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Objective: To investigate the potential of deep learning for automatically delineating (segmenting) laryngeal cancer
superficial extent on endoscopic images and videos.

Methods: A retrospective study was conducted extracting and annotating white light (WL) and Narrow-Band Imaging (NBI)
frames to train a segmentation model (SegMENT-Plus). Two external datasets were used for validation. The model’s performances were
compared with those of two otolaryngology residents. In addition, the model was tested on real intraoperative laryngoscopy videos.

Results: A total of 3933 images of laryngeal cancer from 557 patients were used. The model achieved the following
median values (interquartile range): Dice Similarity Coefficient (DSC) = 0.83 (0.70–0.90), Intersection over Union (IoU) = 0.83
(0.73–0.90), Accuracy = 0.97 (0.95–0.99), Inference Speed = 25.6 (25.1–26.1) frames per second. The external testing cohorts
comprised 156 and 200 images. SegMENT-Plus performed similarly on all three datasets for DSC (p = 0.05) and IoU
(p = 0.07). No significant differences were noticed when separately analyzing WL and NBI test images on DSC (p = 0.06) and
IoU (p = 0.78) and when analyzing the model versus the two residents on DSC (p = 0.06) and IoU (Senior vs. SegMENT-Plus,
p = 0.13; Junior vs. SegMENT-Plus, p = 1.00). The model was then tested on real intraoperative laryngoscopy videos.

Conclusion: SegMENT-Plus can accurately delineate laryngeal cancer boundaries in endoscopic images, with perfor-
mances equal to those of two otolaryngology residents. The results on the two external datasets demonstrate excellent general-
ization capabilities. The computation speed of the model allowed its application on videolaryngoscopies simulating real-time
use. Clinical trials are needed to evaluate the role of this technology in surgical practice and resection margin improvement.

Key Words: artificial intelligence, laryngeal cancer, laryngoscopy, narrow-band imaging, segmentation, white light
imaging.
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INTRODUCTION
Transoral surgery nowadays represents the pre-

ferred approach to treat early-stage tumors of the upper
aerodigestive tract (UADT), as it delivers sound oncologi-
cal outcomes with minor morbidity.1 This surgery is bur-
dened by a high percentage of positive margins,2,3 mainly
due to the lack of precision of current methods to deter-
mine the full extent of tumors.

Narrow-band imaging (NBI) is an optical technique
that enhances the submucosal vascularization using nar-
row bandwidth filters.4 By analyzing the NBI vascular
pattern, the otolaryngologist can distinguish normal
from cancerous tissues and enhance the identification of
tumor boundaries.5 However, this technology is subjec-
tive and requires an extensive learning curve to be
mastered.
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The application of data science to medicine is an
emerging field that leverages artificial intelligence (AI),
which can be used to automatically extract information
from endoscopy images,6 and has been applied for
computer-aided detection,7 image classification,8 and
tumor segmentation.9 Currently, the most promising AI
method for these tasks is Deep Learning (DL), which
enables computers to automatically learn from data. In
this field, semantic segmentation is a process that
involves recognizing and labeling different categories of
objects in the image, highlighting their contours with
pixel-wise masks. DL-driven margins’ delineation would
represent a valuable support in clinical practice, poten-
tially able to help clinicians better tailor the resections
and reduce the amount of residual disease after surgery.

In a previous pilot study, we developed a DL model
for UADT cancer segmentation on endoscopic images.10

Our preliminary results were encouraging despite the lim-
ited dataset and the slow computing time of the model. In
the present study, we developed a more reliable model
(SegMENT-Plus) on an extended dataset of white light
(WL) and NBI images, aiming to achieve high tumor delin-
eation performance and fast processing time to implement
it on real-time laryngeal cancer endoscopy. Furthermore,
we tested the generalizability of the model on two external
cohorts of laryngeal cancer endoscopic images.

MATERIALS AND METHODS

Data Acquisition
Videolaryngoscopies of laryngeal cancer patients performed

between 2014 and 2020 at the Unit of Otolaryngology and Head
and Neck Surgery of San Martino Hospital-University of Genova,
Italy, were retrieved. The local Institutional Review Board
approval was obtained (CER Liguria: 169/2022). Inclusion
criteria were: (1) patients with a biopsy-proven laryngeal squa-
mous cell carcinoma; (2) availability of the pre-treatment
recorded videolaryngoscopy. Exclusion criteria were: (1) low qual-
ity of the images in terms of unclear view of the lesion bound-
aries due to the presence of blur, altered exposition, or saliva
artifacts; (2) patient age less than 18 years old.

The videos were captured both in the office and in the operat-
ing room. In the office, they were performed using a flexible naso-
pharyngo-laryngoscope (HD Video Rhino-laryngoscope ENF-VH,
Olympus Medical System Corporation, Tokyo, Japan) through a
transnasal route. Patients undergoing transoral laser microsurgery
were examined pre-operatively under general anesthesia with 0�,
30�, or 70� rigid telescopes (HD camera head connected to a Visera
Elite CLV-S190 light source, Olympus Medical System Corpora-
tion, Tokyo, Japan). Both types of videolaryngoscopies were per-
formed using WL and NBI. From each videolaryngoscopy, when
available, five WL and five NBI frames with different view angles
were extracted. These frames were selected to be the most repre-
sentative of the lesion and to offer a clear view of its boundaries.
Overall, the frames obtained from microlaryngoscopy generally
appeared sharper and of higher definition. The collected images
varied in terms of resolution, with widths and heights ranging
from 768 to 1920 pixels and 576 to 1072 pixels, respectively.

These frames were annotated using CVAT annotation soft-
ware (Intel Corporation, Santa Clara, United States)11 by three
expert physicians who had a specific background of at least
5 years of training in laryngology and NBI interpretation. The
annotations resulted in a careful delimitation of the tumors’

borders creating a pixel-by-pixel mask and labeling it “squamous
cell carcinoma”: from now on these will be referred to as ground-
truth segmentations. If multiple lesions were visible, multiple
segmentations were performed to select all the laryngeal cancer
pixels in the image. If one physician was not sure about the mar-
gins’ annotation, the images were reviewed collectively by the
three experts. Finally, the frame was annotated based on the
consensus of the majority of the experts. This image dataset
(from now on referred to as the University of Genova dataset)
was finally split into a training-validation set (90% of the images)
and a test set (10% of the images) with a patient-wise distribu-
tion method so that the images from the same patients used for
the training were not included in the testing set.

Two external datasets containing laryngeal cancer images both
in WL and NBI were used to verify the generalizability of the model
(not for training). They were provided by the unit of otolaryngology
of the Spedali Civili—University of Brescia (Italy) and the depart-
ment of otolaryngology of Severance Hospital—Yonsei University,
Seoul (Republic of Korea). Both centers complied with the
abovementioned annotation policy and the two datasets were anno-
tated by a single clinician from each center, with a personal experi-
ence in laryngology and NBI image interpretation of at least 5 years.

Lastly, five unedited preoperative videolaryngoscopies of five
different patients (not used for training) from the University of
Genova were selected for testing the computational speed of the
model and simulating a real-time laryngeal cancer segmentation dur-
ing an examination. Figure 1 synthetizes the workflow of the study.

Deep Learning Model Development
and Validation

The architecture of our DL laryngeal cancer segmenta-
tion model (SegMENT-Plus) is fully described in the supple-
mental material. The model was programmed using Python
(version 3.9) in Keras (version 2.11.0) and Tensorflow (version
2.11.0). The experiments were conducted on a workstation
with a Dual Intel Xeon Gold 5222 (3.8 GHz) CPU, 128 GB
RAM, and an NVIDIA RTX A6000 GPU with 48 GB. The out-
comes of SegMENT-Plus were evaluated by comparing the
predicted segmentations with the ground-truth segmentations.
Standard evaluation metrics for semantic segmentation were
used as reported in the literature for this topic.6,12,13 A classifi-
cation of each pixel in the images as a true positive (TP), true
negative (TN), false positive (FP), or false negative (FN) was
used to derive the evaluation metrics below.

Accuracy: the percentage of pixels in the image that is cor-
rectly classified by the model.

Accuracy¼ TPþTN
TPþFPþTNþFN

Precision (also known as positive predictive value) mea-
sures the percentage of pixels correctly recognized as carcinoma
among all the pixels that the model has predicted as carcinoma.

Precision¼ TP
TPþFP

Recall (also known as sensitivity) measures the percentage
of pixels correctly recognized as carcinoma among all the pixels
that should have been recognized as carcinoma.

Recall¼ TP
TPþFN

Laryngoscope 134: June 2024 Sampieri et al.: Real-Time Laryngeal Cancer Segmentation

2827

 15314995, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lary.31255 by C

ochraneItalia, W
iley O

nline L
ibrary on [10/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Intersection over Union (IoU): is a metric that evaluates
the similarity between the predicted segmentation and the gro-
und truth segmentation (Supplemental Figure 1). It measures
the proportion of the intersection of the predicted and ground
truth segmentations with respect to their union:

IoU¼ TP
TPþFNþFP

Dice similarity coefficient (DSC) is calculated as the ratio of
twice the intersection of the predicted and ground truth segmen-
tation and the sum of the areas of the predicted and ground truth
segmentations.

DSC¼ 2TP
2TPþFNþFP

As the most comprehensive representatives of a segmenta-
tion performance, DSC and IoU were selected as the primary
outcome for statistical comparisons.

A standard metric for evaluating the inference speed of a
DL model is frames per second (fps), which is defined as the
number of frames of a video processed within a second. Since

videolaryngoscopies are generally acquired with an image rate
of 25 fps, an algorithm with a median processing time of
around 25 fps is considered to be compatible with real-time
implementation.14,15

Comparison with Human Physicians
To better evaluate the efficacy of SegMENT-Plus, we com-

pared its segmentation performances with those of human phy-
sicians. A subset of 100 images from the University of Genova
testing dataset was selected to be particularly representative
of the task. The annotations were reviewed collectively by
three experts. This subset was used to compare the perfor-
mance of SegMENT-Plus with that of two human physicians,
who were a second-year otolaryngology resident (junior resi-
dent) and a fourth-year resident (senior resident). These physi-
cians were asked to independently annotate every laryngeal
cancer image of the subset. Both of them were previously
trained in the use of the annotation software. They were also
familiar with endoscopies of the UADT and with NBI. Their
annotations were analyzed with respect to the ground truth
and the resulting IoU and DSC were computed. Finally, these
results were compared with those from SegMENT-Plus.

Fig. 1. Workflow diagram of the study. IoU, Intersection over Union; DSC, dice similarity coefficient; FPS, frames per second; valid, validation.
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Statistical Analysis
Categorical variables (type of sets, gender) were summa-

rized by counts and percentages, while continuous variables (age,
DSC, IoU, Recall, Precision, Accuracy) were reported as
medians � interquartile range (IQR: 75th Q–25th Q). After

performing the Shapiro–Wilk normality test, differences in the
distribution of continuous variables between two independent
groups were tested using the Mann–Whitney U test. Similarly,
differences in distributions of continuous variables among more
than two independent groups were assessed with Kruskal–Wallis

TABLE I.
Composition of the University of Genova LC Image Dataset. The Subdivision of Frames in Training-Validation and Test Datasets is Reported.

Dataset distribution Type of examination No. patients No. images Imaging No. images No. images

Training-validation In-office 435 1208 WL 1884 3539

Intra-operative 250 676

In-office 411 1153 NBI 1655

Intra-operative 206 502

Test In-office 45 129 WL 208 394

Intra-operative 26 79

In-office 41 122 NBI 186

Intra-operative 20 64

Note: The Acquisition setting (in-office vs. intra-operative) and imaging modality (white light = WL vs. Narrow-Band Imaging = NBI) are described.

Fig. 2. Testing video frames extracted from five videolaryngoscopies. Each row represents a different video: the pictures in the panel on the
left are white light or narrow-band imaging frames belonging to the original video, while the pictures in the panel on the right are the same
frames after the elaboration with the deep learning model.
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TABLE II.
Results of SegMENT-Plus on the University of Genova testing dataset and on the two external testing datasets (University of Brescia and

Yonsei University) are reported as median (first and third quartiles).

Dataset DSC IoU Recall Precision Accuracy FPS

University of Genova 0.83 (0.70–0.90) 0.83 (0.73–0.90) 0.88 (0.74–0.96) 0.85 (0.70–0.94) 0.97 (0.95–0.99) 25.6 (25.1–26.1)

University of Brescia 0.81 (0.68–0.88) 0.81 (0.70–0.87) 0.90 (0.70–0.98) 0.82 (0.91–0.66) 0.96 (0.92–0.98) 26.2 (25.0–26.1)

Yonsei University 0.81 (0.55–0.89) 0.84 (0.68–0.89) 0.92 (0.72–0.98) 0.76 (0.49–0.86) 0.99 (0.97–0.99) 25.5 (25.4–27.0)

Abbreviations: DSC, dice similarity coefficient; FPS, frames per second; IoU, Intersection over Union.

Fig. 3. Boxplots representing the segmentation performance of SegMENT-Plus on the three testing datasets. The horizontal bar inside the box
represents the median value (also reported in numbers), the “x” represents the mean, and the box represents 50% of the distribution within
the 1st and the 3rd quartiles. DSC, dice similarity coefficient; IoU, Intersection over union.

Fig. 4. Examples of SegMENT-Plus automatic segmentation of laryngeal carcinoma. The panel on the left reports four examples from the Uni-
versity of Brescia dataset. Frame #1 and #2 show a left and a right vocal cord carcinoma, respectively, while Frames #3 and #4 represent two
different anterior commissure carcinomas. The panel on the right reports four examples from the Yonsei University dataset. Frame #5 repre-
sents a left vocal cord cancer, Frame #6 shows a commissural carcinoma, Frame #7 is about a right false vocal fold carcinoma while Frame
#8 represents a right true vocal cord carcinoma. Red segmentations represent the ground truth provided by the experts, while green annota-
tions are the areas predicted by the model. DSC, dice similarity coefficient; IoU, intersection over union; WL, white light; NBI, Narrow-Band
Imaging.
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test. In case of significant differences in the latter test, post-hoc
multiple comparisons using Dunn’s test were performed
adjusting according to Bonferroni’s method to control for the
inflated Type I error. A two-sided p < 0.05 was considered signifi-
cant. Statistical analysis was carried out using Python version
3.9 (packages scipy.stat and statmodels version 0.13.2).

RESULTS
The videolaryngoscopies of 557 patients examined at

the unit of otolaryngology of IRCSS San Martino hospital,
University of Genova were retrospectively retrieved. There
were 485 (87.1%) males and 72 (12.9%) females with a
median age of 67.0 � 7. From these videolaryngoscopies, a
total of 3933 images of laryngeal cancer were extracted to
compose the image dataset for SegMENT-Plus. These frames
were divided as follows: 3539 (89.9%) frames composed the
training-validation set, while 394 (10.1%) frames were allo-
cated to the test set. The characteristics and distribution of
the University of Genova dataset are reported in Table I.

On the University of Genova test set, the model
achieved median values of DSC = 0.83 � 0.20, IoU =
0.83 � 0.17, Recall = 0.88 � 0.22, Precision = 0.85 � 0.24,

Accuracy = 0.97 � 0.04 and median inference speed of
25.6 fps. A further comparison was made by analyzing
separately the WL and NBI images of the testing set.
Although the number of frames in the WL dataset was
larger (2092 frames vs. 1841 frames), no significant
differences in the model performance were noticed between
WL and NBI images in terms of DSC = 0.81 � 0.20 and
0.81 � 0.19 respectively, p = 0.06; and IoU = 0.83 � 0.14
and 0.82 � 0.16 respectively, p = 0.78.

Finally, SegMENT-Plus was tested on five previously
unseen videolaryngoscopies. The characteristics of the five
testing videos and the computational time of the algorithm
are reported in Supplemental Table 1. Examples of the
original video frames and the corresponding ones
processed by the DL model are shown in Figure 2 and two
representative videos are available (Videos S1 and S2).

External Cohort Datasets
Two external datasets were used to test the general-

izability of SegMENT-Plus. The University of Brescia
dataset consisted of a total of 200 images (WL = 48

Fig. 5. Resident physicians’ and SegMENT-Plus segmentation performances are represented with boxplots and kernel density estimates
(KDE) curves. In the left figures, the boxplots are presented: the vertical bar inside the boxes represents the median value, while the box repre-
sents 50% of the distribution within the 1st and the 3rd quartiles. KDE curves, which are depicted on the right-hand side, visually illustrate how
the outcomes scores of each rater tend to concentrate around specific values within the distribution. DSC, dice similarity coefficient; IoU,
Intersection over union; DL, deep learning model SegMENT-Plus.
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NBI = 152) from 146 patients (age = 65.0; males = 122),
while the Yonsei University dataset comprised 156 frames
(WL = 119; NBI = 37) from 63 patients (age = 64.0;
males = 58). No significant differences were seen among the
three sets for DSC (p = 0.051), and for IoU (p = 0.066).
Median real-time inference speed was maintained for both
cohorts (26.2 and 25.4 FPS, respectively). Table II summa-
rizes the segmentation outcomes on the three test datasets.
Figure 3 shows the boxplots of SegMENT-Plus performances
on the three test sets. Figure 4 shows some automatic seg-
mentation examples for the external validation datasets.

Comparison with Human Physicians
The result of the junior resident, senior resident,

and SegMENT-Plus on a subcohort of 100 images,

in comparisons with the ground truth annotations, were
the following: senior resident, DSC = 0.91 � 0.11, IoU =
0.91 � 0.14; junior resident, DSC = 0.88 � 0.14,
IoU = 0.88 � 0.11; SegMENT-Plus DSC = 0.89 � 0.12,
IoU = 0.89 � 0.09. Based on the Kruskal–Wallis test, no
significant differences were observed between the seg-
mentation performances of the three groups for DSC,
p = 0.057. For IoU, the Kruskal–Wallis test resulted in a
p = 0.046. Pairwise comparisons with the post-hoc Dunn’s
test corrected with Bonferroni’s method were not able to
find any statistical differences in the three groups (Senior
vs. Junior, p = 0.07; Senior vs. SegMENT-Plus, p = 0.13;
Junior vs. SegMENT-Plus, p = 1.00). Overall, the closest
p value to a statistical difference was among the two resi-
dents, while SegMENT-Plus did not differ significantly
from both physicians. The Kernel density estimation

Fig. 6. Examples of the segmentations performed by the human physicians and SegMENT-Plus on the University of Genova test dataset. The
column on the left shows the original frames, the column in the middle reports the annotation performed by the human physicians, and in the
column on the right the DL model prediction is added. Blue = ground truth; Red = senior resident; black = junior resident;
green = SegMENT-Plus.
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curves and box plots are reported in Figure 5. Some
graphical examples of the model’s segmentation outputs
compared to residents’ and the ground truth ones are
reported in Figure 6.

DISCUSSION
The precise delineation of surgical margins, espe-

cially for transoral approaches, represents a critical point
in the treatment of laryngeal cancer. Indeed, the persis-
tence of tumoral residue after this kind of procedure still
represents a frequent issue.3,16,17 Several technologies
have been employed to enhance the visibility of malig-
nant tissue on the UADT mucosa (i.e., bioendoscopy,
autofluorescence, contact endoscopy), yet each of these
tools suffers from specific drawbacks that have limited
their use.18

Among those, NBI represents the most used and
studied.4,19,20 During surgery, NBI can provide accurate
real-time tumor margin information and has been proven
to reduce the rate of positive margins in laryngeal trans-
oral surgery.21 However, its reliability is hampered by
conditions that alter the vascularization of the larynx,
and its widespread adoption has been limited as the
interpretation of the vascular patterns requires specific
skills and a dedicated learning process.22 Consequently,
the introduction of computer-aided systems based on AI
models able to detect cancerous tissue and identify its
extension may represent a solution to this issue.

In the present study, we describe the application of a
new semantic segmentation DL model able to automati-
cally delineate laryngeal cancer from endoscopic images
and videos. The model called SegMENT-Plus, is an
improved version of our previous algorithm that demon-
strated high segmentation capabilities on limited
datasets of laryngeal, oral cavity, and oropharyngeal car-
cinomas.10 SegMENT-Plus architecture was modified and
trained on a larger dataset of laryngeal endoscopic
images, to increase segmentation accuracy without
compromising the computing time. When compared to
our previous experiment,10 the current DL model showed
increased segmentation outcomes (DSC = 0.827 vs. 0.814;
IoU = 0.826 vs. 0.686; accuracy = 0.972 vs. 0.969, respec-
tively). Moreover, the training on a larger dataset (3146
vs. 547 images) allowed it to obtain robust performances
even when tested on external datasets. Furthermore,
with the current experiment hardware, SegMENT-Plus
achieved a computing speed feasible for real-time
implementation.

A possible evolution of semantic segmentation is
instance segmentation, which generates a segmentation
mask for every single object detected in the image dis-
tinguishing among different classes. Our group tried to
explore this task discovering that the laryngeal and hypo-
pharyngeal subsites are easier to process by the instance
segmentation model compared to oral cavity and orophar-
ynx.23 Nevertheless, contrary to the present work, the
number of images was limited (test set n = 27), and fur-
ther studies are needed to corroborate those findings. As
this is a new research field, the existing literature in this
specific area is quite limited. To the best of our

knowledge, the only similar work is the one by Ji et al.24

In this article, the authors developed a DL model able to
delineate laryngeal leukoplakia from laryngoscopic
images, achieving an average DSC of 0.78 and an IoU of
0.83 on a smaller dataset of 649 WL laryngeal frames.
That said, leucoplakias appear as more heterogeneous
lesions when compared to laryngeal cancer, as they are
characterized by high contrast margins, thus preventing
a precise comparison.

Interestingly, in the present article, when Seg-
MENT-Plus was tested separately on WL and NBI
frames, no difference in the segmentation performance
was noted. This shows how the model could overcome the
difficulties in analyzing the complex NBI vascular pat-
tern, approaching human experts’ performances (ground
truth). Therefore, AI might enhance the use of NBI even
in less experienced centers by improving the accuracy of
lesion detection and margin identification, regardless
of the operator’s familiarity with this technique.

The implementation of AI for automatic segmenta-
tion of laryngeal cancer in endoscopy has the potential to
significantly impact clinical practice in the future. First,
these models can improve the accuracy of tumor bound-
aries delineation, reducing human error and discrepan-
cies in positive margins rates among different centers.
Secondly, automatic segmentation can enhance both the
surgical and non-surgical treatment of laryngeal cancer.
In the first case, it can aid in surgery planning, allowing
for a more precise surgical resection and reducing the risk
of complications. In the second scenario, it can be used to
objectively monitor treatment response over time,
enabling a more precise assessment of treatment efficacy
combining information obtained by radiology assessments
and endoscopic evaluations. Finally, it can be used to
automatically collect large volumes of data from multiple
endoscopies, enabling more comprehensive research on
laryngeal cancer.

Indeed, models like SegMENT-Plus are not intended
to replace the clinician but rather to represent a support
in decision-making, offering potential for standardization
toward more equitable treatment. At the moment, as
shown by the results obtained from the comparison with
human physicians, the model did not achieve an identical
segmentation as the expert clinicians, but its results were
rather similar to those of a last year resident, suggesting
that further improvements in the model’s architecture
and in the training dataset are necessary.

This study has limitations that should be acknowl-
edged. First, the training and testing datasets are still
limited. They should be increased and enriched with
other external images, such as frames gathered from dif-
ferent video sources or with different enhancing filter
modality (other than NBI). Second, the ground truth
annotations lack external cross-validation while inter-
and intra-annotators’ reliability was not assessed in this
article. This aspect is particularly relevant in this field
and should be addressed in future studies in view of clini-
cal trials. Finally, the retrospective nature of the work
based on a selection of high-quality images represents an
intrinsic bias that should be corrected in future works
with a prospective evaluation of the technology.
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CONCLUSION
The proposed DL segmentation model was able to

accurately delineate laryngeal cancer boundaries in
endoscopic images and videos. The high diagnostic perfor-
mances were also maintained when tested on two different
external datasets demonstrating robust generalization
capabilities. The fast computation speed of the model
allowed us to successfully apply it on videolaryngoscopies
showing potential for real-time use. Based on this data, a
clinical implementation is feasible for testing the model’s
benefit in a real-life setting.
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