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Abstract 

One of the challenges for water utilities is the optimal asset design (i.e. maximum power of pump systems, tank volumes and 
pipe diameters) of water distribution networks (WDN) while optimizing operational efficiency (i.e. energy consumption and 
cost). Besides the classical minimization of  capital cost while providing sufficient supply service, the operational sustainability 
is an emerging issue. As the reduction of each component of capital and energy costs are conflicting with each other, the 
optimization problem is multi-objective. This work presents the study of the robustness of solutions of the Pareto set as a 
further element to support the decision. 
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1. Introduction  

In water distribution networks (WDNs), the interest in optimal asset design (i.e. maximum power of pump 
systems, tank volumes and pipe diameters) versus energy cost of pumping has recently increased. In fact, the 
efficiency of WDNs is of relevant interest for the water industry and operational optimization plays an important 
role together with the classical capital cost optimization related to optimal sizing of hydraulic capacity. 
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Thus, the classical optimal pipe sizing challenge is currently expanded to the optimal design of upgrading of 
tank volumes and maximum pump powers in existing WDNs, together with energy consumption/cost minimization 
for pumping, accounting for the electricity tariff pattern over the typical operating cycle. 

However, the reduction of each cost is conflicting with the reduction of some others, for example the reduction 
of the pipe diameters cost increases the energy consumption (and relevant operational cost).  

For this reason, the construction of a Pareto set of optimal solutions in a multi-objective framework is a method 
to support the decision of water managers for the specific technical problem by providing solutions which are 
optimal trade-offs. 

From a hydraulic standpoint the optimization problems involves, for each solution entailing the upgrade of the 
hydraulic system capacity, the optimal selection of the working pumps over time. This fact requires the prediction 
of the hydraulic system behavior over time varying the relevant boundary conditions (e.g. nodal demands, tank 
levels, etc.) and the decision on the pump scheduling strategy. In fact, pumping optimization means to schedule 
pumps over time in a relevant operating cycle, i.e. to select which pumps are running at any given time. This task is 
generally performed in two ways: (i) by programming the ON/OFF status over time or (ii) by setting the status of 
the pump (i.e., ON/OFF) based on the water level in a tank. 

In the first strategy, the operating cycle is sampled using a time step for programming. The time step depends on 
the specific WDN and needs to track the relevant changes in boundary conditions such as nodal demands, state of 
control valves, tank levels, etc. In the second strategy, the working condition of pumps is controlled by tank levels, 
i.e. each pump switches ON or OFF depending on the level of its specific tank. In contrast to the first method, this 
kind of pump scheduling acts in a continuous way over the operating cycle and implies that the tank levels are 
significant indicators of WDN boundary condition changes over time, Giustolisi et al. (2013). 

This work aims to study the robustness of the optimal solutions accounting for hydraulic capacity upgrading vs. 
energy costs with respect to the increasing or decreasing of the nodal demands and the two pump scheduling 
strategies. In this framework, the assessment of robustness is also a method to further support the decision of water 
managers. 

The key idea is to test the sensitivity of each solution with respect to the demand pattern assumed during the 
optimization, which is designated here as “Deterministic”. To this purpose, the values of the nodal demands are 
randomly increased, (i.e.“Test plus”), and decreased, (i.e. “Test minus”), using the Latin Hypercube sampling 
method, McKay et al. (1979), and the uniform probability density function.  

The exercise on TOWN-D network, Marchi et al. (2013), was used as case study in order to test and discuss the 
strategy. 

  
Nomenclature 

Ep electric power in KW 
Hk 

pump  pump static head installed along the kth pipe 
Hs  head level at the sth tank node 
Hs

ini  initial head level at the sth tank node 
Hs

max  maximum head level at the sth tank node 
Hs

min  minimum head level at the sth tank node 
i  subscript of internal nodes 
k subscript of pipes 
nn number of nodes 
np number of pipes 
n0 number of tank nodes 
p  subscript of pumps 
Pi  model pressure at the ith node 
Pi

ser  pressure for correct or sufficient service of each ith node 
Qp  pipe flow rates 
rp and cp parameters of internal head loss of the pump installed along the pth pipe 
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s  subscript of tank nodes 
t  time variable representing the hydraulic system/model snapshot 
T  number of EPS model snapshots of the operating cycle 
Zi  elevations of the ith node 
ΔHp  pump dynamic head 
ΔT  time interval of the real hydraulic system snapshot 
η  pump efficiency 
Ωs  cross-sectional area of tanks 
EPS Extended Period Simulation 
WDN  Water Distribution Network 

2. Materials and methods 

2.1. Pumping of water optimization: problem formulation 

Pumping optimization over an operating cycle T requires the prediction of the system behavior over time; 
therefore, the extended period simulation (EPS) of the WDN is required. EPS is the sequence of steady-state 
simulation runs to predict the hydraulic status of the WDN over time, Van Zyl et al. (2006), Todini (2011), 
Giustolisi et al. (2012), Giustolisi et al. (2013). The pump states over the operating cycle are the decision variables 
to be optimized considering the minimization of pumping cost with respect to the energy consumption and tariffs. 

If the hydraulic capacity of the system is optimized contemporarily to pumping, the decision variables related to 
the asset components, i.e., the number of pumps in each installation, the tank volumes and pipes diameters, are 
comprised in the problem formulation 

The optimization problem is also constrained by technical requirements and supply reliability (constraints on 
minimum pressures for sufficient service and on the minimum level of tanks, respectively), water overflows 
(constraint on maximum level of tanks) and global mass balance in each tank during an operating cycle (Brdys and 
Ulanicki 1994, Van Zyl et al., 2004). Thus, the general formulation of the optimization problem is given by, 
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  (1) 

where i = subscript of the ith node; s = subscript of the sth tank node; p = subscript of the pth pump; m = number 
of pumps; Pi = model pressure at the ith node varying over time; Zi = elevations of the ith node; Pi

ser = pressure for 
sufficient service of each ith node; Hs

min = minimum head level at the sth tank node; Hs
max = maximum head level 

at the sth tank node; Hs
ini = initial head level at the sth tank node varying over time; Hs = head level at the sth tank 

node varying over time; T = number of EPS model time steps of the operating cycle; ΔT = time interval of the real 
hydraulic system snapshot (in hours); Ep = electric power in KW. 
The electric power for the energy cost is computed as: 
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where p = subscript of the pth pipe containing a pump; ΔH = dynamic head varying over time t; Hp 
pump = static 

head; rp and cp = parameters of internal head loss; η is the variable pump efficiency. 

2.2. The strategy to solve the constrained multi-objective optimization problem 

The optimization problem in (1) is addressed here with a Multi-Objective (MO) strategy by using genetic 
algorithms and in particular OPTIMOGA, Laucelli and Giustolisi (2011). To accomplish the constraints, they are 
rearranged as an extra objective function as follows: 

• the constraint on pressures for sufficient service is transformed in the number of times (number of snapshots) it 
is not satisfied (n1); 

• the constraint on minimum tank levels is transformed in the number of times (number of snapshots) it is not 
satisfied (n2); 

• the constraint on maximum tank levels is transformed in the number of times (number of snapshots) it is not 
satisfied (n3); 

• the constraint on initial level with respect to the final level in the operational cycle T for each tank is 
transformed in a global deficit of volume in the cycle as summation of the volume deficits in the tanks (see first 
Eq.(3)). 

The objective function fconstraints to be minimized is the product of the previous four values, adding the unit value 
to each one in order to avoid the product with a null value, as follows: 

( ) ( ) ( ) ( )
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It is worth noting that the use of the extra objective function for the constraints allows maintaining the solutions 
violating the constraints during the evolution, according to the amount of violation. This is useful to better explore 
the search space and to preserve diversity in the GA population. In addition, this method is more reliable when 
some constraints cannot be fully satisfied, although relevant solutions are technically feasible. Finally, during the 
optimization run the computation of EPS is stopped when the three constraints on minimum and maximum tank 
levels and minimum nodal pressures are not satisfied. This is a way to reduce the computational burden related to 
the need for computing an EPS for each individual (candidate solution) in the OPTIMOGA, Giustolisi et al. (2013). 

3. Case study 

 The network used as case study is TOWN-D, Marchi et al. (2013), whose layout is reported in Fig. 1. The 
WDN is composed of 459 pipes and 407 nodes. A pumping system composed of three pumps is close to the 
reservoir; it pumps water in five districts. Four inline pumping systems composed of two pumps are installed 
upstream the four districts and seven tanks are filled and emptied during the operational cycle. 

The original exercise (“battle”) deals with the optimal upgrading of the WDN hydraulic capacity (pipe 
diameters, number/type of pumps and tank volumes) and the optimal design of new area in order to contemporarily 
minimize energy cost (i.e. given the tariff variation over time), water age and carbon footprint. The operational 
cycle was set to one week (T=168h).  

To the purpose of the work, the same exercise is here slightly modified. The operational cycle was set T=24h 
while the minimization of water age and carbon footprint was not performed. The WDN optimization was executed 
assuming for the existing pipes the option of substituting or not with new pipes whose costs is reported in the 



738   O. Giustolisi et al.  /  Procedia Engineering   70  ( 2014 )  734 – 743 

documentation of the “battle”, Marchi et al. (2013). Regarding the pumps it was assumed to add to the main 
installation (close to the reservoirs) a maximum number of six new pumps and for the other four installations a 
maximum number of two new pumps. This means to add a maximum of fourteen new parallel pipes with pumps. 

 

 

Fig. 1. Network Layout 

Therefore, these candidate pumps were added to the problem as fourteen optional parallel pipes having the 
annualized cost of the pumps. Thus, the annualized costs of pipes and pumps were aggregated. Regarding the 
upgrading of the tank volumes the Table 1 was used. 

The power for the annualized energy cost, see Eq. (2), was computed considering a variable efficiency and the 
curve of efficiency reported in Giustolisi et al. (2013) using the maximum efficiency equal to 0.85. 

Table 1. Cross sectional area (Ω) of the new candidate tank and cost for each of the seven tanks. 

 Tank n.1 Tank n.2 Tank n.3 Tank n.4 Tank n.5 Tank n.6 Tank n.7 

Ω 

[m2] 

Cost 

[$] 

Ω 

[m2] 

Cost 

 [$] 

Ω 

[m2] 

Cost 

 [$] 

Ω 

[m2] 

Cost 

 [$] 

Ω 

[m2] 

Cost 

 [$] 

Ω 

[m2] 

Cost 

 [$] 

Ω 

[m2] 

Cost 

 [$] 

148.06  769.45  40.04  54.50  111.03  339.14  106.41  

222.13 14020 846.37 14020 140.04 14020 145.41 14020 222.14 14020 423.89 14020 212.80 14020 

296.21 30640 923.29 30640 240.04 30640 236.32 30640 333.26 30640 508.63 30640 319.18 30640 

444.35 61210 1077.14 61210 440.04 61210 418.13 61210 555.48 61210 678.12 61210 531.95 61210 

703.61 87460 1346.37 87460 790.04 87460 736.32 87460 944.37 87460 974.73 87460 904.29 87460 

888.80 122420 1538.68 122420 1040.04 122420 963.59 122420 1222.14 122420 1186.60 122420 1170.24 122420 

1629.54 174930 2307.91 174930 2040.04 174930 1872.68 174930 2333.26 174930 2034.06 174930 2234.07 174930 

 
Therefore the multi-objective optimization aimed at the the minimization of the annualized pipe plus added 

pump cost vs. the annualized tank cost (upgrading of volume) vs. the annualized energy cost vs. the extra function 
on the violation of constraints, see Eq. (3). 

About the pump scheduling optimization, it was preferred to schedule pump states by means of tank levels for 
two reasons: (i) the option is characterized by a reduced search space of the optimization problem with respect to 
temporal scheduling of the pump states; (ii) the pump scheduling by tanks can be transformed in the temporal 
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scheduling of the pump states for ΔT=1h, although losing the continuity of the control in real system and in also 
EPS model depending on ΔT. This last point is helpful in order to compare the robustness of the two pump 
scheduling strategies. In fact, the robustness, as sensitivity to the nodal demand variations, of each of the 114 
solutions which were obtained using “deterministic” nodal demands, was tested using both the pump scheduling 
strategies. Each solution (hydraulic capacity and pump scheduling strategy) was tested: 

1. increasing of 50% the “deterministic” nodal demands using the Latin Hypercube sampling method, 
McKay et al. (1979), i.e. “Test plus”; 

2. decreasing of the “deterministic” nodal demands using the Latin Hypercube sampling method, 
McKay et al. (1979), i.e. “Test minus”. 

4. Results and Discussion 

The optimization was performed using WDNetXL (www.hydroinformatics.it) which is a collection of MS-Excel 
add-ins developed in the Matlab R2010b-32bit environment, Giustolisi et al. (2011). The notebook used was 
equipped with an Intel vPro i7 processor and Windows 7.0. OPTIMOGA provided 114 solutions running 2,000 
generations in about 560 minutes. As for example, Fig. 2 reports the first 10 solutions (ordered by the annualized 
energy cost) as provided in MS-Excel format by WDNetXL. 

 

 

Fig. 2. Solutions of the Pareto set provided in MS-Excel by WDNetXL (the example reports 10 out of 114 solutions) 

 

Fig. 3. Annualized cost of the solutions in the Pareto set ordered by the tank cost 

During optimization the calls to the objective function were 286,946 while the WDN simulations were 
3,734,730 which means the average value of 13.02 out of 24 snapshots of the EPS model. The Generalized WDN 
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model (Giustolisi et al., 2012) employed in WDNetXL never failed or had convergence troubles. The total 
annualized cost of the 114 solutions ranges from 385,294 $ to 450,442 $, see Fig. 3. 

On the contrary, Fig. 5 demonstrates that temporal scheduling causes an insignificant reduction or increase of 
the energy consumption varying the demands. The marginal power variation is caused by the fact that the working 
point of each pump moves depending on demand variations. Figs 4 and 5 demonstrate that scheduling by means of 
tank levels adapts pumping and energy consumption to demand variations, while temporal scheduling is not 
adaptive and, for this reason, requires accurate demand forecasting and the real time pumping optimization.   

 

 

Fig. 4. Annualized pump power of the solutions ordered by the tank cost. Pumps controlled by tank levels 

 

Fig. 5. Annualized pump power of the solutions ordered by the tank cost. Temporal scheduling of the pump states 

Figs. 6 and 7 report the fraction of constraint violations over T in the “Test plus” scenario. Fig. 6 shows that the 
adaptability of scheduling by means of tank levels do not solve the problem of the insufficient pressure for a 
correct service, because it is related to the maximum hydraulic capacity of the system which was optimally 
designed with the “deterministic” nodal demands. The problem of the emptying of some tanks also occurs. It could 
be reduced by selecting the optimal solutions characterized by larger tanks. 

Fig. 7 shows the same problems of pressure and minimum level violations of Fig. 6, but the inadaptability of 
temporal scheduling increases the occurrence of empty tanks even if the solutions with larger tanks are selected. In 
fact, a larger tank cannot completely solve the need of more pumping due to the increased demands. 
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Finally, the fact that the violation of the pressure for a sufficient service is not influenced by the pumping 
strategy confirms that it is related to the exceeding of the hydraulic capacity of the system, which was optimally 
designed with respect to the “deterministic” demand requests. 

 

 

Fig. 6. Test plus: constraint violations of the solutions ordered by tank cost. Scheduling of the pump states by means of tank levels 

 

Fig. 7. Test plus: constraint violations of the solutions ordered by tank cost. Temporal scheduling of the pump states 

Figs. 8 and 9 report the fraction of violations over T of the “Test minus” scenario. Fig. 8 shows that the 
adaptability of scheduling of the pump states by means of tank levels do not exclude the occurrence of an 
insufficient pressure for a correct service. The fact that the pressure violation does not occur for all the solutions is 
perhaps related to the sensitivity to the spatial variation of the demands. This is a good property to further support 
the selection of a specific solution. Fig. 8 also displays that the maximum level violations always occurs. This is 
related to the fact that, although adaptable, pumping is not optimized for the demand scenario. Fig. 9 shows the 
different behavior of the temporal scheduling when the demand request is lower. The problem of maximum level 
violation occur for all the solutions because pumping is not reduced. For the same reason, the other violations do 
not occur.  
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Fig. 8. Test minus: constraint violations of the solutions ordered by tank cost. Scheduling of the pump states by means of tank levels 

 

Fig. 9. Test minus: constraint violations of the solutions ordered by tank cost. Scheduling pump states by time 

In general, it is possible to state that strategy of scheduling by means of tank levels is much more robust and 
adaptable to the demand variations than temporal scheduling. Scheduling by means of tank levels allows to reduce 
the energy consumption, then the carbon footprint. In addition, the sensitivity analysis allows the selection of a 
solution which is further robust with respect to service pressure violation, at least when the demand requests are 
lower than those used for optimization. On the contrary, the temporal scheduling is not adaptable to the increase of 
demands and much more energy consuming, requiring for this reason the real time pumping optimization by 
forecasting the water requests. 

Finally, Fig. 10 reports the deficit of volume of the two demand scenarios, see Eq. (3), and the global mass 
balance in the tanks of the “Test minus” scenario. The deficit of volume for the “Test plus” scenario coincides with 
global mass balance. Negative values means that the water volumes increases, for each tank or globally, over T. 
Fig. 10 shows a variable deficit of volumes both for the “Test plus” and for the “Test minus” scenarios. The deficit 
of volume of the solutions could be then used as a further element to select a specific solution from the Pareto set. 
Clearly, the global mass balance of the “Test minus” scenario is always negative, although the values greatly varies 
through the solutions. Therefore, the worst and the global mass balance of the tanks are both indicators that could 
help to support decision. As for the same plot of Fig. 10 related to temporal scheduling, it is not reported here for 
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brevity. In addition, the fact that pump states remain fixed over time makes not particularly informative the tank 
mass balances varying the solutions and scenarios. 

 

 

Fig. 10. Water balance of the solutions ordered by the tank cost. Scheduling of the pump states by means of tank levels 

5. Conclusion  

The work proposed a methodology to test the robustness of the solutions of the multi-objective optimization 
asset design vs. pump scheduling. The robustness was evaluated considering two scenarios of nodal demand 
variation: (i) increased or (ii) decreased with respect to the “deterministic” scenario used during optimization. The 
two scenarios were sampled using the Latin Hypercube technique and each solution of the Pareto set was tested 
using samples. The scheduling of the pump states by means of tank levels results into a strategy that is much more 
adaptable to the demand variation and less energy consuming than the temporal scheduling of the pump states. The 
sensitivity analysis of the optimal solutions with respect to the increase/decrease of demands is a method to further 
support the selection of a specific solution from the Pareto set and to achieve an additional insight on the 
characteristics of the optimal solutions. 
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