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Abstract: Antioxidant-rich dietary regimens are considered the best practice to maintain health,
control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements
are self-prescribed and purchasable over the counter by healthy individuals for the purpose of
beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these
compounds need to be better explored. Since redox-modulating activity of these compounds appears
to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals
is very attractive even for healthy people. This review focuses on redox- and immunomodulating
nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent
and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM
has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is
characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence,
antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here.
A greater number of such multi-player nutraceuticals might be identified using DM animal models
and validated in clinical settings on genetic and environmental high-risk individuals.
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1. Introduction

In Western countries a gradual change in native eating habits, mainly based on fresh
and poorly processed foods, occurred through the second half of the twentieth century
along with an overall socio-economic rise and globalization. In recent years, balanced
nutrition has been established as a principle for healthy life [1]. Nevertheless, people’s
eating habits still include excessive intake of sugars and fats. Consequently, they often
display dysregulation of metabolism and cardiovascular function, known prodromes of
chronic auto-inflammatory conditions. Food is regarded as a main environmental factor
affecting differentiation and function of the immune system [2], and a diet naturally rich
in antioxidant compounds—mainly based on edible vegetables and fruits—is considered
the finest to maintain a healthful status and avoid getting diseases [3]. Indeed, nowadays
antioxidant compounds are reputed “nutraceuticals”, i.e., food supplements providing a
physiological advantage through a mechanism of action, for doses 2–10 fold higher than
the recommended daily allowance [4]. However, some of these compounds perform as
modulators of the redox potential of the surrounding milieu and are conditioned by it.
Nevertheless, they are developed and marketed as key components of a balanced diet and
as self-prescribed food supplements available over the counter. Such practice provides a
larger intake than ever observed of these compounds for the purpose of beneficial effects
for healthy individuals [5]. Furthermore, certain nutraceuticals appear to modulate the
immune system, directly and/or indirectly. Recently, a large series of molecules and com-
pounds present in food and plants has been discovered that may show interesting activities
in humans [6]. Nonetheless, the guidelines of the American Diabetes Association do not

Antioxidants 2023, 12, 132. https://doi.org/10.3390/antiox12010132 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12010132
https://doi.org/10.3390/antiox12010132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-6910-0160
https://doi.org/10.3390/antiox12010132
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12010132?type=check_update&version=1


Antioxidants 2023, 12, 132 2 of 22

provide any specific recommendation regarding the use of supplements or functional foods
for diabetic patients while encouraging the consumption of products naturally rich in
polyphenols and antioxidants [7]. Hence, the effectiveness, safety, and correct intake of
these compounds need to be better explored. This review focuses on redox-modulating nu-
traceuticals in diabetes. This disease is paradigmatic of latent and predictable pathogenetic
inflammatory processes representing an opportunity for preventive intervention with nu-
traceuticals. The beneficial and hazardous role of nutraceuticals in subclinical conditions
sustained by activated or suppressed immunity is critically exposed and discussed.

2. Diabetes as an Archetypical Auto-Inflammatory Disease

Diabetes is an autoimmune disease characterized by damage and disruption of Langer-
hans’ β cells in the pancreas. These cells produce insulin, a peptide hormone crucially
involved in keeping the glucose level in the blood within the physiological range (normal
glycemia) by allowing receptor-mediated glucose uptake by cells and by inhibiting liver
gluconeogenesis. Pancreatic β cells are intrinsically characterized by low scavenging antiox-
idant enzymes and cannot efficiently counteract oxidative stress [8]. In fact, unrestrained
free radicals determine β cells’ destruction, through apoptosis, necrosis, and improper
folding of their proteins including insulin. Macrophages are able to massively produce and
release reactive oxygen species (ROS) and chemical mediators of inflammation. They are ini-
tiators of the subclinical inflammation process of pancreatic islets (insulites or, improperly,
prediabetes), to which other cell types also participate. During that early phase, pancreatic
(neo)antigens are exposed by professional antigen presenting cells (APC)—macrophages
and dendritic cells (DC)—to specific T cells. Concertedly, DC and T cells activate specific
antibody-producing B-cells, which had been likely primed in the course of antecedent
responses to external pro-oxidant environmental factors. Thereof, they mount the acute
cellular and humoral autoimmune response from which a detrimental chronic immune re-
sponse might set off [9], if not controlled. Histological abnormalities of the pancreatic islets
are diagnostic of full DM, although not handily in clinical practice and research. Instead,
metabolic changes occur as early as two years before the acute onset of Type 1 diabetes
(T1D) and are accompanied by a reduction of serum peptide c, a secondary product of
the enzymatic conversion of inactive pro-insulin into active insulin. Loss of critical mass
and histology of insulin-secreting cells, fasting hyperglycemia, and insulin resistance are
secondary events to immune system activation and autoantibody generation [10,11]. T1D
is determined by complex interactions between genetic and environmental factors through
mediation of the innate and adaptive immune system leading to destruction of the pancreas
and profound metabolic changes. Unmodifiable genetic signatures have been associated
with a higher risk of T1D onset and development in siblings and monozygotic twins,
and in subjects carrying definite human leukocyte antigen (HLA) involved self-antigen
presentation (class I) or non-self-antigens (class II), as well as some non-HLA loci [11].

Remarkably, sub-clinical and clinical phases of both T1D and T2D can be evidenced
by measuring well-assessed and interrelated biological markers, such as glycemia (glucose
concentration in blood), and redox status. Indeed, in fasting conditions, glycemia over
100 mg/dL and up to 125 mg/dL, is a tag of early stages of disease (prediabetes) and is
diagnostic of overt diabetes for values higher than 126 mg/dL. Moreover, after a loading
curve test (oral glucose tolerance test) glycemia reaches very high levels diagnostic of
reduced glucose tolerance in T2D for values >140 mg/dL or overt T1D for values over
>200 mg/dL. Pathogenic surpluses of glucose in the blood are also detectable as glycated
hemoglobin HbA1c >48 mmol/mol creatinine (>6.5%), another biomarker of diabetes [11].

One or more autoantibodies—namely anti-native insulin autoantibodies (IAA), islet
cell antibodies (ICA), anti-glutamic acid decarboxylase antibodies (GADA), and anti-
tyrosine phosphatase autoantibodies (IA-2A)—are generated early during the sub-clinical
phase, even earlier than dysglycemia occurs [12]. They also represent accelerators of pathol-
ogy and markers of its severity and progression. Notably, the higher the number of different
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circulating autoantibodies, the higher the relative risk in children, according to a 10-year
long cohort study [13].

Type 2 diabetes (T2D) is a systemic condition called metabolic syndrome that is char-
acterized by insulin resistance in adulthood, rather than destruction of β cells in childhood.
Early T2D pathogenesis occurs in adipose tissue, where resident M1 macrophages become
activated upon pro-oxidant stimuli and sustain local inflammation [14] and oxidative
stress [15]. Afterward, the pancreas is reached by inflammatory mediators and ROS—
generated in fat tissue—that cause islet β cell damage. However, the overall pancreatic
function is maintained, and insulin is overproduced. Hyperinsulinemia downregulates
glucose uptake producing the so-called insulin resistance through intracellular signaling
pathways that are not yet completely understood. Meanwhile, endogenous synthesis of
glucose by hepatocytes is restored and lipolysis is activated. Next, free fatty-acids are
increased in blood, and adipose tissue is accumulated producing endocrine factors (leptin
and resistin) that block carbohydrate metabolism [16]. Hyperglycemia develops when
insulin secretion can no longer compensate for insulin resistance, originating a detrimental
loop of insensitivity and dysfunction of the β cells. Notably, stimulation of the insulin
receptor on T-cells potentiates their activity in inflammation and infection [17]. The patho-
genetic changes last several years and are influenced by pro-inflammatory food regimens,
sedentary lifestyle, and excess of visceral and abdominal fat. T2D is typically diagnosed
in inactive and/or elderly people. Relative risk increases by age and is most prevalent in
adults (>90%) and over-65 patients (>33%). T2D is also epidemically increasing among
obese children [18]. Insulin resistance is also observed in low-birth-weight children of obese
mothers. Gestational diabetes (diagnosed for the first-time during pregnancy) occurs more
frequently in overweight, hyper-insulinemic, insulin-resistant or lean insulin-deficient
women. These women are subjects at high risk of developing T2D in life [18].

Recently, Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) infection
has been shown to impair insulin/insulin growth factor (IGF) signaling pathway genes in
the host pancreatic cells attributed to interferon regulatory factor 1 (IRF1) [19]. This finding
sustains the hypothesis of the viral origin of DM and also shows that infected people might
be at higher risk of developing DM.

Glucose and oxidative stress are determinants of the immune response signature in
these inflammatory diseases, as described next.

3. Experimental Study Models of DM in the Context of Redox and Immunomodulatory
Effects of Nutraceuticals

In vivo models (two mouse models and one rat model) have been developed that well
recapitulate the pathogenesis and pathology characteristics of DM: the NOD (non-obese
diabetes—genetically engineered) mouse model and the pharmacologically-induced obese
rat model, widely used to elucidate mechanisms and test drugs. NOD recapitulate the
immunopathology of human T1D as autoantigen recognition by major histocompatibility
(MHC) II variants affecting the presentation of islet-derived antigen to T cells. Hence, it is
also a model of prediabetic condition. NOD has revealed the role of environmental factors
in the prevention and development of this disease [20]. The second model is induced by
streptozotocin (STZ), an indirect DNA-alkylating compound acting via xanthine oxidase.
Fast induction of T1D is achieved in STZ-induced mice fed with a high-fat diet totaling 37%
of daily caloric intake [21]. Notably, both murine models are characterized by increased
oxidized oxygen and nitrogen species. Immunoregulatory properties of pro/postbiotics
and nutraceuticals in diabetes have been investigated mainly in vitro and in pre-clinical
studies using these models.

A third most used model recapitulates the physiopathology of T2D, which can be
induced in healthy rats by feeding them with a high-fat diet and sucrose for two weeks [22].
In addition, obese mice are used to study insulin sensitivity and resistance [23].

Extremely heterogeneous cell lines are used as in vitro study models. Among these,
there are primary peripheral blood (PB)-derived human macrophages, neutrophils, lym-
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phocytes, and human umbilical vascular endothelial cells (HUVEC). Moreover, a varied
panel of established cell lines has been examined, such as Henrietta Lacks’ (HeLa) cervical
carcinoma, human interleukin-2 (IL-2)-dependent natural killer (NK)92, macrophage-like,
Abelson leukemia virus-transformed cell line derived from BALB/c mice (RAW), C57/BL6
murine immortalized microglial BV-2, murine monocyte-like U937, and human immortal-
ized T cells leukemia Jurkat.

4. M1 Macrophages Initiate and Generate Oxidative Stress and Cell Damage

Endogenous free radicals of oxygen are produced as unavoidable side products of
oxidative phosphorylation (OXPHOS) for de novo biosynthesis of long-chain fatty acids
(FAS). Recently, endogenous ROS have been proposed as regulators of immune cell func-
tion, controlling their differentiation and proliferation. Indeed, different functional subsets
of innate cells appear to be conditioned by extracellular and intracellular oxidative stress, a
hallmark of inflammation, and display distinct metabolic profiles. M1 Macrophages are
involved in inflammatory response to eliminate environmental offenses, such as viruses
and pollutants, primarily by releasing ROS and subsequently by phagocytic activity and
degradation. Free radicals can directly promote the activation of redox-dependent tran-
scription factor NF-κB. In macrophages, this mechanism leads to the production and release
of crucial pro-inflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF)-α. The high energy demand to accomplish these activities relies on the aerobic
glycolytic pathway in normal oxygen conditions. Any imbalance of intracellular ROS and
the phagocytic activity itself leads to the release of ROS in the extracellular milieu, thereby
conditioning the activity of other bystander cells. Free radicals induce inflammation, cy-
tolysis, and apoptosis which constitute the complete signal for activation of autoreactive
T-cells. Ultimately, such alteration of the redox potential is considered a factor promoting
diabetes. Indeed, in pancreatic islets, oxidative stress activates the nucleotide-binding
domain and leucine-rich repeat (NLR) pyrin domain containing 3 (P3) (NLRP3) (via release
of the redox-sensitive inhibitor of inflammasome activator TRX1, TXNIP) that cleaves
pro-inflammatory IL-1β precursor into its active form. Mitochondrial (DNA) oxidation
products can do so, too. The activation of redox-sensitive transcription factor α (HIF-1α)
initiates the third step of expression of pro-inflammatory cytokines IL-1β and TNF-α that,
in turn, positively controls glycolysis amplifying M1 activation and ROS production. ROS
can also stimulate IL-1β production through the biosynthesis and stabilization of GSH
(from serine-derived glycine). In low oxygen conditions, M1 expresses inducible nitric
oxide synthase (iNOS) and produces high levels of nitric oxide (NO) and reactive nitrogen
species (RNS). Furthermore, NO can downmodulate the expression of transcription factor
Foxp3, which is specific for induction of regulatory T cells (Treg) and lessen priming of
autoantigen-specific Treg [24]. Under specific conditions, M2 cells can revert this scenario.
In fact, M2 are important players in inflammation resolution and healing processes, also
exerting an inhibitory activity on M1 cells. They function mainly through the low oxygen-
requiring pathway, OXPHOS, and produce low ROS. Anti-inflammatory myeloid-derived
suppressor cells (MD-SC), from which pro-inflammatory M1 cells also derive, diverge from
them for metabolic activity and ROS profiles, such as resting macrophages [25]. In healthy
individuals, MD-SC differentiate into pro-tolerogenic regulatory DC (DCreg) secreting
IL-10, under the stimulus of GM-CSF growth factor. If prompted by G-CSF, they become
DC2 which prime differentiation and activation of Th2 cells and are able to contrast Th1
sustaining harmful inflammatory response to autoantigens [26] (Table 1).
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Table 1. Redox parameters of immune cells experimentally tunable by nutraceuticals.

Immune Cell Type Subset Metabolic Pathway Redox Potential
(Extracellular)

Redox Potential
(Intracellular) ROS-Sensor Genes Antioxidant Enzymes Nutraceuticals

MACROPHAGES
(innate immunity)

M1

• GLYCOLYSIS
• (AEROBIC)
• FAS
• PPP
• OXPHOS

Inflammation/
ROS High RNS

• HIF-1α
• NLR-P3
• NRF-2
• TRX-1

• CATALASE
• GSH
• SOD

• ISOFLAVONS
• MANGIFERIN
• MARESIN-1 §
• PUFA
• SAPONINS
• SFN #
• SQUALENE
• β-SYTOSTEROL *

M2
• FAO
• OXPHOS

No influence No free radicals
Itaconate
(anti-inflammatory
metabolite)

None

• MARESIN-1 §
• SAFFRON
• SFN #
• β-SYTOSTEROL *

T CELLS
(adaptive immunity)

NAIVE
(Th0) • OXPHOS Quiescent status Not described, yet

MEMORY
(mTh1) • FAO No influence

Low ROS

• HIF-1α
• IKK
• KEAP-1
• NRF-2

• CATALASE
• GSH
• SOD
• NADPH

Not described, yet

EFFECTOR
(helper, Th1eff)

• GLYCOLYSIS
(ANAEROBIC)

• FAS
• PPP

Low
redox potential
N GSH: GSSG

• BETULINIC
ACID

• ERYTHRODIOL
• MARESIN-1 §
• MOE ˆ
• PROBIOTICS
• PUFA
• RESVERATROL
• SCFA &
• SFN
• URSOLIC ACID

REGULATORY
(Treg)

• FAO
• OXPHOS

High
redox potential
HGSH: GSSG

High ROS
• FOX-P3
• HIF-1α (LOW) NADP

• CURCUMIN
• ECG
• EGCG
• MARESIN-1 §
• MOE ˆ
• SCFA &

Nutraceuticals showing a pleiotropic activity are marked with unique symbols (§: marensin-1, #: SNF, *: β-sytosterol, ˆ: MOE, &: SCFA) placed on the right side of the name.
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5. Glucose and Oxidative Stress Determine the Metabolic Signature of T Cell Function

Following activation and differentiation, pro-inflammatory T cells are distinguished
from anti-inflammatory Treg based on their metabolic signatures. Distinct metabolic pro-
grams control the development of an effective and balanced immune response determined
by the differentiation status (naïve or memory) and effector profile (Th1, Th17, or Treg).

Glucose controls the development of an effective and balanced immune response.
Anaerobic glycolysis regulates glucose uptake, activation, and differentiation of CD4+ T
cells. Inflammatory Th1 and autoimmune Th17 cells, which share some metabolic regu-
lators, are energetically sustained by high glycolytic activity. Instead, Treg cells, which
are regulated differently, do not need anaerobic glycolysis to work. Indeed, the glycolysis
inhibitor rapamycin promotes the generation of functional Tregs in vitro, preventing allo-
graft rejection in vivo. Interestingly, the negative regulation of thioredoxin system (TRX) 1,
through inhibitor TXNIP, restrains Teff cell proliferation and inhibits glucose transporter
1 (GLUT1) expression, hence hampering glucose metabolism. Glucose uptake and aero-
bic glycolysis are restored in Teff upon engagement of the immune synapse, CD28 and
TCR, and downmodulation of TXNIP (Figure 1) [2,27]. GLUT1 expression and glycolysis
increase in response to ROS through NF-κB signaling. Insulin receptor (INSR)-deficient T
cells cannot mount an anti-viral response in vivo, but stimulation of the INSR boosts T-cell
immunity in inflammation and infection [18] (Figure 1).
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Figure 1. ROS-oriented immunometabolism proliferation and differentiation of T cells.

Naïve T cells (Th0), the precursors of functional T cells, are quiescent and non-
biosynthetic cells receiving energy supply and maintaining redox homeostasis based on
OXPHOS. Extracellular low redox potential (high GSH:GSSG ratio) and reducing condi-
tions (APC-derived cystine, Cys2) are activation signals for naïve T cells that differentiate
into T cells requiring anaerobic glycolysis, low level of intracellular ROS maintained by
electron transport chain (ETC), and pentose phosphate pathway (PPP) for fatty acid synthe-
sis (FAS) to sustain cell growth and maintain redox homeostasis. They become activated
when intracellular reducing conditions occur. In effect, ROS, reduced nicotinamide adenine
dinucleotide phosphate (NADPH), and thioredoxin (TRX), promote proliferation of T cells
which upregulate IL-2 receptors, and activate pro-inflammatory transcription factor NF-
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κB and NLRP3 inflammasome. Instead, fatty acid oxidation (FAO) is critical to promote
(proliferating) memory T cells (Figure 1, Table 1).

Oxidative stress is required for the modulation of T cell effector functions. In fact, T
cells have ROS-sensor/binding nuclear transcription factors HIF-1α and Iκ kinase (IκK),
directly controlling cytokine gene expression, and Kelch like ECH-associated protein 1
(KEAP-1)-controlling antioxidant enzyme expression. HIF-1α is crucial for the commit-
ment of naïve cells toward Treg or Teff cell programs, respectively, depending on its low
or high expression. Its upregulation also favors Th17 differentiation through increased
transcription factor RAR-related orphan receptor gamma (ROR-γ), as well as the glycolytic
shift of macrophage and NF-κB activation in low oxygen conditions. Instead, T regulatory
cells are suppressed by HIF-1α. A high redox potential environment triggers naïve T cells
to become regulatory T cells characterized by both oxygen-dependent FAO and OXPHOS
(Figure 2), producing high amounts of ROS able to stabilize their specific transcription
factor, FoxP3, if HIF-1α is low (Figure 1, Table 1). It appears likely that subsets of adaptative
immune cells can be reprogrammed by antioxidant and NF-κB inhibiting substances to
acquire anti-inflammatory properties [28]. Redox components of the thioredoxin (TRX)
and glutathione (GSH) systems, as well as the transcription factor NRF2, are crucial regu-
lators of intracellular redox potential and lineage commitment of immune cells. Recently,
endogenous ROS has been proposed as a regulator of differentiation and proliferation of
immune cells. This condition might arise from de novo biosynthesis of long-chain fatty
acids (FAS) during which endogenous free radicals of oxygen are generated as unavoidable
side products of oxidative phosphorylation (OXPHOS). ROS, TRX, and NADPH, produced
through the pentose phosphate pathway (PPP), maintain redox homeostasis and promote
inflammation sustained by NF-κB and NLRP3 inflammasome responses, which are essen-
tial for the proliferation of activated effector T cells. Instead, fatty acid oxidation (FAO) is
critical to promote functional memory cells, which, in turn, are sustained by Teff which
upregulate IL-2R. Meanwhile, NADPH is the upstream electron donor for thioredoxin
(non-oxidative dNTP biosynthesis) and GSH (ROS scavenger), peroxiredoxins (hydrogen
peroxide scavengers), glutaredoxins (GRX), and glutathione peroxidase.

The GSH system quenches/scavenges ROS, supports IL-1β expression in macrophages,
primes Teff cells, and prevents ferroptosis of CD8+ memory T cells, whereas it limits serine
metabolism in inhibitory Treg cells. Heightened metabolic activity in activated T cells
results in ROS production providing the so-called “third signal” for full activation of T cells.
However, excessive and/or prolonged ROS signaling in T cells results in altered metabolic
pathways and impaired inflammatory responses.

Scavenging ROS during naïve T cell activation blocks terminal differentiation and
favors the generation and persistence of long-lived memory T cells with stem-cell like
properties.

Indeed, low levels of ROS originating from ETCs/OXPHOS are required for the
nuclear factor of activated T cell (NFAT) activation and subsequent IL-2/IL-4 production
and antigen-specific Theff activation and proliferation. Hence, the extracellular redox
potential determines the differentiation lineage of immune cells, each having a distinctive
functional property mediated by the production of a defined subset of cytokines [29].
Notably, once the immune cell subset commitment has been established, its functional
behavior is not easily tunable or switched off by external interventions since, at that point,
cells work with their own metabolic pathway/endogenous ROS and become resistant to
extracellular redox conditions. As an example, autoimmune actively proliferating CD4+ T
cells from patients with rheumatoid arthritis (RA), use glucose and the Pentose Phosphate
Pathway (PPP) to generate intracellular reducing conditions (NADPH) and low ROS levels
that keep the inflammatory condition going. However, ROS have been shown to possess
anti-inflammatory activity in a model of human synovitis [30] (Table 1).
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Immune cells can maintain the intracellular redox homeostasis through the glutathione
antioxidant system. Reduced glutathione (GSH) is synthetized starting from two unreactive
amino acid precursors, cysteine (Cys) and glutamine (Glu). They are conditionally essential
amino acids in the human diet that are obtained through the catabolism of dietary proteins,
requiring pro-oxidant extracellular milieu. They can also be produced endogenously by the
hepatic metabolism from homocystein and glutamine-cysteine as substrates. Extracellularly
released Cys and Glu can then be taken up by cells expressing specific antiporter systems.
T cells have similar antiporter systems allowing uptake of the two GSH precursors as such
and up-modulation of the transporters is associated with T cell proliferation and effector
function, positively controlled by mammalian target of rapamycin complex 1 (mTORC1)
and proto-oncogene c-MYC [31].

Activation and proliferation of Theff cells need a reducing milieu in the immune
synapse that is supported by antigen presenting cells, especially dendritic cells [32]. In-
stead, Treg miss a functional antiporter system for Cys uptake. In gut-associated Treg, the
inhibitory function of Teff depends on a reducing microenvironment supported by profes-
sional antigen-presenting cells (APC) able to synthetize and release Cys. In addition, Treg
can inhibit the secretion of GSH by DCs and suppress extracellular Cys accumulation. In
this way, they generate a higher redox potential which is suppressive for T-cell proliferation.
Such redox remodeling mechanism functions only in Treg (and in naïve T cells), but not in
pro-inflammatory Theff and macrophages [33] (Figure 2).

Lineage commitment of the diverse subsets of immune cells relies on nuclear factor ery-
throid 2–related factor 2 (Nrf2), the main transcription regulator of antioxidant/cytoprotective
enzyme genes (catalase, glutamate-cysteine ligase, glutathione peroxidase, and superoxide
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dismutase). Nrf2 is a redox sensor maintained in its cytosolic inactive form by binding to
KEAP1 inhibitor. In case of cytoplasmic oxidative stress increase, Nrf2 dissociates from
its (phosphorylated) inhibitor and translocates into the nucleus, where it heterodimerizes
with sMAF, and binds antioxidant response elements (ARE) to initiate the transcription
of those genes (Figure 2). In immune cells, the role of activated Nrf2 is multifaceted,
depending on the redox potential: in normal conditions, it inhibits prolonged activation
of pro-inflammatory M1 through downmodulation of pro-inflammatory cytokine genes
(RNA pol II) and interferes with NF-κB translocation. In the presence of high ROS, it is
critical for the engagement and/or sustainment of M1 macrophages. In low ROS condi-
tions, it can activate M2 macrophages to produce anti-inflammatory metabolites (such as
itaconate and prostaglandins). Furthermore, in multiple sclerosis, induction of Nrf2 pro-
motes Treg cell differentiation and survival and reduction of symptoms. In tumor settings,
activated Nrf2 interferes with Th1eff cells and M1 activation of NLRP3 inflammasome and
pro-inflammatory cytokine genes, conferring cytoprotection to tumor cells.

6. Role of Nutraceuticals in Redox-Remodeling, Anti-Inflammatory Response, and
Glucose Control to Prevent Diabetes

Microbial nutraceuticals are continuously produced by human intestinal microbiota
as a critical player in the complex and multifactorial mechanism that leads to T1D and
other inflammatory autoimmune diseases. It consists of a set of symbiotic microorganisms
that include thousands of billion probiotic bacteria, principally belonging to the Firmicutes
and Bacteroidetes phyla inherited from the mother during natural delivery, has the foremost
role of shaping and balancing the immune system and contributing to redox homeostasis,
also providing nutritional metabolites, such as postbiotic vitamins and butyrate. In healthy
people, such dynamic and balanced microbic flora adjuvate the immune system to maintain
tolerance and suppress inflammatory and autoimmune responses. The microbiota can
deteriorate into imbalanced dysbiosis triggered by environmental factors, comprising
foods, and promoting inflammatory conditions such as insulitis. The early dysbiosis
events damage the intestinal epithelium. Consequently, the abnormal passage of microbial
and non-microbial antigens can occur resulting in local increase of antigen trafficking
and intestinal inflammation in the gut-associated lymphoid tissue (GALT). Inflammation
can further lead to the onset of autoreactive systemic responses, through the blood flow.
For instance, intestinal infection sustained by Clostridium rodentium, able to demolish the
intestinal epithelium, anticipates its appearance of genetically determined insulitis [34]
and favors activation of autoreactive T cells of the gut mucosa [35]. Instead, intestinal
colonization with probiotic Akkermansia muciniphila counteracts autoimmune diabetes by
increasing the secretion of antibacterial peptides and mucus production [36]. A large
and timely reduction of the incidence of T1D was also observed when a combination of
Lactobacilli (acidophilus, casei, reuteri), Bifidobacterium bifidium and Streptococcus thermophilus
(IRT5), referable to induction of Treg and concomitant reduction of Th1 polarization also
associated to substantial tissue repair (i.e., reduced intestinal permeability and insulitis,
and increase of β cells mass) [37]. Following these observations, eubiotic microbial strains
have been investigated for potential preventive and protective roles in T1D models. Among
these, the most studied are Lactobacilli, Bifidobacteria and certain Clostridia producing short-
chain fatty acids (SCFAs), side products of the dietary fiber intestinal fermentation by these
eubiotic strains. In fact, these postbiotic fatty acids are relevant to the maintenance of
intestinal immune homeostasis and reduce chronic inflammation. Acetate and butyrate are
involved in immunomodulation through different and partly synergistic mechanisms. A
diet rich in acetate is associated with loss of antigen presentation function by competent B
cells, which become unable to stimulate autoreactive T cells. In addition, butyrate-rich diet
up-modulates occludine, reinforces mucosal tight-junctions, and promotes the expansion of
regulatory T cells, which are protective against (auto)immune reactions [38]. Furthermore,
butyrate prevents the onset of diabetes triggering the differentiation of regulatory T cells
(Tregs) able to inhibit inflammatory responses mediated by the Th1 effector cells and their
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cytokine interferon (IFN)-γ, at both intestinal and systemic sites [39]. Indeed, intestinal
fermentation supported by Bacteroides determined the increase of these postbiotics in the
peripheral blood associated with a reduction of insulitis [34]. Furthermore, B. fragilis,
through its surface polysaccharide A, stimulates the production of the inhibitory cytokine
IL-10, produced by Treg cells, and suppresses the responses of Th17 cells, sustaining
autoimmune responses [20]. Another study confirmed that acetate and butyrate, provided
as a naturally rich diet, are associated with downmodulation of autoreactive T cells and,
as a food supplement, reduce the incidence of T1D [40]. Human studies have shown
that initiation of the autoimmune process is associated with alterations in the structure of
mucus and/or increased permeability of the intestinal epithelium [41]. Clinical case-control
studies in patients affected by T1D have shown that duodenal mucosa is characterized
by alterations of the microbiota and by pro-inflammatory immunological profile [42].
Inversely, specific probiotic strains (Firmicutes, Lactobacilli, and Bifidobacteria) able to induce
Treg cells and promote immunological tolerance to self-antigens are underrepresented [43].
Furthermore, in children at higher genetic risk of T1D, early probiotic supplementation is
associated with a reduced risk of islet autoimmunity and, for a peculiar genetic trait, a causal
relationship between probiotic supplementation and reduced risk was established [13]
(Table 2).
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Table 2. Nutraceuticals showing anti-diabetic modulatory activities on glucose blood level, oxidative stress, and immune cells responses.

Anti-Diabetic and Immunomodulatory Activities

Compound/
Active Component

Natural (Edible)
Source

Study Model
Cells In Vitro, Animal,

Clinical, Epidemiol.
Glycemia Oxidative Stress Proinflammatory Anti-Inflammatory/

Regulatory References

Epicatechins
(ECG, EGCG)

Tea (green, black,
others)
Leaves

NOD Hypoglycemic Antioxidant NOT DESCRIBED

H M1
N M2
N Treg
N IL-10

[44–46]

Methanolic oregano extract
(MOE) Origanum vulgare NOD Hypoglycemic Antioxidant NOT FOUND

N Treg
N Th2EFF
H Th17 EFF

[47]

Polyphenols Aronia Melanocarpa
Chockeberry

Human monocytes
SZT Hypoglycemic Antioxidant NOT DESCRIBED

H NF-κB
H IL-6, IL-8, TNF-α
H PGE2
H actMo

[48–51]

DHA/EPA/ARA
(Polyunsaturated fatty acids
omega-3/-6, PUFAs)

(potential therapeutic
modality)

Olive oil
Fish
Cod liver oil
Red meat

Cell line
Lymphocytes ex vivo
TD1 patients
DAISY epidemiological study
(longitudinal)
NOD
Hu tumor grafts in mice

H T1D
Incidence, severity
(long-term
assumption)

Antioxidant NOT DESCRIBED

H NF-κB
H IL-6, IL-8, TNF-α, IFN-γ
H PGE2
H M1
H Th1EFF / Th17EFF
N IL-10, IL-4
H M2
N Th2EFF
N Treg

[40,52,53]

Resveratrol Grapes
Red wine

Cell line
NOD

H T1D
incidence, severity Antioxidant NOT DESCRIBED

H NF-κB
H Th17EFF
H TNF-α, IL-6, IL-1β, IL-17
N IL-10

[45,54,55]

Ursolic acid
(UA)

Plants
Epicuticular wax SZT Hypoglycemic Antioxidant NOT FOUND

H NF-κB
H Th1EFF
H Th2EFF

[21,56]

Berberin
(isoquinoline alkaloid) Berberis spp.

Cell line
NOD /
Clinical Trial (combination
treatment with metformin)

Hypoglycemic Antioxidant NOT DESCRIBED Unknown [57]

Aspalathin Aspalathus linearis
Rooibos

Cell line
NOD unknown Antioxidant NOT DESCRIBED H NF-κB

H TNF-α, IL-6 [58]
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Table 2. Cont.

Anti-Diabetic and Immunomodulatory Activities

Compound/
Active Component

Natural (Edible)
Source

Study Model
Cells In Vitro, Animal,

Clinical, Epidemiol.
Glycemia Oxidative Stress Proinflammatory Anti-Inflammatory/

Regulatory References

Polyphenols, phenolic acids Coffee beans Prospective human
cohort studies normal

Weak radical
scavenger
H T2D
risk of disease N
Nrf2→antioxidant
enzymes (+detox,
repair)

NOT DESCRIBED LOW activity [59]

Isoflavons Soybeans Immune cells (cell line)
Hu tumor grafts in mice unknown Antioxidant NOT FOUND

H NF-κB
H IL-6
H M1

[60]

Mangiferin Mango tree Hu tumor grafts in mice unknown Antioxidant NOT DESCRIBED H M1
H NF-κB [61]

Pistacia
(oil/hydrosol)

Pistacia vera/P. lentiscus
Aromatic tree Cell line unknown Antioxidant NOT FOUND H NF-κB (citrate)

H TNFα, IL-6, IL-1β [62,63]

Saffron Crocus sativus

PBMC ex vivo
Hu lymphocytes ex vivo
NOD
Other murine models

unknown Antioxidant NOT FOUND
N IL-10
N M2
H TNF-α, IL-6 and IL-1β

[64]

Thymol Lippia thymoides
Essential oil

Cell line
Hu tumor grafts in mice unknown Antioxidant NOT FOUND H TNFα, IL-6

N Th2EFF
[65]

Betulinic acid
(pentacyclic triterpene) Lycopus lucidus Immune cells (cell line)

Hu tumor grafts in mice unknown unknown NOT DESCRIBED
H TNF-α, IL-2, IFN-γ
H Th1EFF
N Th2EFF

[66]

Erythrodiol
(triterpene) Humboldtia unijuga Immune cells (cell line) unknown unknown NOT DESCRIBED

H Th1EFF
HTNFα, IL-6 and IL-1β
N Th2EFF

[67]

Maresin 1
(docosahexaenoic acid,
DHA-derived)

Macrophage
pro-resolving bioactive
lipid mediator

Immune cells (cell line)
Hu tumor grafts in mice unknown unknown NOT DESCRIBED

N M2
N Treg
N IL10
H M1
HTh1EFF/Th2EFF/Th17EFF

[68]
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Table 2. Cont.

Anti-Diabetic and Immunomodulatory Activities

Compound/
Active Component

Natural (Edible)
Source

Study Model
Cells In Vitro, Animal,

Clinical, Epidemiol.
Glycemia Oxidative Stress Proinflammatory Anti-Inflammatory/

Regulatory References

Oleanolic acid Medicinal herbs Immune cells (cell line)
NOD unknown unknown NOT DESCRIBED N AMPK [69]

Squalene
(2,6,10,15,19,23-hexamethyl-
2,6,10,14,18,20-
tetracosahexane)

Virgin olive oil (VOO)
(non-saponifiable
fraction)

Hu tumor grafts in mice unknown unknown NOT FOUND
H M1
N Th2EFF
N IL-10, IL-4, IL-13

[70]

Quercetin Grapes
Onion

Cell line
NOD Hypoglycemic Antioxidant N NK H DC1

H IL-6, IL-1β [71]

Adenosine-based
(non-peptidyl compounds)

Fungi
Plants NOD unknown ROS scavengers NOT DESCRIBED

N DCreg
N Treg
N DC2
N Th2EFF
H Th1EFF

[72]

Bacteroides, Lactobacilli,
Bifidobacteria and certain
Clostridia

Probiotics
(supplements, food
microbic flora)

NOD /
Allergic inflam. in BALB/c
mice
Clinical Study TEDDY

unknown unknown

NOT FOUND
(described for other
strains and other
inflammatory settings)

HInsulitis
H Th1EFF
H Th2EFF
N Treg
N IL-10
H Eosinophils
H Th17EFF

[10,37,39]

Acetate
Butyrate
Propionate
(SCFA)

Postbiotics
produced by
fermentation of
indigested carbo by
probiotics
(supplements, food
microbic flora)

7–17 DETC murine cell line
(activated proinflammatory
innate epidermal γδT cells)
Skin
NOD
Obese mice*

*Butyrate paradox
N insulin
(resistance)
N glucose uptake
NFAS

HGlycolisys/
OXPHOSN
Antioxidant

NOT DESCRIBED

H Th1EFF
H IFN-γ
N Treg
N IL-10
NCD69 immunoregulatory
surface receptor

[73–77]
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Table 2. Cont.

Anti-Diabetic and Immunomodulatory Activities

Compound/
Active Component

Natural (Edible)
Source

Study Model
Cells In Vitro, Animal,

Clinical, Epidemiol.
Glycemia Oxidative Stress Proinflammatory Anti-Inflammatory/

Regulatory References

β-sitosterol
Nuts and other seeds
Legumes
Virgin olive oil (VOO)

High fat diet +
sucrose-induced T2D in rats
Hu tumor grafts in mice

Hypoglycemic Antioxidant N Th1EFF

H M1
N M2
N Th2EFF
H Th2EFF

[22,78]

Curcumin Curcuma longa Hu tumors grafts in mice
NOD unknown Antioxidant N M1

N Th1EFF

H M2
N Treg
N IL-10
H Th1EFF
N Th2EFF

[45,79,80]

δ-Oleanolic acid
(pentacyclic triterpenoid)
Other saponins (adjuvants)

Plants (saponins)

Macrophages
Activated T and B cells
Splenocytes
Hu tumor grafts in mice
Clinical trials

unknown Antioxidant

N Th1EFF
N Fc receptor
N IgA, G1, G2a, G2b
N IL-1, IL-2, IL-12

H M1
H IL-6, IL-8, TNF-α [69,81]

Spirulina

Arthrospira platensis
Arthrospira maxima
Cyanobacteriaceae
(High protein
supplement)

Cell line
NOD unknown Antioxidant N IL-1β, IL-4, and

INF-γ HTNF-α, IL-6, IL-1β [82]

Sulphoraphane
(SFN)

Brassicaceae spp.
Vegetables Hu tumor grafts in mice Hypoglycemic unknown N Th1EFF

H M1
N M2
H Th1EFF
H Th2EFF

[83]

Vitamin C Fruits, vegetables
(micronutrient) Immune Cells (cell line) unknown Antioxidant N Th1EFF

N Neutrophils unknown [84]

Each group of natural edible sources of the nutraceuticals is evidenced by a different background. The dark green background addresses the plant-derived nutraceuticals showing all
three hypoglycemic, antioxidants, and immunomodulatory activities. The arrows indicate a stimulating (up) or an inhibiting (down) immunoactivity of nutraceuticalsin DM.
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Plant nutraceuticals are principally known for their antioxidant activity. Among
them, polyphenols, triterpenes, fatty acids, phytochemicals, and postbiotic compounds act
through the radical scavenging mechanism that instantly removes reactive oxygen and
nitrogen species. Therefore, degradation of biomolecules and formation of additional free
radicals are limited [85]. Other recent studies show that certain antioxidant nutraceuticals
are also anti-inflammatory. In fact, they can inhibit the transcription of NF-κB (by direct
binding or by blocking the phosphorylation of the inhibitory protein I-κK), and mitogen-
activated protein (MAP)-kinases, involved in the expression of pro-inflammatory cytokines
TNF-α and IL-12. Furthermore, various polyphenols can inhibit the inflammatory pathway
controlled by ciclo-/lipo-oxygenase (COX/LOX) family members, in accordance with their
structural homology to non-steroidal anti-inflammatory drugs (NSAIDs). Polyphenols
(curcumin, quercetin, epigallocatechin gallate—EGCG), isothiocyanates (allicin), stilbenes
(resveratrol) and flavonoids (aspalathin), have been suggested to be cytoprotective in
cellular and animal models. Since their protection is lost when Nrf2 is experimentally inac-
tivated or deleted, this signaling pathway is likely to be involved in the antioxidant activity
highly present in coffee, broccoli, beetroot, berries, pomegranate, curcuma, and cocoa [59].
Curcumin (Curcuma longa) is a natural phenolic orange-yellow compound found at high
concentrations only in the turmeric spice contained in the roots of Zingiberaceae plants, to
which ginger belongs. It is barely found in natural foods, but it is widely used as dietary
supplement called curry for food coloring (E100) and flavoring, mostly in the south-east,
and as Ayurvedic medicine, too. Curcumin showed antioxidant and anti-inflammatory
properties in obesity and diabetes favoring eubiotic microorganism growth and gut healing,
through microRNA modulation [45]. Curcumin has been shown to exhibit therapeutic
potential also in other chronic illnesses in which inflammation plays a major role. It has
been investigated on a mouse model of Alzheimer’s disease induced by heavy metals,
hence high ROS, in the brain. Curcumin reduced levels of beta amyloid aggregation and
oxidized proteins and prevented cognitive deficits. In fact, two curcumin molecules can
bind redox active metals Cu2+ or Fe2+ ions. Hence, chelation of metals is a likely mechanism
for curcumin to reduce oxidative neurotoxicity and amyloid aggregation. In addition, cur-
cumin has been proposed to suppress inflammatory damage by preventing metal induction
of NF-κB [80]. Moreover, it is able to induce the expression and secretion of the inhibitory
cytokine IL-10 in vitro and in preclinical models to enhance its action in many tissues and
also to modulate the pathophysiology of inflammatory diseases (i.e., allergy). Notably, it
also affects the response to infections and cancer through its effect on the secretion of IL-10.
The immunomodulatory properties of curcumin deserve further study for its application
in the treatment of immune system pathologies, such as T1D [79]. Methanolic oregano
extract (MOE), a concentrate of polyphenols, reduced the incidence of diabetes and pre-
served insulin secretion in pre-diabetic NOD mice. In addition, MOE eliminated reactive
oxygen and nitrogen species. MOE treatment alleviated Th17-mediated proinflammatory
response and enhanced Th2 and Treg-mediated anti-inflammatory effect by impacting
specific signaling pathways and transcription factors. Importantly, MOE preserved β cells
from apoptosis in vitro as well as mice from developing diabetes. Likely, more than one
substance is present in MOE providing antioxidant, immunomodulator and anti-apoptotic
activities [47]. Epigallocatechin gallate (ECG) and epicatechin (EC), two plentiful polyphe-
nols in green tea, were evaluated as anti-diabetic compounds. Treatment with ECG/EC
0.05% in drinking water appeared to prevent loss of β cell mass, increase insulin levels,
decrease hemoglobin A1C levels, and lead to overall improvement of insulitis. The latter
finding is explained by the immune-modulating functions of these compounds. In fact, they
could downmodulate NF-κB and its downstream pro-inflammatory cytokines IL-1β, IL-6,
TNF-α, and IFN-γ, as well as TRL-4, COX II, while promoting higher production of the
inhibitory cytokine IL-10 [86]. Ursolic acid (UA), a pentacyclic triterpene hydroxy acid (3β-
hydroxyurs-12-en-28-oic acid), forms aglycone with free acid or triterpenoid saponins. It is
present in the human diet because of its widespread availability as epicuticular wax found
in fruit peels. It is most abundant in Malus pumila (apple), Vaccimum spp. (blueberries),
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Vaccinium macrocarpon (cranberry), Olea europaea (olive), as well as in spicy herbs such as
Ocimum basilicum (basil), Origanum vulgare, Rosmarinus officinalis, Salvia, and Thymus
(thyme). In diabetic STZ mice, UA significantly reduces blood glucose levels and preserves
insulin clusters within pancreatic β-cells in treated diabetic mice compared to the diabetic
not treated (anti-diabetic), through an unknown mechanism. In addition, UA causes un-
responsiveness in vitro of T cells from those mice even if stimulated with the polyclonal
activator Concanavalin A (ConA), a mannose/glucose-binding lectin used in lymphocytes
proliferation tests, as well as the associated cytokine production [87]. These deficits were
recovered by UA-treatment (immunomodulatory function) [21]. Aronia melanocarpa, or
chokeberry, is a plant producing berries that are particularly valued for their content in
polyphenols, such as phenolic acids (neochlorogenic and chlorogenic acids), flavonoids
(anthocyanins, proanthocyanidins and flavonols) and cyanidins (cyanidin-3-galactoside,
cyanidin-3-arabinoside), and epicatechin. Aronia has anti-inflammatory properties on
human monocytes. Specifically, it inhibits the activation of NF-κB, and consequently blocks
the release of pro-inflammatory cytokines IL-6, IL-8 and TNF-α, as well as prostaglandin E2
(PGE2) formation [88]. These bioactive compounds also confer antioxidant and antidiabetic
properties to this blackberry that effectively improve glucose metabolism controlling post-
prandial hyperglycemia, through the inhibition of α-glucosidase and α-amylase enzymes.
Streptozotocin induced diabetic mice studies confirmed that oral administration of Aronia
100 mg/kg was associated with lower increase of glycemia and a protective effect against
β cells compared to the diabetic control group not treated with Aronia [48]. One clinical
trial showed that Aronia stabilizes carbohydrate metabolism after at least three months
of daily consumption of 200 mL juice [50]. Recently, small adenosine-based non-peptidyl
compounds, typical of plants and fungi, can directly act as ROS scavengers and have
been found in vitro and in vivo to mimic the activity of insulin and pro-tolerogenic growth
factors promoting DCreg differentiation [26,72]. Flavonoids from several vegetal sources
could inhibit Th17 cells and stimulate Treg cells in experimental RA [89]. Despite the
low number of studies performed to date, they all show a potential application of these
compounds in humans [2,27,90,91]. The potentially preventive effects of nutraceuticals in
human diabetes described here are summarized in Table 2.

7. Conclusions

In this review, we focused on auto-inflammatory diseases characterized by long latency
and early biological markers that offer an opportunity for preventive interventions and
status monitoring.

In fact, human DM is extensively studied since cellular and murine models are avail-
able for mechanistic and physiopathology studies. Moreover, susceptibility to developing
DM is highly predictable at early stages by evaluating genetic factors, autoantibodies, and
oxidative stress, which represent a main trigger [15].

So far, investigations on nutraceuticals conducted in disease settings have shown
exciting results and suggest that they might be attractive even for healthy people.

Nowadays, the available chronic therapeutic treatments can slow the disease worsen-
ing, but they still have a substantial impact on patients’ quality of life.

Despite the innumerable nutraceuticals that have been studied at different levels of
investigation, from experimental models to epidemiological studies, there are no clinical
studies that might incontrovertibly sustain them as a preventive treatment of inflammatory
diseases. Nevertheless, a large self-prescribed consumption is observed also among healthy
subjects.

Recent findings on the role of oxidative stress point out the redox remodeling to
control detrimental immune responses and thwart and shut down innate and adaptive
autoimmune effector cells directed against pancreatic islet β cells.

At this scope, we performed a PubMed search to select original articles and recent
high-impact reviews on antioxidant nutraceuticals in diabetes able to usefully modulate
glycemia, and/or oxidative stress and/or immune cell and cytokine profiles. A series
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of twenty-two nutraceuticals have been retrieved with one or more of these biological
characteristics (Table 2). Particularly, these nutraceuticals appear beneficial against DM,
where the inflammatory component plays a fundamental role, and would be worthy of
further investigation in humans. However, other anti-diabetic antioxidant nutraceuticals
potentially promote detrimental pro-inflammatory responses by stimulating M1, effector
Th1 cells, antibodies, and proinflammatory cytokines in DM models (Table 2).

Furthermore, such interventions on redox and immune dyshomeostasis might be detri-
mental in disease settings for which high redox potential and pro-inflammatory immunity
are auspicial, such as anti-tumor responses. Instead, five nutraceuticals were found to be
pro-inflammatory and able to trigger IL-1β-mediated signaling. In a recent review, we
highlighted that phytochemicals with antioxidant activity provide a synergistic effect to
induce oxidative stress and apoptosis/autophagy of malignant multiple myeloma (MM)
cells when combined with the canonical anti-proteosome drug [92].

Other studies have focused on antioxidants targeting the critical ROS-producing
organelles (mitochondria) as potential therapeutic agents to restore normal physiology and
redox homeostasis in inflammatory diseases [93]. However, the nutraceuticals described
here appear to be more than “just” antioxidants and seemingly suitable to overcome the
issue of possible weakening of protective Th1-mediated immune responses, but still could
adversely promote smoldering and indolent MM or T2D [94].

Clinical research focusing on the described nutraceuticals might clarify their preven-
tive use in healthy individuals. The current options for DM treatment and associated
conditions are expensive, life-threatening, and potentially toxic [95]. Hence, studies on
nutraceuticals as adjuvant compounds to improve efficacy and lower side effects are
worthwhile. Nutraceuticals, supplements, and functional foods deserve further studies
either in subjects at high risk of DM or in full-blown patients upon precise redox status,
immunological assessments [96,97], and nutritional intake [98].

In conclusion, the present review describes several “antioxidant” nutraceuticals as
potential glucose-keepers and redox modulators of immune cells in (pre-)DM leading to
inhibition/suppression of pro-inflammatory macrophages and Th cells (Figure 3).
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Neutraceuticals are variously found in natural edible sources or can be extracted
and concentrated from them as formulable supplements. Among these are plant leaves
(tea, oregano, olive oil), whole fruits (grapes, olives, mango), beans (coffee, soy) and
berries (berberis, aronia), legumes, and animal products (fish and meat). Nutraceuticals
described here could be preventives as nutraceutical-rich food regimens, supplements,
and/or combination with disease-specific drugs and treatments.
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