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Abstract

In the last decade, Prostate Cancer (PCa) has emerged as the second 
most prevalent and serious medical condition, and is considered one 
of the leading factors contributing to global mortality rates. Several 
factors (genetic as well as environmental) contribute to its development 
and seriousness. Since the disease is usually asymptomatic at early 
stages, it is typically misdiagnosed or over-diagnosed by the diagnostic 
procedures currently in use, leading to improper treatment. Effective 
biomarkers and diagnostic techniques are desperately needed in clinical 
settings for better management of PCa patients. Studies integrating 
omics sciences have shown that the accuracy and dependability of 
diagnostic and prognostic evaluations have increased because of the use 
of omics data; also, the treatment plans using omics can be facilitated 
by personalized medicine. 

The present review emphasizes innovative multi-omics metho-
dologies, encompassing proteomics, genomics, microbiomics, me-
tabolomics, and transcriptomics, with the aim of comprehending the 
molecular alterations that trigger and contribute to PCa. The review 
shows how early genomic and transcriptomic research has made it 
possible to identify PCa-related genes that are controlled by tumor-
relevant signaling pathways. Proteomic and metabolomic analyses 
have recently been integrated, advancing our understanding of the 
complex mechanisms at play, the multiple levels of regulation, and 
how they interact. By applying the omics approach, new vulnerabilities 
may be discovered, and customized treatments with improved efficacy 

will soon be accessible. Clin Ter 2023; 174 Suppl. 2 (6):95-103 doi: 
10.7417/CT.2023.2476
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Introduction

Prostate Cancer (PCa) is an important medical concern 
that has a considerable impact on the majority of men 
population—ranking as the second most prevalent form of 
malignancy in males (after lung cancer)—and is included 
in the top five leading causes of mortality globally. In Eu-
rope, PCa constitutes approximately 11% of the total male 
cancers (1), and in the European Union it is responsible 
for 9% of all cancer-related mortalities in men (2). Risk 
factors that have been scientifically proven to exist include 
advanced age, ethnicity, genetics, and family history (3-5). 
Aside from obesity and physical inactivity, the factors that 
can contribute to various health conditions for PCa include 
infections, inflammation, environmental exposures, diet, 
hyperglycemia, and ionizing radiation (4, 6-10). The initial 
phases of PCa often exhibit a gradual progression and absen-
ce of symptoms, thereby rendering therapy unnecessary. A 
further progression of the condition may manifest as urinary 
incontinence and lumbar discomfort (11). 

The currently available PCa screening and therapy ap-
proaches are invasive and expensive, and frequently result 
in misdiagnosis or overdiagnosis of the condition; moreover, 
cancer relapse is quite common. Due to all these associated 
limitations with screening, increasing incidence rate, and 
all the risk factors contributing to it, an effective, accurate, 
non-invasive, and relatively cheaper PCa diagnostic and 
therapeutic strategy is required. Therefore, the objective of 
this study is to integrate multi-omics methodologies to better 
comprehend biomarker discovery and to speed up the adop-
tion of precision oncology in PCa. This review summarizes 
recent research and highlights some studies that have applied 
multi-omics to PCa in unique and groundbreaking ways.
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Prostate Cancer Diagnosis and Therapy

Prostate Specific Antigen (PSA) tests, imaging studies, 
and prostate tissue biopsies are the mainstays of standard 
PCa diagnostic techniques (12). The efficacy of PSA testing 
is a subject of debate, owing to the occurrence of false 
positive results, which may lead to excess diagnosis and 
therapy of low-risk groups PCa with limited benefits (13). 
Ionizing radiation exposure during imaging tests can be 
expensive as well as harmful to health. Although CT scans 
are more expensive, they are known to have limited efficacy 
in identifying metastatic tumors or relapses of PCa in males 
with low levels of PSA. In the scientific field of therapeutics, 
the confinement of cancer to the prostate gland is classified 
as localized and has the potential for effective treatment. 
Radical prostatectomy, radiation, and surveillance are avai-
lable as management options, however, there is little data to 
assess the merits of each strategy (14). Also, each approach 
has its own drawbacks, because cancer relapse is frequently 
observed in the case of targeted therapy and these methods 
are also intrusive, painful, and expensive.

PCa treatment options are currently limited to selective 
therapeutic drugs, including galeterone, abiraterone, and 
seviteronel, which are currently undergoing development. 
The present study evaluated the association and efficacy 
of Morusflavone flavonoid derived from Morus alba L., 
with CYP17A1. The FDA-approved CYP17A1 inhibitor 
functions by suppressing androgen production. CYP17A1 
inhibition represents a significant therapeutic objective for 
the treatment of PCa. The results of a molecular dynamics 
simulation study suggest that morusflavone is a promising 
therapeutic target for PCa, since it is more stable than abira-
terone and interacts with CYP17A1. There is a lack of data 
about the use of powerful naturally occurring anticancer che-
micals like vinca alkaloids in the treatment of PCa (15).

Multi-Omic Approaches in Prostate Cancer Diagnosis and 
Management

The ineffectiveness of conventional approaches prom-
pted researchers to come up with efficient and cutting-edge 
solutions to the present problems with PCa diagnosis and 
treatment. The advent of omics technology has led to unique 
initiatives aimed at characterizing the molecular alterations 
that underlie the onset and progression of various intricate 
medical conditions such as cancer (16). The field of cancer 
biology has increasingly relied on the acquisition and synthe-
sis of information obtained from diverse sources, particularly 
with the advent of sequencing technology. One of the main 
difficulties related with the use of omics sciences in the dia-
gnostic and therapeutic sectors is tumor heterogeneity, which 
makes it challenging to develop biomarkers that precisely 
reflect the characteristics of the entire tumor. Furthermore, 
data integration from multi-omics platforms is required for 
collecting and analyzing enough tissue samples.

Genomics, transcriptomics, proteomics, and metabolomi-
cs approaches can all be utilized today to thoroughly analyze 
the underlying mechanisms and to understand the numerous 
variations taking place (16). Particularly for advanced PCa, 
molecularly driven therapeutic targets are anticipated to 

enhance intervention as part of customized treatment plans 
based on novel, more targeted medicines, directed by omics-
based biomarkers (17). Light has been shed on PCa etiology 
by genome-wide association studies, which have identified 
numerous predisposition loci and highlighted the importance 
of genetic variations (18). On the examination of PCa gene 
drivers, disease subgroups are identified, and therapeutic 
alternatives are created for precision medicine techniques. 

Given the high correlation among the expression of 
many genes, the transcriptomics approach is commonly 
employed to assess the regulation of genes and to identify 
tumor subtypes (19). When mRNA profile of PCa were 
constructed, non-coding RNAs (ncRNAs) in the growth of 
cancer were discovered to be enhanced after radiotherapy, 
and the presence of this particular factor may indicate an 
adverse prognosis for the overall survival of individuals 
diagnosed with PCa (20).

Proteomics, being an omics approach, has been exten-
sively employed in various research endeavors aimed at 
identifying biomarkers for PCa. This is due to its ability to 
directly reflect cellular activity and identify dysregulations in 
a variety of biological constituents  (21). Proteomic alterations 
have been linked to metabolic activity, DNA repair, cell cycle 
regulation, and proteasomal degradation. Shina et al.’s study 
analyzed various Omics methodologies and assessed the 
precision of each biomarker. They discovered that proteomic 
characteristics were much more relevant than genomic, epige-
nomic, or transcriptomic features for predicting biochemical 
relapse (22). In a study conducted by Maria et al., the PN-
T1A, DU145, PC3, and LNCaP prostate cell lines were used 
to identify potential protein candidates associated with the 
progression of PCa (23). Tonry conducted a comprehensive 
assessment of the application of proteomics in the identifica-
tion and personalized management of PCa (24).

Metabolomics has provided additional support in the 
characterization of the distinct metabolic profile associated 
with the progression of PCa and in the identification of 
metabolic alterations, which might be helpful as clinical 
biomarkers. To achieve this objective, several metabolomi-
cs studies have been conducted on PCa samples in recent 
times. Many technological advancements are currently 
accessible for the purpose of identifying and quantifying 
diverse metabolites in cells, tissues, or biofluids (25-27). 
Analytical procedures are based on mass spectrometry (MS) 
and nuclear magnetic resonance (NMR). The metabolomes 
from healthy and cancerous prostate tissues differ in lipid, 
nucleotide, Tricarboxylic acid (TCA) cycle, polyamine, 
and hexoamine production (28, 29). PCa is known to have 
elevated de novo lipogenesis (30), and cell lines produced 
from PCa metastases have upregulated levels of various lipid 
types. Urine metabolomics is a prompt and precise appro-
ach for the identification of diagnostic biomarkers for PCa, 
as well as predictive response biomarkers. The utilization 
of a metabolic signature has been proposed as a means of 
prognosticating diagnosis (31). According to independent 
research (25, 32), several metabolites—including a great 
number of those associated with the synthesis of energy, 
TCA cycle, and the metabolism of amino acids—are chan-
ged in urine. The omics approaches that are being employed 
in diagnostics and therapeutics of PCa are described in the 
following paragraphs.
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Genetics of Prostate Cancer

Among all PCa risk factors, the patient’s genetic makeup 
is considered the most significant one: according to reports, 
a person has 50% chances of developing PCa if an individual 
in their family has this disease (33). . To confirm the heredi-
tary link of PCa, scientists have conducted many studies in 
which they have used twin, case-control, and family groups; 
the results showed that specific genetic mutations in people 
are increasing the risk of developing this disease (34). Dif-
ferent genes linked to PCa are listed in Table 1.

BRCA1, BRCA2, and ATM are the DNA repair genes, 
which are present in 5.5% of the men with PCa (35). Point 
mutations in the DNA sequences, such as single nucleotide 
polymorphisms and somatic copy number alterations, are 
relevant to the development of PCa because they silence the 
transcriptional activation of tumor suppressor genes, thus 
making the oncogenes functional (36, 37). The mutations 
during DNA replication in the nucleus pass on to the next 
generation, leading to the development of PCa due to the 
uncontrolled growth of cells with these mutations (38). 

Genomics of Prostate Cancer

Almost all primary and metastatic PCa patients have 
been linked to mutations in the somatic genes (such as AR, 
WNT, PI3K-PTEN) and in the cell cycle signaling and DNA 
repair pathways. Different large genome studies have been 
conducted to find the association between metastatic castra-
tion-resistant (mCRPC) and PCa, which can be because of 

Gene OMIM of 
the Gene

Gene 
Location

PCa Histologic 
Characteristics

Inheritance OMIM of the 
Pathology

Related Pathologies

MAD1L1 602686 7p22.3 PCa, somatic . 176807 - Mosaic variegated aneuploidy syndrome 7, 
  with inflammation and tumor predisposition;
- Lymphoma, B-cell, somatic.

PTEN 602053 10q23.31 PCa, somatic . 176807 - Macrocephaly/autism syndrome;
- Cowden syndrome 1;
- Meningioma Lhermitte-Duclos disease;
- Glioma susceptibility 2.

KLF6 602053 10p15.2 PCa, somatic . 176807 - Gastric cancer, somatic.

MXI1 600020 10q25.2 PCa, somatic . 176807 - Neurofibrosarcoma, somatic.

BRCA2 600185 13q13.1 PCa AD, SMu 176807 - Fanconi anemia, complementation group D1;
- Glioblastoma 3;
- Pancreatic cancer 2;
- Breast cancer, male, susceptibility to;
- Breast-ovarian cancer, familial, 2;
- Medulloblastoma.

ZFHX3 104155 16q22.2-q22.3 PCa, somatic . 176807 - Prostate cancer, somatic

CHEK2 604373 22q12.1 PCa, familial, s
usceptibility to

AD, SMu 176807 - Li-Fraumeni syndrome 2;
- Osteosarcoma, somatic;
- Breast cancer, susceptibility to;
- Colorectal cancer, susceptibility to.

AR 313700 Xq12 PCa, 
susceptibility to

AD, SMu 176807 - Androgen insensitivity;
- Androgen insensitivity, partial, with or without 
  breast cancer;
- Hypospadias 1, X-linked;
- Spinal and bulbar muscular atrophy of Kennedy.

Table 1. List of genes linked to PCa and related syndromes. 

mutations in the genes, gene fusion, copy number variations 
of DNA, and rearrangements of genes (39, 40). In 1948, 
when cell free DNA (cfDNA, or the portion of circulating 
nucleic acid) was discovered in the blood (41). By conduc-
ting different research on PCa patients, scientists found out 
that, compared to healthy people, they had a higher number 
of longer cfDNA fragments, which increased concurrently 
with the stage and severity of the disease (42). 

Transcriptomic of Prostate Cancer
The total number of RNA transcripts in an organism 

can be identified by transcriptomic studies. With the help 
of this, a total of 11 RNAs have been studied: among them, 
the mRNA, being translated into a protein after being tran-
scribed from DNA, is the most concerned in cancer (43).  
The specific tumor type can be identified with the help of 
transcriptomic studies by measuring the expression of the 
genes: a higher gene expression means that they are closely 
related to each other and also are linked to tumor (19). 

PCa progression can be predicted by the change in the 
mRNA level. This change will help in determining the 
difference between the normal and the metastatic state of 
PCa. Nine different stage-specific candidate genes linking 
to PCa progression are listed: GSTP1, TP63, MYC, CENPA, 
EZH2, PIK3CB, HEATR5B, DDC, and GABPB1-AS1 (44, 
45). The detailed transcriptome studies not only focus on 
the mRNA, but also include non-coding RNAs and their 
subtypes. The next generation sequencing (NGS) technique 
is used to study the transcriptomic profile of cells or tissues 
in detail (46-49). 

The RNA biomarkers of PCa are listed in Table 2. 
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Metabolomics

The primary objective of metabolic analysis is to quantify 
and characterize a maximum number of metabolites, with the 
ideal outcome being a comprehensive depiction of the meta-
bolome. Biochemical pathway-related metabolic alterations 
can help uncover complex disease reasons. All of this infor-
mation might lead to the identification of novel biomarkers 
for disease within current diagnostic procedures (89). 

Proteomics and Biomarkers

According to recent investigations on cancer, only 10% 
to 20% of changes in proteome analyses may be attributed to 
changes in the transcriptome (90). Proteomics has been used 
in PCa biomarker research because it provides an instant 
analysis of the functioning of cells and reveals alterations 
in the most treatable biological components (21). By inte-
grating the genomic data with the proteome of the tissue, 
it is possible to discover biomarkers and locate potential 
therapeutic targets. Furthermore, in situ histopathology 
permits researchers to further investigate the genetic basis of 
cancer initiation and progression. By using 2-Dimensional 
differential gel electrophoresis (2D-DGE) and western 

Table 2. List of potential biomarkers for PCa, including long non-coding RNAs, circular RNAs, and microRNAs. 

lncRNAs Expression Sample Potential Biomarker References
PCA3 Increased Tissue/urine Diagnostic/therapeutic (50-54)

MALAT1 Increased Tissue/plasma Diagnostic/predictive (55-59)

SChLAP1 Increased Tissue/plasma/urine Diagnostic/prognostic (60-62)

FR0348383 Increased Tissue/urine Diagnostic (63, 64)

PCAT1 Increased Cell lines/tissues Therapeutic (65)

CCAT2 Increased Tissues Prognostic (66)

CTBP1-AS Increased Tissues Prognostic (67)

DRAIC Decreased Cell lines Prognostic (68)

HCG11 Decreased Tissues Prognostic (69)

LINC01296 Increased Cell lines/tissues Prognostic (70)

LincRNA-p21 Decreased Cell lines Prognostic (71)

LncRNA-ATB Increased Tissues Prognostic (72)

LOC440040 Increased Cell lines/tissues Prognostic (73)

NEAT1 Increased Cell lines/tissues Prognostic (74)

PCAT14
Increased (early)/ 
decreased (late)

Tissues Prognostic (75)

PCGEM1 Increased Tissues Prognostic (76, 77)

TRPM2-AS Increased Tissues Prognostic (78)

UCA1 Increased Tissues Prognostic (79)

circRNA
circMYLK Increased Tissue Diagnostic/therapeutic (80)

miRNA
miR-96 Increased Tissue . (81)

miR-96-5p, miR-183-5p Increased Tissue . (82)

miR-145-5p, miR-221-5p Decreased Tissue . (82)

miR-221 Decreased Tissue . (83)

miR-21, miR-22, miR-141 Increased Plasma . (84)

miR-141, miR-375 Increased Serum, tissue . (85)

miR-20a, miR-21, miR-145, miR-221 Increased Plasma . (86)

miR-107, miR-574-3p Increased Urine . (87)

miR-200b, miR-200c Increased Plasma . (88)

blotting, many protein indicators were identified as the PCa 
biomarkers, like UBE2N, Ser/tre-protein phosphatase PP1β 
(PPP1CB), and PSMB6 (91). SMARCA4 deletion impacts 
the chromatin accessibility and thus the gene regulation of 
a subset of AR genes, as well as CRPC development and 
dissemination (92). 

Proteomic comparisons of PCa normal and cancerous 
tissue are also used to learn about the carcinogenic process. 
Interindividual differences can be ruled out by analyzing the 
prostate tissue with distinct histological patterns. PCa tumor 
stroma has more calcium-binding, intercellular interstitial, 
and smooth muscle contraction proteins than normal stroma 
(93). A significant contributor to the overtreatment of men 
with PCa is PSA, which is the best-known biomarker for 
PCa diagnosis and also a frequently employed biological 
indicator in investigating cancer (94).

Proteomics can identify biomarkers and therapeutic 
targets in health and disease systems biology. Precision me-
dicine and proteomics help precision oncology in analyzing 
complicated carcinogenic pathways and targeted therapies, 
finding novel biomarkers for screening and detection, and 
evaluating therapy effectiveness and toxic effects (95). 

Some of the major proteomics biomarkers responsible 
for renal cell carcinoma are mentioned in Table 3. 
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Lipid omics and biomarkers

Disease research recently adopted lipidomics. The iden-
tification of different lipid biomarkers for particular health 
issues is important, because many diseases cause unique 
and distinctive alterations in the lipid compounds of bodily 
fluids or tissues before clinical symptoms appear (101). 
The vast array of lipids presents a significant challenge in 
the research and development of analytical techniques for 
lipidomics. MS, particularly in conjunction with chromato-
graphic separation methods, is a highly prevalent approach 
in the field of lipidomics. The quantitative examination of 
lipids in biologic specimens using MS has yielded copious 
data that can be used for the clinical assessments of various 
diseases (102). The implementation of the lipidomics appro-
ach has gained significant traction in cancer research due 
to its ability to accurately delineate the lipid structures and 
compositions present in specific cells or organisms (103). 
Different mitogens—such as lysophospholipds, lysophos-
phatidic acids, phospholipids, and phosphatidic—are respon-
sible for PCa. Lipid kinases, G protein-coupled receptors, 
and small G proteins are major factors responsible for the 
complications in different cellular signaling pathways and 
cytoskeletal rearrangements (104). 

In the case of lipidomics, a lipid profile and metabolic 
pathway can be constructed. This procedure involves the 
extraction of lipids from tissues and cells, followed by lipid 
analysis, which eventually contributes to the construction 
of the lipid profile, as well as its analysis and subsequent 
pathway analysis (103). The study conducted by Zhou X. 
et al. aimed to explore the potential diagnostic and progno-
stic significance of lysophosphatidylcholine transferase 
1 (LPCAT1) in prostate tumors by using IHC on tissue 
microarray slides. The study examined the association 

Table 3. List of Proteomics biomarkers linked to PCa. 

Proteomics Biomarkers Protein Family Expression status Assays for identification References

PPP1CB Metabolic proteins
Plasma proteins

Decreased 2D-DGE
MS

(91)

 
Ubiquitin-conjugating enzy-
me E2N

Cancer-related genes
Enzymes
Metabolic proteins
Plasma proteins

Increased 2D-DGE
MS

(91)

 
Coatomer protein complex, 
subunitα

Disease-related genes
Metabolic proteins
Plasma proteins

Increased Immunohistochemistry (IHC)
MS

(96)

Vinculin Disease-related genes
Plasma proteins

Increased 2D-DGE
MS

(97)

Transthyretin Cancer-related genes
Human disease-related genes
Plasma proteins

Increased MALDI-TOF MS,
MS,
2D-DGE,
IHC

(98)

MethylcrotonoylCoenzyme 
A carboxylase 2 (beta)

Disease-related genes
Enzymes
Human disease-related genes
Metabolic proteins
Potential drug targets

Increased MALDI-TOF MS
2D-DGE,
IHC,
Western Blotting

(99)

Periostin Cancer-related genes
Plasma proteins

Increased 2D LC-MS/MS and iTRAQ (100)

between LPCAT1 expression and cancer advancement. The 
pivotal function of LPCAT1 in the modification of PLs and 
its upregulation in various carcinomas (such as colorectal 
and prostate) in contrast to healthy mucosa had previously 
been established (105, 106). 

Microbiomics and Biomarkers

Current research indicates that changes in the com-
position of microbiota, known as dysbiosis, may have a 
significant impact on the onset, progression, and outlook of 
PCa. The microbiome, which encompasses the entirety of 
microorganisms and their genetic material residing on and 
within the body, is acknowledged as a significant factor in 
the identification of various cancer types. Various extensi-
vely researched human microbiomes, consisting primarily 
of diverse bacterial populations, possess the capacity to act 
as etiological factors in carcinogenesis and/or influence the 
individual’s response to therapeutic interventions (107). 
There are limitations in case of microbiomics biomarkers for 
PCa specifically with PSA but still some of the biomarkers 
with increased expressions involved in the progression of 
PCa. Potential prognostic and diagnostic biomarkers for 
PCa are human endogenous retrovirus, herpes simplex 
virus derived HSV2-miR-H9-5p and HSV1-miR-H18 (108-
111). No data exists on how microorganisms affect therapy 
response. Further investigation is required to explore the 
correlation between dysbiosis of the gastrointestinal tract and 
genitourinary microbiome, persistent inflammation and the 
development of PCa. Results could help develop innovative 
approaches and risk stratification methods (107). Some of 
the major microbiomics biomarkers associated with PCa 
are listed in table 4. 
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Future directions 

Personalized medicine can facilitate the development 
of treatment strategies using omics. The early detection of 
PCa can prove to be a viable strategy, and additional investi-
gations may yield more effective therapeutic interventions. 
Various omics technologies can aid in understanding the 
heterogeneity of tumor microenvironment of specific cancer 
types, thus helping in the development of a treatment. The 
current state of the diagnostic test does not permit its appli-
cation in a clinical setting; further investigation is required to 
authenticate biomarkers, ascertain their therapeutic viability, 
and incorporate appropriate protocols. Miniaturized assays 
and multiplexing technology have the potential to facilitate 
the development of biomarker tests.

Conclusion

In this age of big data, researchers are using omics tech-
nologies like metabolomics, transcriptomics, and genomics 
to search for diagnostic markers in a wide range of diseases. 
Diagnostic research and disease surveillance in humans and 
economically relevant animals are two areas in which omics 
data are rapidly becoming crucial. This new era in clinical 
care calls for cutting-edge approaches, and lipidomics has 
been considered as one of the most promising. Health and 
economic benefits of the omics test should be established 
through prospective trials, and the test should be made more 
accessible to patients. Different novel targets and biomarkers 
can be identified for clinical applications by studying the 
oncometabolite and its association with different signaling 
pathways. The use of omics data has led to an improve-
ment in the precision and dependability of diagnostic and 
prognostic assessments. Targeted therapy, when efficiently 
executed, has the potential to minimize the toxic effects on 
normal cells in comparison to chemotherapy.
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