipity adds
an extra layer of value to the recommendation process, going beyond the mere predictive accuracy of the system.

Another factor we want to consider is the fairness in offering equity (not equality) in exposure for the items
(and their producers). Equality means that the recommender system treats every item the same, irrespective of
their status or context. Although this may seem fair, items, supported by higher visibility or better advertising,
are more likely to reach the user. Equity means that, in some circumstances, items need to be treated differently
in order to provide meaningful parity of opportunity in reaching users, making the latter the real judges in the
recommendation.

However, there is no standard solution on how to quantify serendipity and fairness in this context, since content
providers are not able to distinguish between items that do not match user preferences from those which are not
popular enough to be discovered. For this reason, serendipity and fairness are typically associated with the model
capability of effectively exposing items belonging to the long-tail. Thus given, it’s clear that the evaluation of a
recommendation system is influenced by two forces pushing in opposite directions: on the one hand, we desire
to obtain suggestions that match the user preferences; on the other hand, there is the drive to look for content
that can positively surprise users who otherwise would not have visibility of niche but interesting products.
As shown in Section 2, current literature is rich in solutions that try to improve the quality of a recommender
system in such a sense, and quantify the exposure of long-tail items by adopting standard metrics, such as Average
Recommendation Popularity (ARP) [43], Average Percentage of Long Tail items (APLT) [1], and Average Coverage
of Long Tail items (ACLT) [2]. Notably, such metrics focus on estimating the exposure of the long-tail items in the
recommendation list, without providing further information about the quality of such suggestions.

In the following, we aim at addressing two fundamental challenges belonging to this context:

(1) There is a lack of consensus over the portion of long-tail items to bring out;
(2) The existing metrics are not self-contained, i.e., they are not able to express both the exposure of long-tail
items and the recommendation quality.

To discuss about the challenges and the proposed solutions we are introducing the notation that will be exploited
in the rest of the work.

3.1 Notation

GivenU = {1,...,M} aset of Musersand I = {1,..., N} a set of N items, let X € {0, 1}"*N be a preference
matrix, so that x,,; = 1 whenever user u € U expressed a preference for item i € I, and x,,; = 0 otherwise (the item
can be both unknown to or disliked by u). We denote by x,, the u-th row in X and by I, = {i € I | x,,; = 1} the set
of n, = |I,| items chosen by u. The preference matrix induces a natural ordering among items, where i >, j means
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that u prefers i to j, ie., x,; > x,, ; in the rating matrix: for each user u, we denote as D, C {(i,j) | i, j € I; i >, j}
their associated set of pairwise comparisons.

In addition, we define p; = >,cy Xu; as the popularity (i.e., absolute frequency) of the item i, and p =
{pi,» Pir> - - -» pin} as the popularity vector over the whole item catalog, where it € I, k € {1,...,N} and

Pir. < Pigsa-

3.2 Choosing from the Long-Tail

To address the first challenge, we need to understand the underlying nature and the structural properties of the
data distribution that governs the recommendation. The preference matrix of a recommender system is actually an
instantiation of Preference Networks, which have been extensively studied in the literature [29]. These networks
are characterized by a bipartite graph that connects two sets of nodes: users and items. Consequently, the degree
of an item i within the item-set represents the number of times users have interacted with it: its popularity p;.

We can consider the Complementary Cumulative Degree Distribution (CCDD) which defines the probability
P(p; > p) of a generic item i in the network having a degree greater than or equal to p. Notice that this probability
can be equivalently expressed in terms of the frequency f(p) = |{i € I|p; = p}|, since f(p) = P(p; = p) - N. As
stated in [12, 28, 29], CCDDs in preference networks typically exhibits shapes resembling power-law functions,
like the ones shown in Figure 1, where the X-axis represents the item popularity p, while the Y-axis represents
the complementary cumulative frequency of the items f(p), both on a logarithmic scale. A perfectly power-law
shaped function (Figure 1a) is extremely unlikely in real preference networks. Therefore, we will focus on concave
distributions (Figure 1b).

The CCDD and p are strictly related since the former contains the same information of the latter but in an
aggregate form. Specifically, the shape of p is a sequence of steps, where each step collects all the items that
are characterized by the same popularity value. Conversely, the CCDD, through a suitable transformation!,
overlaps with p, but aggregates its steps in a unique data point (Figure 2). Hence, we can state that the shape of
p characterizes the preference networks.

The logarithmic values of p for concave CCDDs exhibit a shape that is similar to the one shown in Figure 3b,
where we have evidence of an inflection point and two elbows. The first elbow is generated by the flat portion of
the untransformed CCDD, whose ending negative slant is cause of the second elbow. Both the elbows can be
exploited to define a data-driven strategy to formally categorize items into popularity classes, eliminating the
reliance on biased approaches that employ fixed thresholds along the p distribution curve [1, 2]. ? In fact, we
can define two natural thresholds, namely 7; and 7y, by considering the popularity values of the elbows. These
thresholds split I into three distinct classes, highlighting the different item exposure: I = {i € I'| p; < 71} the
set of items with a very low exposure, Iy = {i € I | 71, < p; < 77} the set of items with progressively increasing
exposure, and Iy = {i € | p; > 7y} the set of items with an out-of-scale exposure. Without loss of generality, in
the (rare) case of a perfect power-law-shaped distribution, p will show only one elbow, as shown in Figure 3a.
Consequently, I will be split into two classes, namely low- and high-popular ones.

The set I contains the low-popular items, which we deem to possess the highest potential in terms of novelty
and fairness, since they represent niche products or content that, on one hand, users would not naturally interact
with, and, on the other hand, would not have been able to emerge during the recommendation process. Upon
closer examination of the neighborhood around 77, we observe an abrupt shift in the growth pattern of the

1CCDD Transformation. Assume the CCDD function is encoded as f(x;) for i € {1,...,n}:

(1) Sety; =0and y; = yi—1 + f (xp-i+1) — f(xp-i),for2<i<n

(2) Define p(yi) = xp—j,for1 <i < n.
The resulting p(y) represents the popularity of the y-th item in the popularity rank.
2These approaches poorly fit data properties, since they are the result of empirical analyses. Fixed thresholds may generate noisy popularity
classes, where either long-tail and well-exposed items, or regularly-exposed and popular items are mixed.
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Fig. 1. Typical (log-log) Complementary Cumulative Degree Distributions in Preference Networks. X axis represents the
degree of the items, i.e. their popularity. Y axis maps the complementary cumulative frequency for each degree.
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Fig. 2. Overlapping of p and transformed cumulative distribution function. The red points represent the CCDD, whereas the
blue ones represent the p index. Y axis represents item popularity, in log-scale.

data distribution. On the left side, items strongly differ in exposure, while on the right side, items in Iy exhibit
relatively similar popularity, that smoothly grows till 7. This dynamic casts low-popular items off the chessboard,
while items in Ij; can compete and potentially gain prominence.

For this reason, we state that the so-defined low-popular items are the best candidates within the long-tail to
be promoted, thereby enhancing fairness and serendipity in recommendation. Additionally, the threshold-based
strategy proposed to identify low-popular items offers several advantages:

o It’s data-driven, relying solely on the data distribution with no human bias;
e It’s general: it can be applied in any scenario where data are represented as preference matrix;
o It’s parameter-free, eliminating the need for manual parameter tuning.

ACM Trans. Intell. Syst. Technol.



Balanced Quality Score (BQS): Measuring Popularity Debiasing in Recommendation « 7

-
o
@

s 10

5100 =

: R

& 10 a

&£ 10t
10° o @ @ ®00®
0 1k 2k 3k 10° -
p index 0 1k 2k 3k
p index

(a) p distribution for perfectly power-law shaped
CCDDs. (b) p distribution for concave shaped CCDDs.
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Notably, these advantages are unique for the proposed strategy, as the most used approaches in the literature rely
on human-designed choices, such as employing a fixed threshold on the popularity score or a fixed number of
items composing the long-tail.

3.3 Leveraging Exposure and Predictive performance

To evaluate and quantify the effects of popularity and novelty in the field of recommender systems, various
metrics have been developed. These metrics provide insights into how recommendation algorithms prioritize
popular items and the extent to which they incorporate novel suggestions. However, they fail to provide a
comprehensive understanding of how the suggested items fit the user’s taste. While focusing on recommendation
fairness, they overlook the importance of recommendation quality and its alignment with the user’s preferences.
In this work, we review five standard metrics used to evaluate the recommendation quality and the effectiveness

in boosting the exposure of niche items, namely Hit-Rate (HR), Normalized Discounted Cumulative Gain (NDCG),
Average Recommendation Popularity (ARP), Average Percentage of long-tail items (APLT), Average Coverage of long-
tail items (ACLT), (Popularity-based) Ranking-based Statistical Parity (P-RSP) and (Popularity-based) Ranking-based
Equal Opportunity (P-REO). In this analysis, we assume to have:

o A subset T C U as test users;

e A series of subsets T,, c I, as test items and I} = I,\T,, as training items, for each u € T;

o A random subset Neg, ; C I\I, of negative items (i.e., items that user u did not interacted with), for each

ueTandi€ T,
o A recommendation list L, € I\I}}, for eachu € T.

Hit-Rate. HR measures the capability of a recommendation algorithm to retrieve hidden positive items among a
large number of negative items. For each user u € T and item i € T,,, HR counts a hit with cut-off k, if i is in the
top-k recommended items belonging to the set {i} U Neg, ;. Let HE be the number of hits for the user u with
cut-off k. We define the Hit-Rate at k as:

ZueT H1]1<

s (1)
ZuET |Tu|

As it is easy to notice, HR does not take into account the popularity of the recommended items. Its sole objective
is to successfully identify the positive items to suggest while filtering out the negative ones.

HR@k =
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We can trivially specialize this definition for low-popular items, HR; @k, by considering only items in T,, that
belong to that specific class. However, both HR and HR;, are not able to provide complete information about
recommendation quality and recommendation fairness. The same reasoning can be applied to other quality
measures of recommendation, such as NDCG, Precision and Recall. Unfortunately, even in these cases, a
consistent measure that balances predictive accuracy and novelty of suggestions is not achieved.

Normalized Discounted Cumulative Gain. To assess the effectiveness of recommender models in prioritizing
relevant items at the top of the recommendation list, we employ the Normalized Discounted Cumulative Gain
(NDCG) metric [38]. This metric incorporates a logarithmic discount factor based on the position of the relevant
item within the ranked list. For a given user u, we compute the Discounted Cumulative Gain (DCG) considering
the top-k items as follows:

relju

k
DCG(u)@k = (2)
]Z::J log

2(J* +1)
where j* represents the rank of j-th item for user u, and rel;« is the relevance of that item for the user (i.e. 1 for a
positive item and 0 for a negative one). The value is divided by the ideal DCG (i.e. iDCG) representing a perfect
ranking to obtain the NDCG(u)@k. Then the overall NDCG value on the test set is obtained by averaging across
all users the equation 2:
DCG(u) @k

iDCG(u) @k ®)

1
NDCG@k = —
IT| uze;
In contrast to employing a random subset Neg,, ; for negative sampling, as in the case of the Hit-Rate, we consider
the ranking obtained by scoring the entire set of items I\I} (excluding only those seen in the training set).
Notably, a recent study [19] highlights how different negative sampling strategies may yield contradictory
performance outcomes: we here assess the robustness of our metric by adopting two evaluation strategies.

Average Recommendation Popularity. ARP is a standard metric for evaluating popularity debiasing widely
adopted in literature [2-4, 22]. It estimates the average popularity of the items in each recommendation list and
is defined as:

1 ZieL Pi
ARP@k = — _— 4
T Z; p @

where p; is the (absolute) popularity of the item i and k = |L,|.

By design, this measure can mislead the reader. The lower the value of ARP, the higher the exposure of the
long-tail items; however, there is no requirement for the model to effectively align with the user’s preferences,
making the metric difficult to employ in optimization processes.

Average Percentage of long-tail items. APLT [1] computes the average percentage of low-popular items in the
recommendation list, and is defined as follows:

Lu mIL}’|

1 |{i,ie
APLT@k = — » ———— % LI 5
W Z; (5)

|Lul

Again, APLT does not care if the low-popular items match user’s interest, but it limits to measure their frequency.
Average Coverage of long-tail items. [2] introduce ACLT as an evaluation measure to address a problem with
APLT, which could yield high values even if all users receive the same set of low-popular items. The authors
state that ACLT measures the fraction of long-tail items covered by the recommender and propose the following
formulation:

1 .
ACLT@k = il Z Z 1iel). (6)

ueT iel,
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Here, 1(i € I1) is an indicator function that equals 1 if the recommended item i € I} (i.e., a low-popular item),
and 0 otherwise. The authors aimed at extending the concept of aggregate diversity measure (AD), which was
extensively discussed by [5], by deploying it into the popularity bias field. AD measure is defined as the total
number of distinct items recommended across all users: However, if we consider the term },c; 1(i € I) in
Equation 6, we can notice that it counts, for each user u in the test set T, how many items are within the
intersection of L, and I;, thus:
Z 1iel)={iiel,nl} =  APLT@k= ACLTT@'“ (since|Ly| = k). @)
i€,
Given their formulations, the two metrics provide the same information, but scaled by a constant. Moreover,
the aggregate diversity measure focuses on the diversity coverage of the entire catalog and fails to consider the
quality of predictions, which renders it incomplete.

(Popularity-based) Ranking-based Statistical Parity. P-RSP [47] rewards recommender algorithms that
enforce the ranking probability distributions of the different popularity groups of items to be the same. For each
popularity class I, € {Ir, Iy, Iy}, P-RSP begins by summing the ratios between the number of suggested items
(we are assuming L, N I;; = 0) belonging to I, and the number of un-interacted items in I, across all users:

[{i,i € Ly n L}

q(ly)@k = o , ®
9 ;Hl,z eI, N (I\I)}]
then, P-RSP is defined as the coefficient of variation of the set {q(Ir) @k, q(Iy) @k, q(Iy) @k}:

P-RSP@k = std{q(IL) @k, g(Im) @k, q(In) @k} o

mean {q(IL) @k, q(Im) @k, q(In)@k}

Again, we do not have a ground truth match that provides us with information regarding the predictive ability of
the recommendation model.

(Popularity-based) Ranking-based Equal Opportunity. P-REO [47] recommendation metric is an evolution of
P-RSP that takes into account the prediction match with the test set. In particular, P-REO extends g(I) in q(I;|T),
that represents the summation of the ratios between the number of suggested items, belonging to I, that are
contained within the test set, and the number of the test set items in I;:

i€ L,NINT,}

D@k = it

ueT |{l’l€Ingu}|
Similarly to Equation 9, P-REO is defined as a coefficient of variation:
td {q(I.|T) @k, g(Iy|T)@k, q(Ig|T) @k
p-REO@K = M4 ULID@k, g(IuIT) @k q(In|T) @k} o

mean {q(I.|T)@k, q(Im|T)@k, q(In|T)@k} -

By incorporating the test set, P-REO offers a more comprehensive view than its predecessors. However, we are
still far from defining a metric capable of clearly expressing both the predictive ability and the diversification
ability of a recommendation algorithm. In addition, P-REO pushes the algorithm to balance among the popularity
classes, even at the expense of its predictive quality.

We stress that, despite all these well-known metrics give information related to the exposure of low-popular
items in the user list, they provide no information about the quality of such recommendations. For this reason,
we want to compare their effectiveness in evaluating debiasing with our proposal, Balanced Quality Score.

ACM Trans. Intell. Syst. Technol.
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3.4 Balanced Quality Score (BQS)

In Section 2, we have seen that the literature is rich in techniques that aim at improving the ability of a baseline
model to successfully suggest long-tail items. However, as mentioned in Section 3.3, at the best of our knowledge,
there is currently no self-contained metric that offers insights into both recommendation quality and exposure to
low-popular items. This lack of a comprehensive metric makes it challenging to compare different improvement
strategies.

For this reason, in this work, we propose the Balanced Quality Score (BQS) measure. The purpose of BQS is
to quantify the improvement achieved on low-popular items through the integration of a debiasing technique
within a baseline recommendation algorithm while considering the potential impact on overall recommendation
quality. In other words, BQS can measure the extent to which a debiasing model D improves upon a baseline
recommender system B, in terms of bias mitigation and recommendation quality.

Let QM be any traditional quality measure for the prediction (e.g., Hit-Rate, Recall, NDCG, ...). We define ¢ @k
as the difference between QMP, that represents the quality obtained by D, and QM?, that represents the quality
obtained by B, with k as cut-off:

$p@k = OM° @k — QM @k . (12)

Similarly, we can obtain ¢; @k by computing the quality measures over the low-popular items only. Notably,
¢ @k can be either positive or negative, thus representing either a gain or a loss resulting from the adoption of
the model at hand in place of the baseline. We exploit this difference in a gain/loss function ®@k:

3
—(a p@k)? + p@k otherwise 13)

Dok - {¢@k if g@k 20

that quadratically penalizes losses, while considering linear gains.® The constant term a > 1 is used to activate a

dramatic penalization for values lower than —% (corresponding to situations where the quadratic term dominates

on the linear one). Similarly, we can devise ®; @k based on ¢; @k in Equation 13. The rationale is to ensure that

empowered exposure of the Long-tail should not excessively affect the overall quality of the recommendation,
hence, gains linearly contribute to BQS, while losses produce a quadratic cost.

Taking into account @@k and ®; @k, we can define BQS@k as the sigmoid function of their linear combination:

BOS@k = o (d@k + DL @F) , (14)

where o(w) = (1+e®)~". Sodefined, BQS € [0, 1] and denotes the balance between the relative improvement on
the low-popular items and the loss in terms of global quality. Higher values correspond to substantial improvement
in the exposure of low-popular, at the cost of negligible reductions or even gains in global accuracy.

We claim that, in comparison to other measures in the literature (discussed in Section 3.3), BQS is more effective
in highlighting the underlying benefits or drawbacks of applying a debiasing strategy both in terms of prediction
quality and Long-tail exposure. Furthermore, BQS can be used on its own to estimate the overall recommendation
quality of the debiasing algorithm, as well as the exposure provided to long-tail items, with no additional support,
making the metric suitable in optimization processes.

As a final comment, we would like to emphasize that BOS can also be utilized to evaluate the balance between
the overall recommendation quality and the quality achieved on mid-popular items, or any specific group of
items denoted by G, with minimal effort. Equation 12 can be in fact verticalized to compute ¢c @k, instead of

PL@k.
3The additive term p@k guarantees the absence of singular values for differentiability.
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3.5 Baseline Models

We want to validate and compare the efficacy of the metrics in capturing the debiasing capability of the techniques
without impoverishing the global prediction quality. To do so, we have chosen baseline models whose main
feature is to compare items and generate a preference ranking for each user. We identify two main families:

o User-/Item-Embedding models, that combine both users and items embeddings for each expressed preference;
o History-Embedding models, that compute preferences by projecting the user’s history into a latent space.

Paradigmatic of the first approach is the Bayesian Personalized Ranking (BPR) model introduced in [31]. Its
underlying idea is that a preference i >, j can be directly explained as closeness in a latent space where both
items and users can be mapped. This can be devised by computing a factorization rank p,, - q; for each pair (u, i),
with p, (resp. q;) being the user (resp. item) embedding, and modeling precedences by means of a Bernoulli
process: i >, j ~ Bernoulli(p), where p = o (p, - (q; — q;)) and o(a) = (1 + e~*)"! is the logistic function. The
optimal embeddings P = {py,...,pm} and Q = {q, ..., qn} can hence be obtained by optimizing the loss:

tepr(P,Q) = — Z Z log o (pu - (q: — q;)) + Regularization. (15)
u ij
i>yj

As representative of the second algorithm family, we choose a ranking-based version of Mult-VAE framework
proposed in [23, 25, 32, 34, 35], namely Ranking Variational Autoencoder (RVAE). The latter keeps the Mult-VAE
network topology but alters the loss function by focusing on pair-wise comparisons, as follows:

+ KL [Qg(z|xu)||P(2)] , (16)

Lrvap (4, 0) = — Z Er 06 (%) l Z log Py (i >y jlz)

i>yJ

where Qg is the Encoder module, Py is the Decoder module, and z is the latent representation of the input data x,,.

To generalize our findings, we also explore a more recent baseline, SimGCL [44], which leverages the expressive
potential of Graph Neural Networks within the collaborative filtering domain. SimGCL is optimized using the
BPR loss in Equation 15 and a self-supervised term which uses contrastive views of the user-item bipartite graphs.
We refer the reader to the original paper [44] for the details.

Learning by Negative Sampling. In the above formulation, there are some details that are worth further
discussion. In both BPR, SimGCL and RVAE models, optimizing the loss function requires that all pairs of items
are considered within Equations 15 and 16. This is unrealistic with large item bases, and it is usual to consider the
subset D, of pairwise comparisons (see Section 3.1). This way, Equation 15 and Equation 16 can be respectively
rewritten as:

tgpr(P, Q) = — Z Z log o (pg(qi - qj)) + Regularization, (17)
u (i,j)€Dy

trvar($,0) = = ) Bagyiin | D, 10gPy(i =y jl2)| + KL [Qp(zlx) IP(2)] . (18)
u (i,j) €Dy

The sampling of D,, represents a trade-off between accuracy and training efficiency in the underlying predictive
model. A standard approach in literature is to uniformly sample for each user u and item i, a fixed number of n
items {ji, ... jn} € I — I, with the assumption that Vk : i >, ji. If such a subset exists, i is called a positive item
and jy, ... j, are called negative items.
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3.6 Debiasing techniques

Here we list the debiasing techniques we are going to exploit to prove the effectiveness of our proposal. We
want to point out that we have selected techniques from the literature that can be seamlessly integrated into any
recommendation system with minimal or no significant modification to the underlying algorithm (in our case
BPR, SimGCL or RVAE):

e Uniform oversampling (S,u) consists in the oversampling strategy in which the number of pairwise
comparisons is kept constant during the training phase.

e Dynamic oversampling (S,d) refers to an oversampling strategy that, for each item i € I, dynamically
computes the n; pairwise comparisons to sample. More details are specified in the Appendix A.

o Ensemble (E) is an ensembling strategy that combines the pretrained baseline with a pretrained variant
that focuses on low-popular items only. The final score is defined as ¢f = Softmax(&8) +8 - Softmax(gL),
where ¢8 is the score vector produced by the baseline, and Z* be the score produced by the low-only model.
The ensemble parameter § is computed through a greedy search (exploiting BQS, but forcing § > 0) and
Table 2 shows the optimal results for RVAE and BPR.

o Jannach (Jan) [20] adopts an oversampling strategy to increase the occurrences of low-popular items in
the training set.

o IPS (IPS) [33] weights the loss of each positive item with its inverse popularity score.

e Boratto (regularizer) (")) [7] adds a penalty in the loss equal to the correlation between the loss residuals
and the items popularity.

e Popularity Deconfounding (PD) [39] applies the do-calculus used in causal inference to perform popularity
debiasing.

4 EXPERIMENTS

We performed an empirical analysis, aimed at corroborating the hypothesis that our metric is able to better show
the debiasing capability of the technique, thus providing information on its recommendation quality.

4.1 Datasets

We exploited the following popular benchmark datasets, coming from different domains and hence with specific
features:

e Movielens-1M*, containing movies ratings by users. The ratings are on a range [1, 5]. Since we work on
implicit feedback, we binarized the data by associating to each user-item pairs, 1 if the rating provided by
the user is strictly greater than 3 and 0 otherwise.

e Amazon-GGF’, containing e-commerce review data. It is focused on products belonging to Grocery and
Gourmet Food. Again, ratings are on a [1, 5] scale and they have been binarized as for Movielens-1M.

o Pinterest®, extracted from the social media Pinterest.com, which allows users to save or pin an image (item)
to their board. The dataset denotes as 1 the pinned images for each user.

e Citeulike-a’, obtained from the homonymous service which provides a digital catalog to save and share
academic papers. A user preference is encoded as 1 if the user has saved the paper (item) in his/her library.

e Yahoo-r3?%, gathered from Yahoo! Music. It contains user-item ratings during normal interaction with the
service. Again, ratings are on a [1,5] scale and they have been binarized by only keeping those strictly

“https://grouplens.org/datasets/movielens/1m/
Shttp://jmcauley.ucsd.edu/data/amazon/index_2014.html
Shttps://www.kaggle.com/minnieliang/rec- system/version/2
"https://github.com/js05212/Citeulike-a
8https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Dataset #Users  #ltems | #Low %Low  #Med %Med  #High  %High | #Ratings  Sparsity
MovieLens-1M 6031 3462 496 14.33% 2620 75.68% 346 9.99% 571450 97.25%
Amazon-GGF 74688 21800 2174 9.97% 17463 80.11% 2163 9.22% 636919 99.96%
Citeulike-a 5551 16875 2369 14.04% 12927 76.60% 1579 9.36% 204776 99.78%
Pinterest 55187 9892 1467 14.83% 7439 7520 % 986 9.97% 1500779 99.73%
Yahoo-1r3 9735 975 107 10.97% 771 79.08% 97 9.95% 117688 98.76%

Table 1. Summary statistics of benchmark datasets

greater than 3 as positives. A nice feature of this dataset is that a standard test set is pre-built to prevent
specific biases: in fact, it is built by collecting the ratings obtained by exposing 10 random items to 5, 400
users.

Each dataset was preprocessed by removing outlier users who preferred more than 1,000 or less than 5 items.
The general properties (number of users, items, ratings and sparsity index) and the statistics related to low-,
medium- and high-popular items are reported in Table 1.

4.2 Settings

We study the behavior of the RVAE, SimGCL and BPR model instances within the popularity classes. To do so, we
adopt the following protocols.

Let us consider RVAE first. For each dataset (except for Yahoo-r3, where the split is predefined), the training
set is composed of 70% of randomly sampled users. Each such user is associated with x,, and the set D, of
positive/negative item pairs. The remaining 30% of users is uniformly split into validation and test set. In
particular, for each user u, we consider a random subset T;, C I, representing the 30% of the positive items. The
vector x,, is masked to remove all elements in T,,. We then feed the masked x,, to obtain the score vector .

Concerning BPR and SimGCL, the above protocol requires some adaptation. The BPR (and SimGCL) algorithm
computes an embedding for each user (resp. item). This requires each user (resp. item) in the validation/test set
to be observed also in the training set. To ensure this requirement, for each user in the validation/test set, we
enforce the following: (i) the 70% of the items for each user is inserted in the training set, (ii) the remaining items
(i.e. the 30%) are considered when populating T,,. The alignment of T, on RVAE, SimGCL and BPR guarantees that
their performances are comparable.

The three models were trained on simple architectures: the BPR architecture is a regularized embedding of
users and items (with latent size 32); while RVAE is an encoder-decoder with two layers of size 600 and 200 (as
the original MVAE proposed in [24]). SimGCL model is instantiated using the default hyper-parameters reported
in the original paper [44] and latent size equal to 32.

We choose, for each user u and item i € I, a fixed number of n = 4 negative items to populate D,,, and
k € {1,5,10} as cut-offs since the impact of the bias effect can be easily observed with small recommendation
lists [7].

Following from the discussion in Section 3.2, we need to practically identify the popularity thresholds (namely,
71, and 7y) on the p function in an automated manner. In practice, our claim is that the properties of p itself
can be exploited to identify the popularity categories. For this purpose, we perform the following two-steps
procedure over the p distribution. First, we apply the Savgol smoothing filter [34] to get rid of potential change
points on the curve: this is a mandatory step, since for locating the elbows of the function, we need to first find its
inflection points, and thus compute the derivatives. Second, in order to estimate the exact location of the elbows,
we exploit the function rotor from the kneebow package [21], which provides an ad-hoc method for the purpose
(i.e., find_elbow) based on the geometric properties of the underlying curve.
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All the code and data to reproduce the experiments are available online °.

Dataset 8 RVAEE 5 SimGCLE 5 BPRE
MovieLens-1M 0.4 0.05 0.754
Amazon-GGF 0.2 0.05 0.000001
Citeulike-a 0.7 0.05 0.000001
Pinterest 0.6 0.6 0.000001
Yahoo-r3 0.55 0.75 0.000027

Table 2. Best § score per dataset for RVAE, SimGCL and BPR.

4.3 Results

Tables 3,4 and 5, 6, 7, 8, 9, 10, 11 summarize the evaluation results of the aforementioned strategies, over all the
considered cut-offs, by adopting RVAE, BPR and SimGCL. The tables report the scores in terms of either HR and
HR;, or NDCG and NDCGp, as well as ARP, APLT, P-REO and BQS.

Each experiment was obtained by averaging five different runs. Values in' bold and underlined on ARP@{1, 5, 10},
APLT@{1,5,10}, P-REO@{1, 5,10}, and BOS@{1, 5, 10} represent the best and second-best results, respectively,
according to ANOVA statistical significance [18]. Recalling the definition, the metrics have to be read differently:
the best values in terms of APLT and BQS are the highest, while they are the lowest according to ARP and P-REO.

Notice that, we are not here interested in comparing the debiasing methods: indeed, we aim at evaluating
the effectiveness of each reported metric (ARP, APLT, P-REO, and BQS) in capturing the trade-off between the
accuracy gain over low-popular items and the impact on the global performance of a given debiasing approach.

Consider the results obtained with RVAE first (Tables 3, 4 and 5). Let us focus on Movielens-1M. We see that, in
all the given cut-offs, either ARP, APLT, and P-REO agree in choosing the uniform oversampling as the optimal
approach. However, if we consider the global performance, we can observe that it drastically decreases, showing
a reduction of -0.13, -0.18, -0.15, respectively, in terms of HR@{1, 5, 10} over the baseline, and of -0.23, -0.21, and
-0.19, respectively, in terms of NDCG@{1, 5, 10}. Conversely, BQS produces really low scores, thus estimating
the uniform oversampling as the worst strategy to adopt. This is because it quadratically penalizes global losses
with respect to gain on low-popular items, thus downgrading the techniques that, despite boosting niche items,
dramatically affect the overall performance. The best strategy, according to our metric, is the model ensemble in
all the considered cut-offs (tied with the baseline at k@1 when adopting the HR as the accuracy metric, and at
k@1, 5 in terms of NDCG). Indeed, at cut-offs k@{5, 10}, it induces a gain over low-popular items, in spite of a
negligible loss over global accuracy.

Similar considerations can be made by looking at the results obtained on Amazon-GGF with cut-off k@1. Here,
both ARP and APLT suggest the uniform oversampling as the best model. Indeed, also in this case the global
quality is considerably affected, with a loss of about -0.18 in terms of HR, and of -0.03 in terms of NDCG, with
respect to the vanilla model. According to P-REO, instead, the best strategy to consider is Jannach, which leads to
a slight improvement over low-popular items in terms of HR, but severely affects the global quality as well.

BQS@1, instead, selects the dynamic oversampling strategy as optimal when we adopt the HR as accuracy
measure, while picking Boratto regularizer as the best approach, when NDCG is adopted.

These strategies, in fact, lead to a gain both over low-popular items (+0.01 in terms of HRy, and +0.04 in terms
of NDCGp) and with respect to global quality (+0.01 over HR and +0.03 over NDCG).

%https://github.com/EricaCoppolillo/BQS
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This underlines another limitation of the other metrics that our proposal overcomes: taking into consideration
improvements in global quality as well as gains over low-popular items. Moreover, differently from the other
debiasing metrics, our proposal is able to diversify the best strategy to adopt according to the chosen accuracy
measure (e.g., HR, NDCG), thus offering a more flexible solution.

On Citeulike-a at k@1, instead, we can observe a further different case. While ARP and APLT identify Jannach
as the winner strategy, P-REO and BQS match in estimating the best approach as the uniform oversampling.
Notably, it is a pure coincidence: indeed, if we look at the second-best algorithm, P-REO chooses PD, while BQS
the dynamic oversampling. In this case, besides slightly reducing the global performance, PD produces a really
poor gain also in terms of low-popular items compared to the baseline; on the contrary, the dynamic oversampling
approach induces both a higher low-popular gain and overcomes the baseline in terms of global quality. Here is
another important limitation of the P-REO metric that our proposal solves: besides ensuring parity among the
popularity groups, it provides no certainty about the quality of such recommendations. In other words, low-value
scores could be also due to poor performances obtained over all the considered groups.

Similar comments can be made by observing the results table obtained by adopting the other backbone models,
namely BPR and SimGCL.

Let us consider the results obtained with BPR (Tables 6, 7 and 8).

On MovieLens-1M at cut-off k@1, according to ARP and APLT, the optimal approach is the uniform oversam-
pling, which induces no gain both in terms of HR; and NDCG;y, but severely degrading the global accuracy. On
the other hand, P-REO selects IPS, which produces a slight improvement over low-popular items in terms of HR,
but still decreases the overall performance. On the contrary, BOS@1 identifies either the ensemble model as the
most convenient, when HR is adopted as the reference quality metric, or the dynamic oversampling strategy,
when NDCG is considered. Indeed, in the former case, the approach gains +0.02 on low-popular items over the
baseline almost without affecting global quality (-0.002); in the latter, besides not boosting the NDCG|, measure,
it obtains the highest global score.

Further, on Amazon-GGF with cut-off k@5, ARP selects the dynamic oversampling method as the most effective,
while APLT and P-REO pick again the uniform oversampling as the best candidate. Here, the former approach
considerably boosts the low-popular items, gaining +0.04 on HRy, but decreases the global performance by -0.06.
The latter similarly increases the low-popular accuracy of +0.04 but similarly drops the global one, by losing
-0.04. On the contrary, BQS identifies the baseline as the best approach when HR is taken into account, suggesting
debiasing methods are not able to induce a better trade-off between the overall recommendation quality and
the niche items exposure. Similarly, when considering NDCG as reference accuracy measure, BQS selects the
baseline as the best as well, tying with the ensemble strategy that gains the same scores.

Finally, we focus on the results obtained with SimGCL (tables 9, 10, 11), from which we can draw similar
conclusions. Consider Pinterest with cut-off k@1. Here, all the competitor metrics disagree in choosing the best
debiasing approach: ARP selects the ensemble strategy, APLT the uniform oversampling, and P-REO the IPS
method. We see that especially the latter is the most inconvenient choice, since the IPS strategy gains +0.01
on HR;, over the baseline (nevertheless losing -0.2 in terms of NDCGy), thus dramatically affecting the global
performance. Our BQS metric, instead, agrees with ARP in picking the ensemble as the best method, both in
terms of HR and NDCG, since this strategy greatly boosts the accuracy on low-popular items without degrading
global quality. Notice again, it is a pure coincidence that the two measures select the best candidate: if we look at
the second-best choice, indeed, ARP selects IPS, while BOS picks either the uniform oversampling (when HR is
adopted as reference accuracy metric), or PD (when NDCG is taken into account). Both the strategies, indeed,
offer a better solution than the baseline, greatly boosting the recommendation quality over low-popular items
(+0.13 in terms of HRy and +0.02 in terms of NDCGp ), without degrading global performance.

Similar considerations, that show the efficacy BQS compared to the standard metrics adopted in literature, can
be observed in all the other datasets and cut-offs.
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Model HR@1 ARP@1 APLT@1 P-REO@1 BQS@1 Model NDCGial ARP@1 APLT@1 P-REO@1 BQS@1
Global Low Global Low
- RwvAE 0.2551 00 2141 0.0 1299 0.5 _  RvAE 0.3723 0.0 214.1 0.0 1.299 0.5
= =
W RVAES 01951  0.02 93.83 0.004 0.866 0.401 T RVAE® 0.2617 0.0 93.8 0.004 0.866 0.46
5 RVAES® 0.122 0.01 44.1 0.017 0.726 0.131 § R 0.131 0.0 44.1 0.017 0.726 0.383
T RVAEF 0.2528 0.0 2121 0.0 1.297 0.5 T RAF 0.3715 0.0 212.1 0.0 1.297 05
= RVAEF® 01694 001 1181 0.008 0.752 0.308 = RVAEP 02146 0.0 118.1 0.008 0.752 0.435
RVAE™= 0.131 0.0 86.8 0.0 0.765 0.16 RVAE™ 01761 0.0 86.8 0.0 0.765 0.413
RVAEMr) | p2424 0.0 169.3 0.0 1181 0.492 RVAEM") 03206 0.0 169.3 0.0 1.181 0.484
RVAE™ = 0.179% 0.0 100.4 0.0 0.544 0.343 RVAE™ 02199 0.0 100.4 0.0 0.844 0.438
) RVAE 02073 002 5948 0.042 0.777 05 RVAE 0.0376  0.02 594.8 0.042 0.777 0.5
& RVAES 0.216 0.03 155.5 0.125 0.844 0.505 5 RAE 0.0365  0.01 1555 0.125 0.844 0.498
= RVAES® 00244 005 7.9 6.114 1094 0.029 = RVAE™  0.0008 0.0 7.9 6.114 1.094 0.485
5 RwE 02066  0.02 603.9 0.067 0.78 0.501 § R EF 0.0378  0.02 603.9 0.067 0.78 0.502
g — 2 —
< RVAEM™ 01098 003 121.7 5.608 0.764 0.262 < RVAER" o011 0.0 1217 5.608 0.764 0.49
RVAE™S =~ 01504 001 2744 0.203 0.958 0.395 RVAE™ 00273 0.0 274.4 0.203 0.958 0.493
RVAE") | p2214 01 1766.7 0.01 1113 0.501 RVAEY") | 00622 006 17660 0.01 L1135 0517
RVAE™  pa1252 003 57.1 1.404 1024 0.322 RVAE™  po111 0.0 57.1 1404 1.024 0.488
RVAE 02769 0.6 8.4 0.001 1152 0.5 RVAE 0.0695 0.0 84 0.001 1.152 0.5
T RWAF 03585 0.6 52 0.001 1038 0.546 T RWAES 0.1113 03 5.2 0.001 1.038 0.58
% RVAES® | 03977 026 33 0.016 0.505 0.58 2 RVAE™ | 01659 059 33 0.016 0.505 0.665
o RWAEE 0.275 019 8.2 0.013 0.956 0.533 é RVAEE 0.0731  0.27 8.2 0.013 0.956 0.568
~ RVAERR 01451 014 0.9 0.517 0.832 0.144 S RVAER o017 0.0 0.9 0.517 0.832 0.483
RVAE™S 021271 007 6.6 0.013 1002 0.385 RVAE™ 00524 015 6.6 0.013 1.002 0.533
RVAERT) 2604 0.02 1.9 0.0 1.286 0.451 RVAEEF: 1ng.0707 0.0 119 0.0 1.286 0.5
RVAE™ 02419 007 o 0.035 0.635 0.462 RVAE™ 00397 007 59 0.035 0.635 0,51
RVAE 02754 013 500.7 0.012 1035 0.5 RVAE 00663 024 500.7 0.012 1.035 0.5
£  RAFS 02701  0.24 336.2 0.129 0.982 0.525 =  RVAES 00550 0.04 336.2 0.129 0.982 0.383
& RVAES* 02106 032 1010 1.107 0.892 0.428 & RVAE™ 00273 001 1010 1.107 0.892 0.363
5 RVAEE 0.273 0.28 4977 0.098 0.999 0.538 S RVAEE 0.0664  0.09 407.7 0.098 0.999 0.416
(=" ==
RVAE®=  p19s6 022 1516 051 0.714 0.35 RVAE™ 00262 0,01 151.6 0.51 0.714 0.361
RVAE'™S 0.218 021 169.6 0.17 0.82 0425 RVAE™ 00331 003 169.6 0.17 0.82 0.376
RVAE*"  p2303 012 260.1 0.013 0.745 0.433 RVAEY") o392 012 260.1 0.013 0.745 0.421
RVAE™ 0.199 024 115.7 0.619 102 0.366 RVAE™ 00219 001 115.7 0.619 1.02 0.361
RVAE 0.0624 0.0 1519 0.005 1028 0.5 RVAE 0.03 0.0 151.9 0.005 1.028 0.5
o RVAFE 00576 001 53.1 0.045 0.932 0.499 o RVAE 0.0235 0.0 53.1 0.045 0.732 0.498
& RVAE™™ 00512 002 32.1 0.125 1.028 0.496 & RVAE™ 00157 0.0 321 0.125 1.028 0.49
<= RVAEE 00604  0.01 1594 0.01 1056 0.502 ?: RVAEE 0.0297 007 159.1 0.01 1056 0516
=
RVAER™ 00499  0.03 78.6 0.298 0.725 0.499 RVAER" 00184  0.01 78.6 0.298 0.725 0.499
RVAE™S 0.014 0.01 415 0.256 0.97 0.43 RVAE™S  0.0036 0.0 415 0.256 0.97 0.493
RVAEY") | 0p&a 0.0 1237 0.005 1039 0.5 RVAEMT) 00243 0.0 123.7 0.005 1.039 0.499
RVAE™ | 00549 0.0 2443 0.0 1386 0.495 RVAE™  0.0209 0.0 2443 0.0 1386 0.498

Table 3. Results obtained with RVAE, by comparing either HR and HRy, (left Table), or NDCG and NDCGy, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@1. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.

5 CONCLUSIONS

In this work, we addressed the problem of evaluating and comparing debiasing techniques that enhanced
recommender systems to empower the exposure of long-tail items within a catalog.
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Model HE@5 ARP@5 APLT@5 P-REO@5 BQS@5 Model NDCG@5 ARP@5 APLT@5 P-REO@5 BQS@5
Global Low Global Low

_ RwAE 0.5831 0.0 190.5 0.0 1.236 05 - 0.3324 0.0 190.5 0.0 1.236 0.5

= o -
7 RVAE 05067  0.05 89.7 0.004 0.833 0.35 i 0.2342 0.0 89.7 0.004 0.833 0.466
£ RVAES® 03998 007 434 0.021 0.714 0.031 8 0.1264 0.0 43.4 0.021 0.714 0.407
T RVAE® 0573 0.1 188.6 0.0 1.236 0.517 2 03321 0.0 188.6 0.0 1.236 0.5
S RVAEM 04696  0.08 91.2 0.008 0.733 0.211 = 0.1935 0.0 91.2 0.008 0.733 0.446
RVAE™  p3928 0.0 22 0.0 0.758 0.023 0.1515 0.0 72. 0.0 0.758 0.423
RVAE'' | 05736 0.0 147.1 0.0 1.107 0.495 0.2935 0.0 147.1 0.0 1107 0.489
RVAE™ 0.504 0.0 97.4 0.0 0.832 0.327 02 0.0 97.4 0.0 0.832 0.449
RVAE 0.434 0.08 623.2 0.063 0.864 05 RVAE 00393 001 623.2 0.063 0.864 05

= =
3 RVAES 0.468 0.11 163.1 0.152 0.748 0.517 o RAF 00331 001 163.1 0.152 0.748 0.498
= RVAES® 01357 015 8.1 6.024 0.976 0.0 5 RVAES™  0.0009 0.0 8.1 6.024 0.976 0.486
5 RvAEt 0.4272 0.1 633.0 0.092 0.861 0.501 5 RVAEF 00394 001 633.0 0.092 0.861 05
< RVAER" 02818 013 135.6 5.353 0.842 0.082 < RVAER" 00197 0.0 135.6 5.353 0.842 0.492
RVAE™ 03494 004 248.1 0.157 0.921 0.272 RVAE™  poan 0.0 248.1 0.157 0.921 0.494
RVAE®") | 04428 008 16403 0.017 1123 0.5 RVAERT) 00588 002 16403 0.017 1128 0.506
RVAE™ 03661  0.11 613 1.354 0.869 0.377 RVAE™® 00114 0.0 613 1354 0.869 0.49
RVAE 06222 027 76 0.002 1145 05 RVAE 0.066 0.04 76 0.002 1145 0.5
T RVAES 0.697 0.46 5.0 0.002 0.986 0.564 I RAF 0.0971 03 5.0 0.002 0.986 0.568
% RVAE™ 07178 054 32 0.022 0.385 0.59 = RVAE™ | 01413 038 3.2 0.022 0.385 0.604
Z  RVAE 05755 052 74 0.015 1.022 0.495 I RMAE 0.0688 . 0.12 7.4 0.015 1.022 0522
“ RAER® 04565 045 1.0 0.521 0.981 0.063 '“' RVAE™ 00185 0.0 1.0 0.521 0.381 0471
RVAE™ 0.523 0.26 55 0.014 0.835 0.244 RVAE™  op4s6 012 5.5 0.014 0.835 0516
RVAE!( 05929 017 110 0.0 1.279 0.2 RVAEHT) 00651 0.0 1.0 0.0 1279 0.487
RVAE™ 0589 023 32 0.03 0.752 0.396 RVAE™ [ 00417 . 0.02 52 0.03 0.752 0.487
RVAE 0.7024 05 431.1 0.017 0.961 05 RVAE 0.0567 009 4311 0.017 0.961 0.5
% RAE 06985  0.62 3344 0.128 0.926 053 % RUAE 0.051 0.02 334.4 0.128 0.926 0.479
E RVAE™ 0.652 0.7 114.7 0.836 0.907 0.475 £ A= 0.027 001 1147 0.836 0.907 0.467
':E' RVAEF 0.695 0.67 4289 0.111 0.934 0.539 E RVAE" 700568 005 4289 0111 0.934 0.491
RVAEM™ 06185  0.62 149.1 0.426 0.73 0.339 RVAE®" 00257 001 149.1 0.426 0.73 0.466
RVAE™S 0.646 0.62 172.2 0.187 0.755 0.436 RVAE™ 00312 002 172.2 0.187 0.755 0.47
RVAEM™ 06585 048 256.4 0.02 0.72 0.419 RVAER) 003711 005 256.4 0.02 0.72 0.485
RVAE™ 06429 059 1242 0.453 1037 0.42 RVAE™ 00227 001 1242 0.453 1.037 0.466
RVAE 02013 0.03 140.1 0.011 0.959 0.5 RVAE 00426  0.01 140.1 0.011 0.959 0.5
o RVAES 0.1959  0.06 61.6 0.058 0.705 0.505 v RVAE 0.0378 0.0 61.6 0.058 0.705 0.496
& RVAES® (01843 007 386 0.131 0717 0.499 & RVAES®  (.0285 0.0 386 0.131 0.717 0.494
é RVAEF 0.1813  0.09 146.5 0.023 0.991 05 = RVAE® 00421 001 146.5 0.023 0.991 0.498
* & iy
RVAER™ | 01703 012 789 0.313 0.669 0.49 RVAE®® | 00311 001 789 0.313 0.669 0.495
RVAETS 00598 003  37.8 0.248 0.672 0.106 RVAES  0.0056 0.0 37.8 0.248 0.672 0.486
RVAE®'! | 01955  0.03 1207 0.009 0.93 0.489 RVAEY" | 00391 001 120.7 0.009 0.93 0.5
RVAE™ 0.1812 0.0 202.7 0.0 1.248 0.456 RVAE™ 0.0361 0.0 202.7 0.0 1.248 0.495

Table 4. Results obtained with RVAE, by comparing either HR and HRy, (left Table), or NDCG and NDCGp, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@5. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.

We first proposed a formal methodology to categorize items into low-, medium- and high- popular, relying on
their underlying data distribution shape. To the best of our knowledge, this is the first attempt to overcome the
standard 80/20% approach used in literature.

Next, we exploited these classes to define the Balanced Quality Score measure (BQS) that rewards the debiasing
techniques that successfully push the recommender systems to suggest niche items, without losing points in
their predictive capability in terms of global accuracy.
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Maodel HR@10 ARP@10 APLT@10 P-REO@10 BQS@10 Model NDCG@10 ARP@10 APLT@10 P-REO@10 BQS@10
Global Low Global Low
_  RWAE 07441 001 175.7 0.0 1181 05 _  RwE 03102 00 175.7 0.0 1.181 05
= = -
3 RApR 06875 015 85.9 0.006 0.8 0439 7 RAE 0.2211 0.0 859 0.006 0.8 0.47
;.5 RVAES® (05020 Q.17 431 0.022 0.715 0.094 § RAES 01228 0.0 43.1 0.022 0.715 0.419
= RVAE" 07214 03 173.9 0.0 1168 0.548 T RVAEF 03099 0.08 1739 0.0 1.168 0.519
B B
= RVAEM™ 06483 017 83.1 0.009 0.723 0.298 = RWAEM™ 01867 00 831 0.009 0.723 0.454
RVAE™ 05827  0.03 658 0.0 0766 0.063 RVAE™S 01433 00 65.8 0.0 0.766 0.431
RVAEYr) | (07384  0.03 138.8 0.0 1.06 0.501 RVAE*") 02768 00 1358 0.0 1.06 0.491
RVAE™ 0.6915 0.0 94.8 0.0 0.813 0.400 RVAE™ 01936 0.0 048 ] 0.813 0.457
RVAE 05532 015 587.9 0.077 0.864 0.5 RVAE 00469 00 587.9 0.077 0.864 05
= =
2 RAE 05849 019 166.8 04171 0.715 0.517 2 RWE 00397 0.01 166.8 0.171 0.715 0.499
£ RVAES® 02814 | 022 8.3 5.954 0053 0.001 L RVAE™ 00012 00 83 5954 0,953 0.485
5 RVAEF 05377 018 506.9 0.11 0.862 0.497 E RVAE® 00469 001 506.9 0.11 0.862 0.501
E RVAER g4l 021 127.8 5211 0.83 0.084 < RVWAER™ 00234 00 1278 5211 0.83 0.403
RVAE™ = 04695 009 2328 0.148 0.885 0.232 RVAE™® 00322 00 232.8 0.148 0.885 0.495
RVAEY" 05505 0.14 12858 0.025 1074 0.5 RVAE'"™) 00665 001 12858 0.025 1.074 0.506
RVAEM™ = 05125 017 4.3 1314 0.817 0.453 RWAE™ 00141 00 643 1314 0.817 0.49
RVAE 07788 047 71 0.002 1125 05 RVAE 00684  0.02 7.1 0.002 1175 05
T RVAES 08254  0.63 48 0.004 0935 0.552 T RWES 01009 Q&9 48 0.004 0.935 0.574
§ RVAES® | (0835 0.69 3.0 0.024 0.387 0.57 é RVAE™™ 0142 0.27 3.0 0.024 0.387 0.579
£ Rar 06863  0.74 6.9 0.017 0.987 0.338 £ g 00717 04 6.9 0.017 0.987 0521
U RVAER® 06572 | 0.64 11 0.5 0.254 0.196 “URAER 001540l 1.1 0.5 0.254 0478
RVAEFS 06028 044 5.1 0.017 0811 0.273 RVAETS 00472 006 5.1 0.017 0.811 0504
RWVAEYT) 07504 035 103 0.0 1264 0.182 RVAE®() 67 0.0 103 0.0 1.264 0.493
RVAE™ 07523 034 3.2 0.028 0.71 0.134 RVAE™ 00447, 002 3.2 0.028 0.71 0.493
RVAE 08761 068 = 3972 0.019 0.92 05 RVAE 0.0594° . 007 3972 0.019 0.92 0.5
% RVAE 08735 077 325.1 0.129 0.875 0.521 + FRBAE _J0054 003 325.1 0.129 0.875 0.457
5 RVAES® (08580 081 1227 0.735 0.841 0.521 S RVAES® 00308 001 1227 0.735 0.841 0475
E  RWAEF 08538 082 3048 0.123 0.896 0.517 g RVAEE. 00805 005 3948 0.123 0.896 0.496
-
RVAE™ 08315 078 1455 0415 0.781 0464 RVAER™ 00285  0.01 1455 0.415 0.781 0.474
RVAEFS 08441 077 173.0 0.194 0.738 0.489 RVAEFS 00344 001 173.0 0.194 0.738 0477
RVAEMr) 08567  0.66 2535 0.02 0.712 0.468 RVAEFT) 00406 0.5 253.5 0.02 0.712 0.49
RVAE™ 0857 071 1308 0391 1.009 0.494 RVAE™ 00261 001 1308 0.391 1.009 0.474
RVAE 03093 .08 130.1 0.017 0878 05 RVAE 00545  0.01 130.1 0.017 0.878 0.5
w  RVAE® 03092 011 65.6 0.066 0.706 0.507 © RAE | 00487 00 65.6 0.066 0.706 0.496
2 RVAE'® 02909 0.14 414 0.138 0.645 0.506 c RVAE™ 00404 001 4.4 0.138 0.645 0.496
= RVAEF 02619  0.25 135.1 0.04 0813 0474 = RAEF 00530 001 135.1 0.04 0.013 0.499
= = —
RVAE™ | 02763 022 75.2 0.33 0.645 0499 RVAEF" 00426  0.01 75.2 0.33 0.645 0.49
RVAE®™ 01162 006 355 0.241 0.632 0.019 RVAE™ 00087 00 35.5 0.241 0.632 0.454
RVAEY" | 03027  0.07 1148 0.013 0.882 0.453 RVAE'") | pos12 0 1148 0.013 0.882 0.5
RVAET® | 02841 0.0 1745 0.0 1185 0.201 RVAE™ = 00478 00 1745 0.0 1185 0.49

Table 5. Results obtained with RVAE, by comparing either HR and HRy, (left Table), or NDCG and NDCGy, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@10. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs-and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.

The experimentation, conducted on several benchmark datasets, three baselines and numerous competitors,
shows that the proposed strategy is the best in highlighting the debiasing techniques with the highest improve-
ments in the exposure of low-popular items without degrading global quality, exhibiting a competitive advantage
over the state-of-the-art. In fact, BQS has proven to be used in optimization processes.

Still, other aspects can be investigated in future work. Bias can occur in other contexts besides popularity,
where underexposure can result in unfair recommendations. In this context, it would be interesting to investigate
whether new mitigation strategies can be defined with the related quality measures. Also, temporal effects (e.g.
obsolescence or popularity decay) should be taken into account in implementing mitigation strategies.
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Model HR@1 ARP@1 APLT@1 P-REO@1 BQS@1 Model NDCG@ ARP@1 APLT@1 P-REO@1 BQOS@1
Global Low Global Low
_  BPR 0.0946 0.0 890 0.0 1.388 0.5 _  BPR 0.0199 0.0 589.6 0.0 1.388 0.5
= =
o BPE® 0.0612 001 459 0.144 1267 0.461 T BPES 0.0235 0.0 4585 0.144 1.267 0.501
T BPRS* 00311 0.0 125 0.184 1.042 0.384 5« BPR*® 00135 0.0 125.3 0.184 1.042 0.498
T ppRE 0.0923 002 300 0.119 1398 0.504 T BPRF 0.0175 0.0 300.0 0.119 1398 0.499
z =
= BPRPT 00746 0.0 1002 0.023 1321 0.479 = BPRI= | 00217 0.0 10025 0.023 1321 0.5
BPRIPS 0.043 0.01 327 0.048 1.036 0.418 BPR™ 00181 0.0 326.8 0.048 1.036 0.5
BPRECF) 00683 0.0 29 0.0 1275 0.472 BPRM?) 00166 0.0 206.0 0.0 1.275 0.499
BPR'™®  0.1055 0.0 290 0.0 1327 0.502 BPR™ 00186 0.0 889.9 0.0 1327 0.5
BPR 0.2151 001 45895 0.036 1.407 0.5 BPR 0.049 0.0 458053 0.036 1.407 05
g BPE 0.1404 001 3080 15 0.971 0.348 3 BPE® 0.0071 0.0 30803 15 0.971 0.488
o BPR®™  0.1587 002 3498 7.844 0.917 0.41 & BPR™  0.0065 0.0 3498.2 7.844 0.917 0.488
5 BPRE 0.211 0.01 51811 0.03 1.408 0.5 3 BPRF 0.049 0.0 518114 0.03 1.408 05
< BPR™ 01586 001 45521 1357 1.387 0.409 < BPRI™ | 00354 0.0 45520.5 1.357 1387 0.496
BPFFS 01727 0.0 24040 0.01 1373 0.44 BPRS 00205 0.0 24040.1 0.01 1373 0.492
BPRM")  0.1855 0.0 85835 0171 1.404 0.467 BPRY™ 00378 0.0 85835.2 0.171 1.404 0.497
BPRFD 02019 001 41872 0.491 1.397 0.493 BPRF®  0.0418 0.0 418717 0.491 1397 0.498
BFR 0.3399 0.14 31 0.038 1.247 0.5 BFR 0.0675 0.02 30.8 0.038 1.247 0.5
¥ BPR® 0.3568 021 14 0.063 1.005 0.521 ¢ BPRS 00538 002 13.9 0.063 1.005 0.495
%‘ BPRS® 0.3926 0.29 7 0.481 0.53 0.549 = BPRS-_“ 0.0291 0.01 6.7 0.481 0.53 0.486
& BPRF 0.332 0.14 ik 0.01 1308 0.494 & BPR® 0.0675 0.0 11.9 0.01 1.308 0.495
“ BPREn 02732 026 23 0.482 0.897 0.403 ~ BPRIm gp3f | 008 226 0.482 0.897 0.491
BPR™ 03386 016 23 0.097 1.168 0.504 BPR™ 00505 0.0 233 0.097 1168 0.49
BpRE(r) 0.2957 0.1 19 0.024 1.065 0.366 BPRE(T) 0.0332 0.02 19.1 0.024 1.065 0.49
BPR'™® 03357 018 23 0.093 1.094 0.507 BPR® 00594, 0.01 232 0.093 1094 0497
BrR 0.2464 014 1169 0.016 1069 05 BPR 0.0446 01 1169.1 0.016 1.069 0.5
< BPR® 0.2298 022 775 0.206 0.939 0.51 = BPR® 0.0348 0.03 7748 0.206 0.939 0.472
5 BPRS* | 02643 027 365 1.465 0.727 0537 § BPRM 0257 001 364.7 1.465 0.727 0.464
= BPRE 0.2405 0.15 405 0.004 1.08 0.501 T BPeE 0.0446 0.02 405.3 0.004 1.08 0.472
= Th— (=%
BPRan 0.19 n.22 503 0.199 0.702 0.426 RPpi= 0.0209 0.02 503.1 0.199 0.702 0.465
BPRirs 0.2539 0.16 1034 0.031 0.992 0.507 B 0.0438 0.15 1034.2 0.031 0.992 0.509
BPRET)  (.2479 0.15 1453 0.031 1.092 0.502 BPR? | Dpa73 0.05 14526 0.031 1.092 0.481
BPR® 2432 017 504 0.034 0.927 0.507 BPR® 00426 012 904.0 0.034 0.927 0.502
BFR 0.0514 0.0 437 0.004 1.343 0.5 BFR 0.0092 0.0 437.0 0.004 1.343 0.5
o RBPRE 0.0429 0.01 103 0.057 1073 0.497 o BPRS 0.0038 0.0 102.8 0.057 1.073 0.499
& BPRS® 0.0553 0.01 92 0.215 1.02 0.501 ;'::: BPRS'_“ 0.0029 0.0 91.6 0.215 1.02 0.498
£ BPRE 0.051 0.0 954 0.002 1.357 0.499 o BPRE 0.0092 0.0 253.9 0.002 1.357 0.5
=
BPR" 00451 002 275 0.084 1071 0.501 BPRI™  0.009 0.0 2748 0.084 Lo7m 0.5
BPR™ 00496 001 295 0.009 1.224 0.501 BPR™ 00086 0.0 2953 0.009 1224 0.5
BPRM®) | 00577 00 247 0.0 1374 0501 BPRUY 00092 00 2467 0.0 1374 0.5
BPR'™® 00557 001 1426 0.008 1247 0502 BPR'™® | 00109 00 426.2 0.008 1.247 0.5

Table 6. Results obtained with BPR, by comparing either HR and HRy, (left Table), or NDCG and NDCGp, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@1. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.
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Mode (@5 ; @ ¥ @5 P- @5 c Mode! NDCG@5 ¥ @ ¥ - @5 @
Model HR@5 ARP@s APLT@5 P-REO@s BQS@5 Model NDCG@ ARP@5 APLT@s P-REO@5 BQS@5
Global Low Global Low
_ B 03582 0.01 787 0.0 1.35 0.5 1 0.0218 0.0 787.2 0.0 1.35 0.5
= = -
T bR 0.249 0.04 412 0.057 1078 0.224 T BPES 0.0209 0.0 4117 0.057 1078 0501
T BPRS* 0422 002 151 0.08 0.737 0.032 § BPR™ 00128 0.0 150.6 0.08 0.737 0.498
= BPRf 03531  0.06 285 0.047 1.33 0.511 T BPRF 0.0197 0.0 284.8 0.047 1.33 05
= BPR™ 03171 001 736 0.005 0.959 0.393 = BpR= 0.02 0.0 735.6 0.005 0.959 0.5
BPR™S 0.181 0.04 295 0.019 0.842 0.084 BPE™ 00168 0.0 295.4 0.019 0.842 0.499
BPR®")  n2983 0.0 294 0.0 1214 0.355 BPRH" 00198 0.0 2037 0.0 1.214 0.499
BPR™ 03938  0.01 810 0.0 1308 0.498 BPR™® 00227 0.0 509.6 0.0 1.308 0.5
BPR 04041 003 38438 0.142 1398 0.5 BPR 0.0636 0.0 384376 0.142 1398 0.5
&5 BPE 0.346 0.07 3349 2.548 1.003 0.412 5 BPE 0.0109 00 33492 2.548 1.003 0.484
% BPRS® 03666 006 4798 6.337 0.989 0.463 & BPR™* 00139 0.0 4798.2 6.337 0,989 D.485
S BPR® 03809  0.08 43380 0.189 14 0.493 g BPRE 0.0636 0.0 433797 0.189 1.4 0.5
< BPR™ 02926 007 34923 1864 1372 0.21 & ppRis 0.049 0.0 34023.4 1.864 1372 0.49
BPR™ 03326  0.03 22490 0.061 1366 0.357 BPR™S 00325 0.0 22489.8 0.061 1.366 0.491
BPR®") 3452 003 73775 0.319 14 0.399 BPRHY D516 0.0 737746 0:319 14 0.497
BPR'® 03899 005 34206 0.844 1363 0.495 BPR™® 00553 0.0 342063 0.844 1363 0.498
BPR 06689 044 24 0.046 1.108 0.5 BPR 0.0594  0.02 238 0.046 1.108 0.5
T BPE 0.6677 0.5 12 0.091 0.872 0512 ¢ BPE® 0.0499  0.02 123 0.091 0.872 0.497
% BPRS® | 06943 053 7 0.387 0.357 0.528 = BPRS* 00320 0.02 6.6 0.387 0.357 0.493
I BPRE 0.633 0.43 9 0.012 1.182 0.428 E BPRE 0.0593 0.0 9.2 0.012 1.182 0.494
=~ BPRP 05746 | 057 14 0.451 0.476 0.297 S BPRi= o3/ 002 135 0.451 0.476 0.492
BPR™S 06556 044 19 0.093 0.994 0.486 BPRS  g0s02 001 186 0.093 0.994 0.495
BPRET)  ps59eE 032 15 0.035 0.958 0.1 BPRMT  po3sl B 0.02 15.4 0.035 0.958 0.492
BPR'® | 06708 05 18 0.1 0.988 0.513 BPR'? 00533  0.01 17.9 0.1 0.988 0.49
BPR 06361 045 1028 0.022 0.961 0.5 BPR 00404 009 1028.2 0.022 0.961 0.5
y  BPRE 0.6107 05 740 0.241 0.808 0.491 = BPRS 0.0328 @ 0.02 740.1 0.241 0.208 0.473
Z  BPRS® | D951 055 419 0.837 0.769 0.539 £ BPRSY 00284 0.01 419.1 0.837 0.769 0.469
E BPRE 0.5548 0.5 356 0.008 0.981 0.334 S BPRE 0.0404 005 356.3 0.008 0.981 0.489
o, {-"
BPRIn 0.569 0.56 470 0.274 0.774 0.4 BPRI= " 00206  0.02 470.4 0.274 0.774 0.469
BPR™S = 04524 049 933 0.041 0.892 0514 BPFF 00398 006 933.2 0.041 0.892 0.49
BPRET)  DGIRT 047 1280 0.039 1.033 0.503 BPRMT | D047 004 12805 0.039 1.033 0.485
BPE® 06468 051 807 0.042 0.81 0.519 BPR™® 0.039 0.09 806.5 0.042 0.81 0.499
BPR 01756  0.02 373 0.008 1247 0.5 BPR 0.017 0.0 3727 0.008 1.247 0.5
o BPE 0.162 0.03 122 0.068 0.847 0.496 « BPRF 0.0107 0.0 122.0 0.068 0.847 0.498
¢ BPRS* | 01901 004 129 0.124 0.017 0.51 & BPR* 00099 0.0 129.1 0.124 0.917 0.498
E BPRE 01692  0.05 216 0.006 1.264 0.505 ?: BPRE 0.0169 0.0 215.9 0.006 1.264 0.5
BPR" 01404 | 0.08 227 0.115 1.004 0.491 BPRI®™ 00119 001 2265 0.115 1.004 0.5
BPR™S 01734 003 269 0.021 1.087 0.502 BPRTS 0.017 0.0 269.0 0.021 1.087 0.5
BPRET) | 01857 0.02 259 0.003 1217 0.503 BPRM" 00176 0.0 258.6 0.003 1.217 0.5
BPR™® 01858 003 367 0.013 1.227 0.505 BPR™ 00208 0.0 367.0 0.013 1227 0.501

Table 7. Results obtained with BPR, by comparing either HR and HRy, (left Table), or NDCG and NDCGp, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@5. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.
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Model HR@10 ARP@10 AFLT@10 P-REO@10 BQS@10 Maodel NDCG@10 ARP@10 APLT@10 P-REO@10 BQS@10
Global Low Global Low
_ Bem 05501  0.01 16 0.0 1332 05  EPR 00293 0.0 7159 0.0 1.332 0.5
ﬁ, BPR® 04267  0.07 383 0.039 0.999 0.195 f BPR® 00234 00 183.3 0.039 0.999 0.499
§ BPRS®* 02726  0.04 158 0.051 0.718 0.008 E BPRS™  0.0152 0.0 157.9 0.051 0.718 0.496.
% BPR" 05439 0.09 265 0.0% 1317 0.519 T BPRf 0.0276 0.0 264.9 0.03 1.317 0.5
g -y 8
S BPRFE [ 05203 0.02 580 0.003 0.929 0.406 = BPRF 00252 00 579.7 0.003 0.929 0.499
BPR™ 03276 | 007 273 0.015 0.775 0.037 BPR'S  0.0191 0.0 272.9 0.015 0.775 0.497
BPR®" | 0.506 0.01 290 0.0 1.173 0.392 BPRYT) 00233 00 290.2 0.0 1.173 0.498
BPRTT | 05941  0.02 736 0.0 1.284 0.504 BPRD | 0.029 0.0 735.6 0.0 1.284 05
BPR 05088  0.08 30022 0.229 1.388 0.5 BPR 00727 00 30021.8 0.229 1.388 0.5
= =
@ BPE 04631 0.4 3474 139 0.988 0.452 ® BPE° 00149 00 34743 339 0.988 0.482
£ BPRS™ 04796 012 519 6.301 0.997 0.481 = BPR™ 00195 0.0 5195.7 6.301 0.997 0.484
5 BPRE 0.468 0.17 33833 0.402 1391 0.471 E BPRE 00727 00 338328 0.402 1391 0.5
E BPR™™™ 03766 012 26011 2334 1351 0.138 < BPRE" | 00566 0.0 26011.3 2334 1351 0.496
BPRFS  D4211  0.08 19149 0.107 135 0.296 BPRPS 00412 00 19149.2 0.107 135 0.491
BPRMT) D445 0.07 = 55166 0.476 1391 0.381 BPREC) 00601 0.0 55165.5 0.476 1.391 0.497
BPR™ | 04981 0.1 26386 1.077 1334 0.501 BPR'® 00644 0.0 26386.4 1077 1334 0.498
BPR 07%9 061 20 0.053 1017 05 BPR 0.0653  0.02 203 0053 1017 0.5
; BPRS 07837  0.64 11 0.103 0.792 0.499 ¥ BPRS 0.0564  0.03 114 0.103 0.792 0.499
= BPRS | DBOMA 066 7 0.323 0.24 0511 = BPRS®  0.0435 004 6.8 0:323 0.24 0.499
I e’ 0.746 06 8 0.014 1085 0.396 E BREf 0.0651  0.01 7.8 0.014 1.085 0.497
o BPRT" 0718 0.7 11 0.425 0.22 0.351 ~ ppRin 00402 400N03 111 0.425 0.22 0.496
BPRTF [ 03789 06 17 0.092 0.928 0.471 BPR™ 00555/ 002 16.6 0.092 0.928 0.496
BPR® 07372 049 14 0.039 0.9 0.127 BPRY") 00418 | 002 14.1 0.039 09 0.492
BPE™ 08037 0.5 16 0.103 0.811 0.512 BPR™ 00593 003 15.7 0.103 0.811 0.501
BPR 08147 062 957 0.028 0.901 05 BPR 00432 0.6 956.8 0.028 0.901 05
+ BPR 07895  0.64 719 0.264 0.758 0.484 i BPR® _4AD0358 ) 0.01 718.9 0.264 0.758 0.485
= BPRS*  DB669  0.65 445 0.637 0.776 0.522 gUBPRSE (T 003347 002 T 4453 0.637 0.776 0.485
£ BPRF 0.6466  0.68 331 0.012 0.918 0.051 g BPRE 20481 003 3315 0.012 0.918 0.491
-~
EPRT 03631 | 0.2 463 0.308 0.782 0.447 BPREn, 00232 002 4627 0.308 0.782 0.483
BPR™ 0.83 0.64 881 0.046 0.842 051 BPR™ | 0.0431 005 881.1 0.046 0.842 0.497
BPRM™ 08058 0.62 1181 0.046 0.998 0.495 BPRYT 00455 003 1181.0 0.046 0.998 0.492
BPRT 08275 0.66 757 0.048 0.756 0.514 BPR'D 00416 006 756.9 0.048 0.756 0.501
BPR 02786  0.04 330 0.012 1191 05 BPR 00246 0.0 3295 0.012 1.191 0.5
©  BPRS 02631 0.7 133 0.074 0.816 0:496 w BPRS 0.0171 0.0 132.6 0.074 0.816 0.499
¢ BPR®™ 02913 008 141 0.092 0.866 0.512 S BPR™ 00193 00 141.2 0.092 0866 0.499
i BPRE 02584  0.14 191 0.011 1.207 0.509 = BPRF 00246 0.0 190.7 0.011 1.207 0.5
— -
BPR™™ 0244 0.18 201 0.142 0.882 0.493 BPRF™  0.0195 0.0 200.9 0.142 0.882 0.5
BPRPS 2765 0.07 250 0026 1016 0.504 BPRIS 0.0248 0.0 249.8 0.026 1016 0.501
BPRMT) | D2898  0.05 266 0.004 1133 0.505 BPREC) 00264 0.0 265.7 0.004 1.133 0.5
BPR™ | 02903 0.06 325 0.018 1125 0.507 BPR™® | 0.0286 0.0 325.1 0.018 1.125 0.501

Table 8. Results obtained with BPR, by comparing either HR and HRy, (left Table), or NDCG and NDCGy, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@10. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.
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Model HR@1 ARP@1 APLT@! P-REO@1 BQS@1 Model NDCG@M ARP@1 AFLT@1 P-REO@1 BQS@1
Global Low Global Low
_  SimGCL 0.1563 0.0 935.3 0.0 1414 0.5 _  SImGCL 0.0279 0.0 9353 0.0 1414 0.5
- -
3 SimGcLs 0.1261 0.0 733.7 0.005 1.264 0.462 T SImGCL® | 0.0285 0.0 733.7 0.005 1.264 05
§ SImGCLS* 00476 001 374.2 0.031 1.102 0.218 g SImGCL™  0.0133 0.0 3742 0.031 1.102 0.496
T simGcL® 0.073 0.0 175.6 0.007 1.234 0.315 = smGa® 00243 0.0 175.6 0.007 1.234 0.499
E smGcr* | 01513 0.0 869.5 0.0 1377 0.498 2 smGa® 00299 0.0 869.5 0.0 1377 0.5
= SimGCL™ 00429 001 226.6 0113 0.854 0.199 = simGCL™  0.0084 0.0 226.6 0.113 0.854 0.495
SimGCLYr) 00973 0.0 4475 0.004 1.403 0.397 SimGALAr) | 0.0434 0.0 475 0.004 1.403 0.504
SimGCL™ | 0.1545 0.0 891.4 0.0 1412 0.478 smGa™ 00312 0.0 891.4 0.0 1412 0.501
SImGCL 0.292 0.01 466695 0.0 1413 0.5 SImGCL 0.0629 0.0 466695 0.0 1.413 0.5
B e
2 simocL® 0.1896  0.01 118675  0.657 1.358 0.241 8 smGcl® 00151 0.0 11867.5  0.657 1.358 0486
% SmGCL™* 0192 002 50054 3.602 1.367 0.269 & SImGCLS*  0.0133 0.0 8005.4 3.602 1.367 0.485
3 StmGCLE 0.2323 0.04 609.2 0.0 1414 0.405 ;!‘? SImGCLE 0.0691 0.0 609.2 0.0 1.414 0.502
Z smGCL* | 02789 0.02 [ 499841 0.005 1.405 0.494 5 smGcLe | 00588 0.0 49984.1 0.005 1.405 0.499
SImGCLIPS 0.177 0.01 154751 0.026 136 0.192 SImGCL™S  0.0188 0.0 15475.1 0.026 136 0.487
SImGCLHr) 0,303 001 267910 0.0 1.406 0503 SimGQLAr)  0.0508 0.0 26791.0 0.0 1.406 0.497
SImGCL™ | 03101 001 = 462320 0.0 1411 0.505 SImGALY | 0.0684 0.0 462320 0.0 141 0.501
SimGCL 04568  0.22 35.0 0.019 1.205 05 SImGCL 0.1026 0.0 350 0.019 1.295 0.5
7 simocL® 04612  0.25 22.7 0.086 1.267 0.509 T smccL® 0.0572 0.0 237 0.086 1.267 0.487
= SImGCL™ | 04748 0.29 27.1 0.07 1.302 0.52 :lij SmGCL™ 00978 Q02 271 0.07 1.302 0.503
I smoccl” 04217 027 13.3 0.005 1372 0.472 E smcal® | 01142 0.0 13.3 0.005 1372 0.503
S simGoLF | 04581 0.26 32,0 0.034 1.207 0.511 O simGcLEt 00918 0.02 32,0 0.034 1.297 0,501
SImGCL™ 04413  0.29 15.9 0121 1.129 0.489 SImGCL™ 00553 001 15.9 0.121 1.129 0.488
smGar®t p3s27 0n 29.9 0.003 1311 0.104 SmGa®r' | 01026 0.0 299 0.003 1311 0.5
SImGCL™ 04404 0.2 345 0.014 1312 0.472 SimGa™ 0112 0.0 345 0.014 1312 0.502
SImGCL 03491 021 13224 0.045 1.076 05 SImGCL 0.0774),  0.25 13224 0.045 1.076 0.5
% SImGCLS 03314 028 1068.0 0.171 1.029 0.505 w  SImGCL® 00641 004 10658.0 0.171 1.029 0397
£ smGor™ | 03319 034 1202.4 0275 1.023 0.521 & simGol™ " 00711 0103 1202.4 0.275 1.023 0.392
2 SsimGCL® 03195 042 3733 0.003 1244 0523 E osimGCE® 00835 099 3733 0.003 1244 0521
= simGCI* | 03068 028 893.5 0.118 0.792 0.463 & SimGorEn 0.06 0.07 8935 0.118 0.792 0415
smGCL™ 01891 022 6276 0.14 0.71 0.062 simGcL™ 00382 005 627.6 0.14 0.71 0.396
simGCLY | 03332 02 1379.0 0.033 1.086 0.477 SmGa®) | po7el 021 1379.0 0.033 1.086 0.489
SimGCL™ | 03486 0.16 1686.9 0.01 1.195 0.408 SimGa™ | 00837 027 1686.9 0.01 1.195 0.506
SimGCL 0.0696 0.0 456.2 0.0 1.414 05 SImGCL 0.0121 0.0 4562 0.0 1414 0.5
@« SImGCLS 0.0635 0.0 249.6 0.007 1:391 0.498 o SImGCLS  0.0044 0.0 2496 0.007 1391 0.498
S SmGCLS* | 00709 001 337.3 0.018 1354 0.503 S SImGCLS® 0.009 0.0 337.3 0018 1354 0499
£ SimGCLF 0.0623  0.02 50.8 0.109 1125 D502 = simGCL®  0.0038 0.0 50.8 0.109 1125 0.498
= smGorR | o728 0.01 377.0 0.0 1369 0.503 = smca¥ | 00107 0.0 377.0 0.0 1369 0.5
SImGCL™ 0.031 0.03 793 0.239 0.707 0.459 SimGCL™ 0.001 0.0 79.3 0.239 0.707 0.497
SimGCLEr) 00515 0.0 418.4 0.003 1307 0.487 SimGaLbr)  0.0069 0.0 418.4 0.003 1.307 0.499
SImGCL™  0.0665 0.0 490.6 0.0 1414 0.499 simGa™ 0.014 0.0 490.6 0.0 1414 0.5

Table 9. Results obtained with SimGCL by comparing either HR and HRy, (left Table), or NDCG and NDCGy, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@1. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.
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Model HR@5 ARP@5 APLT@5 P-REO@5 BQS@5 Model NDCG@5 ARP@5 APLT@5 P-REO@5 BQS@s5
Global Low Global Low
_  SimGCL 04761 00 7513 0.0 1.394 0.5 - SimGCL 00407 0.0 7513 0.0 1.394 05
= =
T SimGCL® | 04003 004 5085 0.003 1.263 0.326 T SimGCLS | 00397 00 5085 0.003 1.263 05
g SimGCLS* 01757 04 352.2 0.012 0.96 0.0 £ SimGCLS 00179 00 3522 0.019 0.96 0.494
T SimGCLE 02439 007 156.6 0.003 1175 0.004 % simGCLE 00288 00 156.6 0.003 1175 0.497
B SimGCLI* 0.4446 0.0 641.5 0.0 1.262 0.466 2 simGerie 0.0394 0.0 6415 0.0 1.262 05
= SimGCL™S 01443 004 2169 0.073 0.691 0.0 = SsimGc!® 00127 00 216.9 0.073 0.691 0.493
SimGCLbr) 0.3074 0.01 4113 0.003 1.309 0.053 SimGCLY" 00496 0.0 4118 0.003 1.309 0.502
SimGCL™ | 04567 00 7146 0.0 1.368 0.409 SimGCL™ | 00431 00 7146 0.0 1368  0.501
~ SimGCL 04928 008 386511 0.0 1393 05 SimGCL 00863 00 386511 0.0 1393 05
& SimGCL® 03583 008 126289 1151 1.345 0.124 S SimGCLS 00317 00 126289 1151 1.345 0.483
L SimGCLSY 03808 01 103193 | 2712 1.225 0.207 & SimGCLS 00286 00 103193 2712 1225 0.482
S SimGCL® 03922 014 3992 0.029 1.379 0.26 5 SimGCLE | 00826 0.0 3992 0.029 1.379 0.499
2 SimGCLM™ | 04631 01 308699  0.029 1.376 0.477 5 SimGCL™ 00813 0.0 398699 0.029 1376 0.499
SimGCL™ 03324 007 142184 0.175 1.264 0.06 SimGCL'™  0.0358 0.0 14218.4 0.175 1264 0.485
SimGCLY) | 05337 008 241263 0.003 1.378 0.51 SimGCLY"Y 00687 0.0 241263 0.003 1.378 0.495
SimGCL™ 05182 009 383666 0.0 1392 0511 SimGCL™ | 0.0924 0.0 3866.6 0.0 1392 0.502
SimGCL 07848 057 27.4 0.034 1.165 0.5 SimGCL 00912 001 274 0.034 1165 05
T SsimGCLS 0.7388  0.54 17.8 0.125 1143 0.4 T SimGcL® 0.0577 0.0 178 0.125 1143 0.487
2 SimGCIS* | 0789% 065 215 0.083 1.066 0.519 2 SimGCLS | 00892 e 215 0.083 1.066 0.506
& simGcl® o762z 063 103 0.01 1.246 0.49% I smGCLY | 0097 004 103 0.01 1246  0.508
O SimGCLM" 07744 062 23.8 0.063 114 0.506 O SimGCL™™ 00848  0.04 238 0.063 114 0.504
simGCL™ 07116 058 13.1 0.135 0.915 0.353 SimGCI'™  0.0609° D01 131 0.135 0.915 0.491
SimGCLY") 0.7149 047 25.1 0.014 1.289 0.16 SimGCLY" 00806 002 251 0.014 1.289 0.499
SimGCL'™ | 07802 058 27.4 0.024 1.179 0.5 SimGCL™ | 00958 0.02 274 0.024 1179 0.502
SimGCL 07508 059 11228 0.055 0.963 0.5 SimGCL 00693 015 11228 0.055 0.963 05
= SimGCLS | 07182 061 960.4 0.206 0.899 0.47 % SimGCL® 00586  0.03 060.4 0.206 0.899 0.454
L SimGCISY | 07399 07 961.8 0.292 0879  0.522 L simGeLst 0068  0.04 961.8 0.292 0.879 0.458
£ simoclf | 07336 075 3255 0.057 1133 0529 £ simGCLE 00721 004 3255 0.057 1.133 0.461
& SimGCLI | 07119 068 672.7 0.146 0.675 0.474 B SimGCLI 0518 0.05 672.7 0.146 0.675 0.461
SimGCL™ 04163 05 577.1 0.177 0.69 0.0 SimGCU™ " 00366 003 5774 0.177 0.69 0.447
SimGCLY) | 07479 06 11088 0.047 0.952 0.501 SimGCLEY! | po68S 014 11088 0.047 0.952 0.497
SimGCL™ | 07568 055 1400.3 0.02 1103 0.464 SimGCL™™ | 00747 021 1400.3 0.02 1103 0.516
SimGCL 02104 002 3902 0.0 1.291 0.5 SimGCL 0.026 0.0 399.2 0.0 1.291 0.5
@ SimGCLS | 01979 0.04 2411 0.018 1214 0/499 @ SimGCL® 0.015 0.0 2411 0.018 1.214 0.497
& SimGCL™ | 02119 007 275.2 0.021 1.061 . 0.513 S SimGCL™ | 00235 0.0 2752 0.021 1061 0.499
% SimGCLE 02034 009 58.7 0.041 1.043 0.515 5 simcclE 00138 00 58.7 0.041 1.043 0.497
7 SimGCLM™ | 02119 005 3113 0.001 1.082 0.507 ~ SimGCLI™ | 00225 0.0 3113 0.001 1082 0.499
SimGCL™ 01087 | 009 1049 0.194 0.707 0.258 SimGCI'™ 00041 0.0 104.9 0.194 0.707 0.495
SimGCLY)  pas45 002 342.8 0.004 1339 0.407 SimGCLYY 00157 00 3428 0.004 1339 0.497
SimGCL™ | 02107 001 4280 0.0 1318 0.49% SimGCL™ | 00265 0.0 4280 0.0 1.318 0.5

Table 10. Results obtained with SimGCL by comparing either HR and HRy, (left Table), or NDCG and NDCGp, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@5. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.
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Model HR@10 ARP@10 AFLT@10 P-REO@10 BQS@10 Model NDCG@10 ARP@10  APLT@10 P-REO@10 BQS@10
Global Low Global Low
- SimGCL 0.6607 0.0 680.3 0.0 1362 0.5 _  SimGCL 0.0529 0.0 680.3 0.0 1362 0.5
= = —
T SimGCL® 0.5838  0.07 5417 0.002 1255 0.328 T SimG(L* 0.0493 0.0 541.7 0.002 1255 0.499
§ SimGCLS*  0.2809 022 329.4 0.015 0.817 0.0 § SimGCL™  0.0212 0.0 329.4 0.015 0.817 0.491
E‘ SimGCLE 03892 026 1450 0.003 1114 0.001 z SimGCLE 0.0336 0.0 145.0 0.003 1114 0.495
2 SimGCL™ | 06285 002 562.7 0.0 1249 0.468 2 SimGCL™ | 0.0521 0.0 562.7 0.0 1249 0.5
= SimGCI™S 02236  0.09 209.6 0.068 0.689 0.0 = SimGCL™s 0.018 0.0 209.6 0.068 0.689 0.491
SimGCLY") 04527 003 376.1 0.003 1.283 0.017 SimGCLAT! | p.0542 0.0 376.1 0.003 1283 0.5
SimGCL™ | 06327 001 644.6 0.0 1336 0.405 SimGCL™  D.0565 0.0 644.6 0.0 1336 0.501
SimGCL 05842 017 295913 0.007 1366 05 SimGCL 0.0992 0.0 29591.3 0.007 1366 0.5
2 SimGCL® 04521 016 112086 1019 1293 0.129 @ SimGCL® 0.0418 0.0 11208.6 1019 1.293 0.482
g SimGCL®* 04815 018 97250 1.848 1.161 0.241 g SimGCL™  0.0391 0.0 9725.0 1.848 1.161 0.481
g SimGCLE 04836 022 2933 0.03 1322 0.256 3 SimGCLE 0.0939 0.0 293.3 0.03 1322 0.499
5 SimGCL™"™ 05532 021 296963 0.062 1339 0.478 5 SimGCLE"  0.0937 0.0 29696.3 0.062 1339 0.499
SimGCLIS 0.422 0.14 126624 0.379 1.202 0.052 SimGCLI™ 0.045 0.0 12662.4 0379 1.202 0.484
SimGCLY? | 06321 016 210020 0.006 1354 0.507 SimGCLA") | p.082 0.0 21002.0 0.006 1354 0.495
SimGCL™ | 0.6083 019 295395 0.002 1.367 0.511 SimGCL™ ~ 0.1056 0.0 29539.5 0.002 1367 0.502
SimGCL 0.8832 075 23.0 0.044 1026 05 SimGCL 0.1021  0.05 23.0 D044 1.026 0.5
T SimGCLS 0.8318  0.69 156 0.129 0.94 0.323 _; SimGCL® 00724 002 15.6 0.129 0.94 0.484
% SimGCLS* | 08771 097 183 0.09 0.921 0.504 T SimGCL® | 01024 0.6 183 0.09 0.921 0.503
£ SimGCLE 0.8726 078 8.7 0.013 1117 0.503 5 SimGCLE 0.1036  0.05 8.7 0.013 1117 0.501
U SimGCLM™ | 0.8706 097 19.7 0.077 0.956 0.499 U SimGCL™ | 0095 0.8 19.7 0.077 0.956 0.501
SimGCL™ 08027 071 119 0.134 0.732 0.279 SimGCL™ 00768 0.03 11.9 0.134 0.732 0.489
SimGCLYT)  p.8sas 07 222 0.019 1204 038 SimGCLYT!  0.087840 D04 230 0.019 1.204 0.494
SimGCL™ 08812 075 23.0 0.033 1043 0.501 SimGCL™ 0.104 0.06 23.0 0.033 1.043 0.504
SimGCL 0.8887  0.73 10164 0.062 0.878 05 SimGCL 0.073 0.12 1016.4 0.062 0.578 0.5
= SimGCL® 0.8599  0.74 8992 0.216 0831 0.474 % SimGCLEn0.0629 1 0.03 899.2 0.216 0.831 0.464
£ SimGCLS* | 0.8885 0.8 850.2 0.301 0.778 0.518 & SimGCL™® 00712 003 850.2 0.301 0.778 0.468
g SimGCLE 0.8852 084 2950 0.091 1043 0.527 £ SimGCLE 4000741 083 2950 0.091 1043 0.467
& SimGCLM | 0.8656 0.8 604.8 0.166 0.683 05 & SimGCLE® 00553 005 604.5 0.166 0.683 0.469
SimGCL™ 05383 064 555.6 0.2 0.689 0.0 SimGCH™. ppdpd 003 555.6 0.2 0.689 0.457
SimGCLYr)  Dgo4s 074 976.7 0.055 0.843 0.503 SimGCLFA EN00721 015 976.7 0.055 0.843 0.505
SimGCLF? 0.8906 0.72 12459 0.025 1014 0.494 SimGCLF? 0.0774 0.25 1245.9 0.025 1.014 0.532
SimGCL 03321 0.04 355.9 0.001 1148 05 SimGCL 0.0375 0.0 355.9 0.001 1148 0.5
@ SimGCLY 03045 0.1 2316 0.023 0.952 oldge @ SimGCL® 0.0263 0.0 2316 0.023 0.952 0.497
$ SimGCL®* | 03231 0.5 236.9 0.03 0.901 0.522 $ SimGCL™ | 0.0367 0.0 236.9 0.03 0.901 0.5
< SimGCLE 03112 0.2 61.3 0.031 0.965 0.524 = SimGCLE 0.0279 0.0 61.3 0.031 0.965 0.498
7 SimGCLI= | 03246 0.1 2749 0.003 0.951 0.513 = SimGCLF® | 0.0363 0.0 274.9 0.003 0.951 0.5
SimGCL™ 01823 015 99.0 0.234 0.597 0.095 SimGCL™ 00105 0.0 99.0 0.234 0.597 0.493
SimGCLYr)  p2405 007 278.7 0.008 1185 0.289 SimGCLHr)  p.p234 0.0 278.7 0.008 1195 0.496
SimGCLP® | 03319 0.04 3778 0.0 1233 0.497 SimGCL™ | 0.0372 0.0 377.8 0.0 1233 0.5

Table 11. Results obtained with'SimGCL by comparing either HR and HRy, (left Table), or NDCG and NDCGp, (right Table), as
well as ARP, APLT, P-REO and BQS at cut-off k@10. Colors refer to the column values: the darker the cell, the higher the
content. Bold and underline values show the best and second-best results, respectively. All the metrics have been computed
by averaging five different runs and applying the ANOVA statistics test. No bold nor underlined values mean differences are
not statistically relevant.
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A APPENDIX
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Fig. 4. Item exposure during training. X axis is the item popularity. Blue points are the exposures within the baseline, while
green points represent the oversampling induced by Eq. 19. Both axes are on log-scale.

Dynamic Oversampling. The oversampling strategy consists in populating D, by progressively increasing the
exposure of positive items inversely to their popularity. Hence, rather than sampling, for each occurrence x,,; = 1
in X, a fixed number n of negative items, we can apply a stratified sampling scheme.

Let n] be a term that is inversely proportional to the popularity of the item, defined as:

, max(p)
= max(p)

i~ nO pd ) (19)
| et}

where ny is a constant (we set it equal to 4), p is the popularity distribution of all the items in I, p; is the popularity
of the item i, and d; is the discrete scaling factor that controls the sampling exposure. The latter is worthy of an
in-depth discussion.

Consider the term m: its approximation represents the under-exposure of an item i with respect to the

most popular one(s). The adoption of this scaling factor could in principle rebalance the exposures. The adjusted
cumulative exposure for item i, i.e. each time x,; = 1 for all u € U would become in fact:

exposure, = no Z ‘ol max(p) _ no max(p) Z i
uelU pi pi

max(p)
Sho——pPi=To max(p) .

uelU (20)

This would result in all positive items associated with the same number of pairwise comparisons, regardless of
their popularity (i.e., in the uniform oversampling strategy).
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We can further investigate the rebalancing capability of the term d;, by introducing a dynamic factor moderating
the over-exposure of medium- and low-popular items. We hence define d; as:

- 4, (21)
max(1, h)

where r; is the rank of the item i (ranging from 0 for the most popular item, to |I| — 1 for the least popular one),
and h represents the highest rank of the set of items for which we want to preserve a certain number of pairwise
comparisons. Its value is the rank of the last high-popular item, i.e. [Iz| — 1. The term 7 indicates how far the
item i is from the top popular ones: the farther, the more d; will penalize n;.

This dynamic sampling strategy consists in feeding the recommender with n; pairwise comparisons for each
positive occurrence of i € X, where:

|_n:-| ifo<e<n]- |_n:J

n; = 5 (22)

I_n:J otherwise

with € ~ U(0, 1) sampled from a uniform distribution. The random process mitigates the overexposure of popular
items that are not maximally popular, which a ceiling process would produce.

By construction, the exposure of the top-popular item i;,, coincides with the one induced by the baseline, as
shown in the top-right corner of Figure 4, due to d;,, = 1 and p;,,, = max(p) (see Equations 19-21). From here,
since the value of d; progressively increases, the exposure of the items is adapted according to the popularity
classes. Compared to the baseline, the exposure of high-popular items exhibits negligible changes, while medium-
and especially low-popular items gain much more relevance, while the overall popularity relationships are kept
coherent and smooth.
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