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A B S T R A C T   

Background and objective: In patients with suspected Coronary Artery Disease (CAD), the severity of stenosis needs 
to be assessed for precise clinical management. An automatic deep learning-based algorithm to classify coronary 
stenosis lesions according to the Coronary Artery Disease Reporting and Data System (CAD-RADS) in multiplanar 
reconstruction images acquired with Coronary Computed Tomography Angiography (CCTA) is proposed. 
Methods: In this retrospective study, 288 patients with suspected CAD who underwent CCTA scans were included. 
To model long-range semantic information, which is needed to identify and classify stenosis with challenging 
appearance, we adopted a token-mixer architecture (ConvMixer), which can learn structural relationship over 
the whole coronary artery. ConvMixer consists of a patch embedding layer followed by repeated convolutional 
blocks to enable the algorithm to learn long-range dependences between pixels. To visually assess ConvMixer 
performance, Gradient-Weighted Class Activation Mapping (Grad-CAM) analysis was used. 
Results: Experimental results using 5-fold cross-validation showed that our ConvMixer can classify significant 
coronary artery stenosis (i.e., stenosis with luminal narrowing ≥50%) with accuracy and sensitivity of 87% and 
90%, respectively. For CAD-RADS 0 vs. 1–2 vs. 3–4 vs. 5 classification, ConvMixer achieved accuracy and 
sensitivity of 72% and 75%, respectively. Additional experiments showed that ConvMixer achieved a better 
trade-off between performance and complexity compared to pyramid-shaped convolutional neural networks. 
Conclusions: Our algorithm might provide clinicians with decision support, potentially reducing the interobserver 
variability for coronary artery stenosis evaluation.   

1. Introduction 

According to the Global Burden of Diseases study [1], the prevalence 
of Coronary Artery Disease (CAD) was approximately 150 million 
globally in 2016. CAD represents one of the major causes of mortality 
and morbidity worldwide, and its progression can lead to important 
adverse cardiovascular complications like acute myocardial infarction, 
stroke, and death [2]. These complications are generally the result of 
cumulative progression of atherosclerotic plaques that limit blood flow 
locally, causing stenosis. 

As recommended in the recent CAD Reporting and Data System 
(CAD-RADS) consensus document [3], the degree of stenosis can be 
categorized into no (0%), minimal (1–24%), mild (25–49%), moderate 
(50–69%), severe (70–99%) stenosis and total occlusion (100%) of the 
coronary tree. An early and accurate assessment of stenosis degree is 
crucial to design proper therapeutic intervention, especially in cases 
with obstructive CAD (≥50% stenosis). While patients with no stenosis 
do not need any additional investigation, patients with non-obstructive 
CAD should be regularly follow-up. In patients with moderate stenosis, 
additional functional assessment along with a medical pharmacotherapy 
is recommended, whereas patients with severe stenosis or total 
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occlusion should undergo further invasive testing along with a preven
tive pharmacotherapy or surgical intervention [3] (Table 1). 

Recently, Coronary Computed Tomography Angiography (CCTA) 
has emerged as a noninvasive technique in the diagnosis of patient with 
suspected CAD. CCTA has been proved to be an effective modality for 
coronary stenosis degree quantification and characterization of the 
morphology and composition of coronary artery plaques [4]. Evidence 
increasingly supports the clinical utility of CCTA for risk stratification 
and decision making relevant to CAD, resulting in high diagnostic per
formance [5,6]. Thus far, in clinical practice, the severity of coronary 
artery stenosis relies on visual assessment of the whole coronary tree. 
This procedure is experience-related, time-consuming, and cumbersome 
[7]. To alleviate these issues, an accurate and automatic method to 
support physicians in the identification of coronary artery stenosis may 
play a critical role. 

Several approaches have been proposed in the literature to auto
matically detect obstructive stenosis using machine-learning models 
[8–10]. Recently, a number of approaches based on deep learning has 
emerged to evaluate the degree of coronary stenosis in CCTA. In 
Ref. [11], a 2D CNN was proposed for CAD-RADS classification of the 
whole CCTA volume arranging slices in a 2D mosaic to reduce compu
tational complexity. However, salient lesion details could have been lost 
in the image resizing procedure, thus decreasing the model perfor
mance. In addition, authors may have overestimated results since train 
and test set are not described to be split based on patient identities. In 
Ref. [12], a CNN with a support vector machine classifier was used to 
identify patients with functionally significant stenosis (i.e., ≥50% 
luminal narrowing) from the segmented left ventricular myocardium in 

CCTA images, but without providing single vessel analysis, and there
fore limiting stenosis localization. 

Several approaches were developed to process Multiplanar Recon
struction (MPR) images from CCTA, which allow to display the complete 
course of a vessel in 2D [13]. One approach included texture-based multi 
planar analysis to predict significant stenosis from several views of 
coronary arteries [14]. In Ref. [15], a recurrent CNN was employed for 
significant stenosis detection and coronary plaque characterization. In 
Ref. [16], a 2.5 CNN was designed to classify stenosis according to the 
CAR-RADS score. Another study [17] combined recurrent CNN with 
shape-based radiomic features to predict significant stenosis. Also, in 
Ref. [18] a deep learning method based on CNNs was adopted to achieve 
automatic stenosis assessment. 

Although these methods generally report high accuracy in the 
assessment of coronary stenosis, they have been mainly developed to 
perform binary classification (i.e., non-obstructive vs. obstructive or 
non-significant vs. significant stenosis). More importantly, CNNs exhibit 
a major limitation in modeling long-range contextual information due to 
an inherent restricted receptive field, thus potentially leading to poor 
classification performance. CNN success can be explained considering 
the inductive biases (such as translation and scale invariance), obtained 
stacking convolutions and requiring consecutively down-sampling op
erations in a pyramidal structure. However, when available old CT 
scanners resulting in poor images quality, as the spatial resolution is 
gradually reduced in deep networks, the classification accuracy may 
dramatically be compromised. In addition, convolutional is usually 
applied on small image regions, naturally leading to local inductive bias. 
This inductive bias enables CNNs to learn even in condition of small 
amount of data (as in the field of medical image analysis [19]) but re
sults in a lack of global understanding. A number of approaches have 
been developed to model long-range dependencies in CNN, including 
atrous (a.k.a. dilated) convolutions [20–22], image pyramid [23,24] 
and large kernel [25,26]. However, these approaches may bring several 
drawbacks: (1) training deep networks with very large receptive fields 
on small medical image datasets tends to easily lead unstable perfor
mance and overfitting; (2) not effectively capture interaction over 
long-range spatial regions that is crucial for global understanding. The 
ability of neural network to learn long-range dependencies between 
pixels might help in making efficient classification, thereby leading to 
capture most salient global features explaining the variability of coro
nary stenosis in shape and size. Particularly, modeling global context 
might help to differentiate foreground pixels to those of the background 
as in cases of total occlusion where there is a complete interruption of 
contrast-enhancement along the coronary artery (Fig. 1A) or to identify 
lesions with dramatic size changes. In addition, introducing structural 
global knowledge may contribute to prevent miss-classifying anatomical 
proximal to distal coronary lumen diameter variations as occlusion 
(Fig. 1B). These characteristics represent a challenge for automatic 
learning tools, often leading to inaccurate lesion classification. 

To model global features, a mechanism for improving the overall 
understanding of the image is needed. Recently, there has been a 
growing interest in Transformers [27,28] due to their global 
self-attention mechanism used to model long-range dependencies in 
Natural Language Processing (NLP) and, a few studies have explored 
their applications in computer vision [29–32]. Indeed, recent evidence 
suggests as convolutions might not be strictly necessary to reach per
forming visual recognition tasks [33,34]. In this context, Vision Trans
former (ViT) [35] represents an attempt to develop a convolutional-free 
model for image classification. ViT reached competitive performance on 
the ImageNet classification task, but is computationally expensive, thus 
hampering its diffusion in clinical scenarios. Moreover, without any 
inductive bias, ViT requires huge amount of data to obtain good 
generalization with compared to CNN. However, this is not always 
feasible in many contexts, especially for medical imaging tasks as the 
number of available images is relatively scarce. 

With the goal to provide inductive priors to transformer, standard 

Abbreviations and acronyms 

Acc accuracy 
AUC Area Under the Curve 
CAD Coronary Artery Disease 
CAD-RADS Coronary Artery Disease Reporting and Data System 
CCTA Coronary Computed Tomography Angiography 
CI confidence intervals 
GELU Gaussian Error Linear Units 
Grad-CAM Gradient class activation map 
MLP Multi-Layer Perceptron 
MPR Multiplanar Reconstruction 
NLP Natural Language Processing 
NPV negative predictive value 
PPV positive predictive value 
ROC Receiver Operating Characteristic 
Sens sensitivity 
ViT Vision Transformer  

Table 1 
CAD-RADS classification recommendations.   

CAD 
Class 

Range of 
Coronary 
Stenosis 

Clinical investigation 
recommendation 

No stenosis 0 0% No treatment 
Minimal 

stenosis 
1 1–24% No additional diagnostic 

investigation 
Mild stenosis 2 25–49% No additional diagnostic 

investigation 
Moderate 

stenosis 
3 50–69% Functional assessment 

Severe 
stenosis 

4 70–99% Functional assessment or invasive 
coronary angiography 

Total 
occlusion 

5 100% Viability assessment and invasive 
coronary angiography  

M. Penso et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 153 (2023) 106484

3

convolutions were integrated with ViT improving its performance 
[36–38]. Recently, searching for computational efficiency alternative to 
transformer but with the objective of mixing information between 
patches (also called tokens) like self-attention, token-mixing architec
tures have been proposed. Tolstikhin et al. [39] presented MLP-mixer, a 
patch-base model with only Multi-Layer Perceptrons (MLPs) to simulate 
self-attention, achieving promising performance in image recognition. 
More recently, Trockman et al. [40] proposed ConvMixer, a pure-CNN 
backbone, that works like MLP-mixer in processing relationships be
tween local patches in different spatial locations of the image but, with 
the advantage of image-specific inductive bias from convolutions. 

Inspired by the literature, in this work we propose an algorithm to 
classify coronary stenosis according to the CAD-RADS score from MPR 
images. We used a token-mixer architecture to capture correlations be
tween local tokens and learn their dependencies. Then, we highlighted 
the salient regions along coronary arteries for predicting the vessel-wise 
stenosis degree. Our main contributions are summarized as follows:  

(1) We propose a classification algorithm to classify coronary artery 
vessels according to the CAD-RADS reporting system, as a support 
to diagnosis, by reducing the interobserver variability among 
physicians.  

(2) We apply for the first time a token-mixer architecture to achieve 
large reception field in an efficient manner to specifically eval
uate stenosis with challenging appearance, preserving inductive 
bias, thus leading to perform on small-scale data as in cardiac 
images analysis.  

(3) We conducted extensive experiments, without limiting our 
attention to determination obstructive CAD (i.e., obstructive vs. 
non-obstructive stenosis), demonstrating as the proposed model 
achieved strong performance over different CNN-like models. 

2. Methods 

We here present the proposed algorithm (Sec. 2.1) for coronary ar
tery stenosis classification in CCTA MPR images as well as our 

experiments (Sec. 2.2). 

2.1. Token mixer architecture 

The macro structure of the proposed token-mixer architecture 
(ConvMixer) is shown in Fig. 2. ConvMixer is based on a patch 
embedding layer (Sec. 2.1.1) to convert an input image into patches, like 
in vision transformers, and project them into a c-dimensional feature 
vector, followed by repeated convolutional blocks (Sec. 2.1.2) of equal 
size to update patch-wise representation, preserving the spatial resolu
tion throughout all layers [40]. All these convolutional blocks rely on 
two main steps for patch communications: token mixing step and 
channel mixing step. We hypothesize that this isotropic architecture, 
combining the advantages of convolutions’ locality biases with the ad
vantages of processing long-range dependencies similarly to trans
former, might be a better approach than conventional pyramid-CNN 
models for coronary artery stenosis characterization. 

2.1.1. Patch embedding 
Transformers like ViT [35] adopt an isotropic structure with a fixed 

number of non-overlap patches and unchanged embedding size (i.e., 
channel dimension), thus ideally leading to learn global interaction 
among different patch tokens. However, the self-attention module of ViT 
has a computational cost that is quadratically linear to the length of the 
input sequence (i.e., the number of patch tokens). This quadratic rela
tionship between the number of patches and the image resolutions, 
makes it challenging to train the ViT model from limited data, under
mining its application in many vision tasks. To address the computa
tional limitation of the ViT, in this paper, we propose to linearly embed 
patches, thus improving performance in low data image classification. 
Specifically, given an input image of W x H x C size, where W is the 
width, H the height and C the number of channels, it is first divided into 
N non-overlap patches of size p x p that are linearly projected into a fixed 
Di-dimensional embedded vector. This results in a patch features X ∈

RD x N where N = WH
p2 is the number of patches. The spatial structure of 

the embedded patches is maintained constant through the network. The 

Fig. 1. Panel A: A segment of coronary artery with total occlusion (as highlighted by the white arrow) shows texture similar to that of the background. Panel B: 
Proximal and distal cross-sectional vessel lumen diameter may have highly different thickness. 

Fig. 2. Overview of the proposed architecture. From an artery MPR vessel, four views are defined and passed to the ConvMixer model which consists of a patch 
embedding, convolutional blocks and a classifier. Each convolutional block presents a depthwise convolution for token-mixing and a pointwise convolution for 
channel-mixing, each followed by a GELU nonlinearity and Batch Normalization. 
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lack of inductive prior limits the attention from exploiting the input 
image. Consequently, this step is implemented with a convolutional 
layer with kernel and stride size p and h filters. Indeed, replacing the 
initial linear embedding layer used in ViT by convolution layer led an 
inductive bias to improve model capability and generalization perfor
mance [41], and it also maintains memory efficiency. Using a con
volutional layer to generate the embeddings provides both the inductive 
bias and spatial information to the subsequence layers, thus removing 
the need for additional positional embeddings as in ViT-based 
architectures. 

2.1.2. Convolutional block 
We introduce the convolutional block layer which updates patch 

features employing depthwise separable convolutions [42] that is a form 
of factorization of the convolution operation, with a depthwise convo
lution followed by a pointwise convolution operation. Specifically, 
while depthwise convolution performs a spatial convolution indepen
dently over each channel of the input data, pointwise convolution, that 
is a regular convolution with kernel 1 x 1, projects the output of the 
depthwise convolution onto a new channel space (more details are re
ported in Supplementary Material). The convolutional block is based on 
the idea of splitting the channel-mixing operations (i.e., channel com
bination) from the token-mixing operations (i.e., spatial feature 
learning). While the channel-mixing achieves the communication be
tween different channels, the token-mixing enables communication 
between patches, simulating the self-attention block in transformer. 
Unlike [39], which use different MLP layers to replace self-attention, in 
this paper, we use convolutional for mixing information in spatial and 
channel dimensions: depthwise convolution to mix spatial locations, and 
pointwise convolution to mix channel locations. By having convolu
tions, the proposed model can take advantage of inductive biases, thus 
potentially leading to high performance on small-scale dataset. Indeed, 
while MLP-Mixer attains promising performance on large-scale sce
narios, it is less effective when trained on small-scale data, even 
achieving lower performance than transformer [43]. In contrast to 
token-mixing MLP, the depthwise convolution provides different 
weights on different channels to enable information interaction among 
tokens, thus proving stronger encoding capacity. 

Each convolution is followed by Gaussian Error Linear Units (GELU) 
[44] as activation function and batch normalization [45] to help prevent 
over-fitting of the model. GELU function is a smoother variant of 
Rectifier Linear Unit (ReLU) and is used instead to alleviate the problem 
of “leakage gradients”, as shown in recent works including ViT [35] and 
MLP-mixer [39]. Furthermore, for each depthwise convolution, residual 
connection was introduced to promote the learning capability and 
reduce the overfitting problem [46]. 

Finally, the output patches features from the final convolutional 
block are flattened using an Average Global Pooling and fed to the fully 
connected layer, which serves as a classifier. 

2.2. Experiments 

2.2.1. Dataset 
This study includes retrospectively collected CCTA acquisitions of 

288 patients (age: 60.6 ± 12.4 years, 90 females) acquired between 
2016 and 2018 at IRCCS Centro Cardiologico Monzino hospital (Milan, 
Italy). Institutional review board approval was obtained and patients 
provided informed consent. Patient characteristics as well as CCTA 
acquisition and analysis protocols have been described previously [11]. 
In briefly, CCTA scans were acquired using Discovery CT 750 HD or 
Revolution CT (GE Healthcare, Milwaukee, IL). CCTA acquisition and 
imaging protocols at each site were in adherence with the Society of 
Cardiovascular Computed Tomography guidelines [47]. Using MPR, 
coronary segments were evaluated for the presence of stenosis by a team 
of ten expert clinicians. To reduce observer variability especially in 
edge-cases, all examinations were analyzed by 2 expert readers (with ≥5 

years of cardiac reading experience). For disagreements on data analysis 
between the 2 readers, a consensus agreement was achieved involving a 
third expert (with ten years of experience in cardiovascular imaging). 
According to Ref. [3], based on the degree of the stenosis, each coronary 
artery segment was label as no-stenosis (class 0, N = 248), minimal 
(class 1, N = 106), mild (class 2, N = 103), moderate (class 3, N = 122), 
severe (class 4, N = 124) or occluded (class 5, N = 76). As a result, the 
overall study cohort included a total of 779 coronary artery segments 
obtained from the 288 patients studied. For each segment, four MPR 
images (with size ranging from 120 × 800 to 170 to 850 pixels) were 
obtained rotating by 90◦ along the centerline of the vessel and then 
concatenated to define the input volume of W x H x C size (C equal to 4 
denoting the number of input channels). Note that, according to the 
clinical practice, when the exact required action needs to be identified, 
given a coronary artery tree with multiple stenosis (see Fig. 3) the 
associated CAD score is based on the maximum degree of lesion present. 

2.2.2. Training 
We set the patch size as 3 x 3. Input images were cropped along the 

segment centerlines, resized into 32 x 304 pixels size for computational 
efficiency, thus preserving their aspect ratio, and normalized into [0–1] 
range. The embedding patches were passed through 14 convolutional 
blocks, with setting the output channels to 68. Each depthwise convo
lution was set with 8 x 8 kernel size to minimize local receptive field 
constrain. The learning rate was set to 1e-3 and was used to minimize 
the cross-entropy loss function. Due to limited available training sam
ples, an extensive on the fly data augmentation including random flip
ping, scaling, channel shuffling and gamma correction was used to 
improve the model’s generalizability and robustness of the final model. 
All the training parameters were established with a trial-and-error 
procedure. 

To validate our results, a 5-fold cross validation was performed to 
reduce performance bias. The splits were made on patient level with 
stratification by subgroup (i.e., stenosis degree) size. For each cross- 
validated fold, the dataset was partitioned into a training set (70%), 
validation set (10%) and test set (20%). The loss performance on the 
validation set is monitored during training and used for model selection. 

2.2.3. Evaluation 
For model evaluation, commonly used classification metrics were 

used, including accuracy (Acc), positive predictive value (PPV), negative 
predictive value (NPV), sensitivity (Sens) and Area Under the Curve 
(AUC) of the Receiver Operating Characteristic (ROC) curve: 

Acc=
TP + TN

n
(1)  

PPV =
TP

TP + FP
(2)  

NPV =
TN

TN + FN
(3)  

Sens=
TP

TP + FN
(4)  

where TP, TN, FP, and FN are number of true positive, true negative, 
false positive and false negative, respectively. Moreover, for classifica
tion accuracy the Matthews Correlation Coefficient (MCC) was reported. 

Gradient class activation map (Grad-CAM) [48] analysis was 
implemented to match clinical expectations of a visual explanation of 
model results allowing visualization of potentially salient regions of the 
image the model paid attention to. 

From a clinical perspective, several experiments were conducted to 
assess the performance of the ConvMixer model for coronary artery 
stenosis classification. First, we evaluated the algorithm in predicting 
the clinically relevant stenosis (i.e., non-obstructive (0–2) vs. 
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obstructive (3–5) stenosis). Second, we evaluated ConvMixer in the 
differentiation between non-obstructive coronary stenosis (1–2) and 
normal segments (0). Third, we reported the results of the token mixing 
algorithm in classifying severity of obstructive coronary stenosis, before 
detecting cases with total vessel occlusion (3–4 vs. 5) and then differ
entiating among all degrees (3 vs. 4 vs. 5). Lastly, we evaluated the 
effectiveness of the algorithm in the case 0 vs. 1–2 vs. 3–4 vs. 5. In all 
experiments, minimal and mild stenosis were grouped, according to the 
patient clinical management recommendation (Table 1). 

For each experiment, we compared ConvMixer with conventional 
classification CNN-based models, including ResNet-50 [49], VGG16 
[50], and DenseNet121 [51] pre-trained on the Imagenet dataset. To 
adapt the input image to a pre-trained model, at the beginning of the 
encoder of ResNet-50, VGG16 and DenseNet121, one convolutional 
layer with 3 x 3 kernel size and three filters was added for changing the 
number of channels of the input image. Further, to verify the hypothesis 
of effectiveness in modeling long-range dependencies, as the majority of 
CNNs adopt pyramid structure to compute multi-scale feature effi
ciently, we compared the proposed model (ConvMixer) with CNN-like 
pyramid architectures. Inspired by recent work in processing 
multi-scale information [52,53], in the tested CNNs conventional con
volutions were replaced with either atrous convolutions (AtrousCNN) or 
Inception module [54] (InceptionV2CNN, InceptionACNN, Incep
tionBCNN). Specifically, an Inception-v2 version [26] was adopted for 
InceptionV2CNN, while an inspired Inception-ResNet version [46] was 
used in both InceptionACNN and InceptionBCNN. More details about 
network configurations can be found in Supplementary Material. For a 
fair comparison, we conducted a hyperparameter sweep for every 
different model and report the best results we were able to achieve. In all 
experiments the learning rate was reduced on plateau of 6 epochs by a 
factor of 0.8 and early stopping was applied after validation loss had no 
longer decreased for 30 epochs. All models were trained using in an 
end-to-end fashion using Stochastic Gradient Descent optimizer with 
momentum (0.9) and batch size set to 4. 

A qualitative comparison with previous deep learning methods [11, 
14–18] is also reported. These works perform obstructive stenosis clas
sification using different procedure and evaluated on different datasets 
and so, for a fair comparison the performance of competing 
state-of-the-art methods was adopted from the original publications. 

To evaluate whether our automatic algorithm represents a helpful 
decision-making support system for coronary artery stenosis reducing 
the interobserver variability, two expert readers, blinded to patient 
clinical history and data, independently evaluated each coronary ste
nosis in two separate ways: before without any support, and at two 

weeks with the support of our automatic algorithm. This was performed 
for one-hundred coronary vessels randomly selected from the study 
cohort and classified according to the presence of obstructive stenosis (i. 
e., 0–2 vs. 3–5), and also differentiating between CAD-RADS class 0 vs. 
1–2 vs. 3–4 vs. 5. 

3. Results 

Table 2 lists the results of the averaged performance obtained for 
classification of the obstructive CAD (obstructive vs. non-obstructive 
stenosis) comparing different models. Values are expressed as mean 
and confidence intervals (CI) were set at 95%. We compared the Con
vMixer network with conventional CNN-based classification models. As 
shown in the table, ConvMixer achieved better performance than fine- 
tuning ResNet50, VGG16 and DenseNet121 in term of both Acc (0.87) 
and AUC (0.93; 95% CI: 0.87–0.98) (Fig. 4a). This corresponds to a mean 
PPV, NPV and Sens of 0.82, 0.93 and 0.90, respectively. 

The second group of comparison is based on CNN architectures, 
specifically AtrousCNN, InceptionV2CNN, InceptionACNN, and Incep
tionBCNN, that capture context in an image by modeling long-range 
dependencies. All these networks have achieved similar performance 
but lower recognition accuracy compared with ConvMixer (Table 2). 
Overall, ConvMixer achieved a better trade-off between performances 
and complexity, with considerably fewer parameters than the other 
networks, making the proposed algorithm attractive in term of compu
tational efficiency. 

After that, we compared the ConvMixer to the previous relevant 
state-of-the-art methods that exploited deep learning for obstructive 
stenosis prediction. The results reported in Table 2 (bottom) showed that 
the proposed method seems to outperform previous ones. Specifically, 
ConvMixer achieved overall better performances, with an absolutely 
superior Acc of 16%, 1%, 6% and 1% than [11,14,16,18], respectively. 

After that, we compared the ConvMixer to the previous relevant 
state-of-the-art methods that exploited deep learning for obstructive 
stenosis prediction. The results reported in Table 2 (bottom) showed that 
the proposed method seems to outperform previous ones. Specifically, 
ConvMixer achieved overall better performances, with an absolutely 
superior Acc of 16%, 1%, 6% and 1% than [11,14,16,18], respectively. 
Compared to Ref. [15], our algorithm reported an inferior Acc (0.87 vs. 
0.93) but a higher Sens (0.90 vs. 0.61) and PPV (0.82 vs. 0.65) to 
differentiate vessel with/without obstructive CAD. Also, we observed 
[17] achieved a more accurate diagnosis of significant coronary artery 
stenosis than our algorithm (0.92 vs. 0.87). This can be explained 
considering that their dataset was highly unbalanced, with only 25% of 

Fig. 3. Examples of coronary artery labeled as CAD-RADS 4. Mild stenosis (yellow arrow); Moderate stenosis (orange arrow); Severe stenosis (red arrow).  
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lesions labeled as having luminal narrowing above 50%. In contrast, in 
our dataset the number of significant stenosis was 41%, thus leading to a 
potentially higher number of false predictions. 

Table 3 summarized the results on the other experiments. Overall, 
ConvMixer performed better than the other models, with a higher 
recognition accuracy, suggesting that the proposed algorithm can effi
ciently model long-range dependencies in contrast to conventional 
methods. Specifically, moving on the task of discriminate between non- 
obstructive lesion and no stenosis (class 0 vs. 1–2), using ConvMixer, an 
average AUC of 0.88 (95% CI: 0.81–0.96) was achieved (MCC = 0.63, 
see Fig. 4b), while for Acc set to 0.84, corresponding PPV, NPV and Sens 
were 0.82, 0.86 and 0.84, respectively (Table 3). The relatively large 
variations between ROC curves might be explained considering the high 
inter-class similarity, especially between the CAD-RADS class 0 and 1, 
where relatively small lesions can be difficult to identify. 

Given the importance of accurate distinction of coronary severe 
stenosis from occlusion (i.e., class 3–4 vs. 5), we observed a high 
recognition accuracy (0.96) for patients with a complete occlusion of the 
coronary vessel (Table 3). The average AUC over the five folds was 0.99 
(95% CI: 0.97–1.00) and the MCC was 0.88, as shown in Fig. 4c. 
Assuming a differentiation between moderate and severe lesions, the 
averaged Acc of our automatic method on obstructive stenosis (class 3 
vs. 4 vs. 5) was 0.67 (Table 3). As shown in Table 3, compared with 
ConvMixer, the VGG16 model achieved slightly higher performance, 
with Acc of 0.69. The final confusion matrix resulting from ConvMixer is 
reported in Fig. 5a. Our method achieved better accuracy for lesions of 

grade-5 compared with lesions of grade-3 or -4. As shown in the figure, 
inaccuracies generated by our system are mainly within one class dis
tance. Indeed, correct assessment of moderate to severe lesions might be 
difficult even for clinicians, as experience-based. This is particularly true 
in borderline lesions since a distinction between moderate (i.e., ≤ 69%) 
to severe (i.e., ≥ 70%) stenosis remains a challenging decision, poten
tially leading to false positive and false negative detections. 

When applying the algorithm to the multi-class classification (i.e., no 
stenosis vs. CAD 0-1 vs. CAD 3-4 vs. total occlusion), a mean Acc = 0.72 
was obtained (Table 3). This led to PPV, NPV and Sens of 0.73, 0.90 and 
0.75, respectively. The relative confusion matrix is shown in Fig. 5b. 
From the results of confusion matrix, we observed that 11 healthy cor
onary vessels (4.4%) were misclassified with obstructive CAD, and 19 
vessels with obstructive stenosis (5.9%) were predicted as having no 
stenosis. This might be explained considering that, despite the image 
quality was generally good for all coronary segment, some images could 
have a low signal-to-noise ratio, thus leading to misclassifications. 

Fig. 6 displays the results of the interobserver variability analysis. 
For the task of classifying obstructive stenosis (i.e., 0–2 vs. 3–5), no 
benefits were visible from the support of the algorithm (11% vs. 11%); 
on the contrary, while differentiating between classes of CAD-RADS, the 
variability in the visual assessment interpretation between expert 
readers was reduced from 26% to 14% when the clinical decision was 
supported by the automatic classification. 

In Fig. 7 are visualized some examples of the output of Grad-CAM 
analysis to highlight salient localizations of lesions predicted by our 

Table 2 
Diagnostic accuracy of the significant coronary stenosis (non-obstructive vs. obstructive stenosis) for the token mixer architecture (ConvMixer) and other models/ 
methods.  

Method AUC (95%CI) Acc PPV NPV Sens Params 

Stenosis 0-2 vs. 3–5 
ConvMixer 0.93 (0.87–0.98) 0.87 0.82 0.93 0.90 174.7 K 
ResNet50 0.60 (0.42–0.79) 0.54 0.49 0.88 0.93 23.5 M 
VGG16 0.90 (0.83–0.96) 0.85 0.83 0.85 0.78 14.7 M 
DenseNet121 0.69 (0.62–0.77) 0.60 0.53 0.82 0.85 7.0 M 
AtrousCNN 0.90 (0.85–0.95) 0.82 0.77 0.88 0.84 895.6 K 
InceptionV2CNN 0.88 (0.80–0.95) 0.82 0.83 0.84 0.75 813.4 K 
InceptionACNN 0.89 (0.81–0.97) 0.83 0.79 0.87 0.83 524.0 K 
InceptionBCNN 0.88 (0.82–0.95) 0.82 0.77 0.86 0.81 371.9 K  

Muscogiuri et al. [11] 0.78 (− 15%) 0.71 (− 16%) 0.69 (− 13%) 0.74 (− 19%) 0.82 (− 8%) – 
Zreik et al. [15] – 0.93 (+6%) 0.65 (− 17%) – 0.61 (− 29%) 340 K 
Denzinger et al. [17] 0.96 (+3%) 0.92 (+5%) 0.94 (+12%) 0.82 (− 11%) 0.96 (+6%) – 
Denzinger et al. [16] 0.92 (− 1%) 0.86 (− 1%) – – 0.89 (− 1%) – 
Tejero-de-Pablos et al. [14] – 0.81 (− 6%) – – 0.90 (+0%) – 
Han et al. [18] 0.87 (− 6%) 0.86 (− 1%) 0.73 (− 9%) 0.94 (+1%) 0.88 (− 2%) – 

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. (Note: means the results are not reported by that 
methods.) 

Fig. 4. Receiver operating characteristic curves for predicting coronary stenosis according to CAD-RADS classification and the overall Matthews Correlation Co
efficient (MCC): (a) class 0–2 vs. 3–5, (b) class 0 vs. 1–2, (c) class 3–4 vs. 5. 
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algorithm. Blue regions in the heatmap correspond to normal predicted 
regions in the coronary vessel, whereas hot colors highlight detected 
abnormal regions corresponding to stenosis. For most test cases, it was 
observed our algorithm was able to provide generally accurate 

qualitative localization of potential stenosis, although there is not al
ways full agreement with the reference annotations (see Fig. 7 bottom). 

To better understand the effectiveness of the proposed algorithm to 
model long-range dependencies to obtain global context information for 
CAD classification with comparted to atrous convolution or inception 
module, as shown in Fig. 8, we visualized the attention map generated 
by different models. It is possible to appreciate how the ConvMixer’s 
ability to model long-range dependencies results in a more accurate 
attention on stenosis regions and thus, potentially leading to better CAD 
classifications. Without an explicit capacity of covering in
terdependencies between spatial regions, the model may fail to capture 
coronary artery stenosis, shifting its attention on normal regions. 

4. Discussion and conclusions 

This study presented a new framework for automatic coronary ste
nosis classification. It was employed a token-mixer architecture that 
analyzes MPR view of a coronary artery segment to diagnose CAD ac
cording to the recent CAD-RADS score [3]. The algorithm is based on an 
isotropic structure that preserves the feature maps’ size throughout the 
network and enables the communications between spatial and channel 
locations using depthwise separable convolutions. Usually, in 
pyramid-shaped architectures, the number of filters increase gradually 
as the network goes deeper. The greater is the number of parameters, the 
larger would be the amount of training data to achieve high 

Table 3 
Results of the ConvMixer architecture and other models on coronary stenosis 
classification.  

Model AUC (95%CI) Acc PPV NPV Sens 

Stenosis 0 vs. 1–2 
ConvMixer 0.88 (0.81–0.96) 0.84 0.82 0.86 0.84 
ResNet50 0.53 (0.34–0.71) 0.56 0.50 0.92 0.98 
VGG16 0.73 (0.55–0.91) 0.70 0.61 0.88 0.92 
DenseNet121 0.54 (0.36–0.71) 0.56 0.50 0.92 0.96 
AtrousCNN 0.81 (0.70–0.92) 0.78 0.71 0.87 0.86 
InceptionV2CNN 0.81 (0.72–0.91) 0.74 0.67 0.88 0.89 
InceptionACNN 0.87 (0.80–0.94) 0.80 0.73 0.90 0.91 
InceptionBCNN 0.86 (0.81–0.92) 0.79 0.71 0.91 0.92 
Stenosis 3-4 vs. 5 
ConvMixer 0.99 (0.97–1.00) 0.96 0.87 0.99 0.97 
ResNet50 0.65 (0.38–0.92) 0.70 0.45 0.93 0.79 
VGG16 0.84 (0.73–0.96) 0.82 0.68 0.93 0.77 
DenseNet121 0.59 (0.34–0.83) 0.65 0.40 0.86 0.71 
AtrousCNN 0.91 (0.82–0.99) 0.87 0.64 0.97 0.90 
InceptionV2CNN 0.88 (0.78–1.00) 0.88 0.72 0.97 0.93 
InceptionACNN 0.91 (0.82–1.00) 0.91 0.81 0.96 0.85 
InceptionBCNN 0.91 (0.82–0.99) 0.89 0.79 0.95 0.84 
Stenosis 3 vs. 4 vs. 5 
ConvMixer – 0.67 0.70 0.83 0.68 
ResNet50 – 0.64 0.70 0.81 0.66 
VGG16 – 0.69 0.73 0.85 0.69 
DenseNet121 – 0.67 0.70 0.81 0.66 
AtrousCNN – 0.62 0.68 0.81 0.61 
InceptionV2CNN – 0.55 0.62 0.76 0.57 
InceptionACNN – 0.51 0.56 0.74 0.53 
InceptionBCNN – 0.55 0.58 0.77 0.55 
Stenosis 0 vs. 1–2 vs. 3–4 vs. 5 
ConvMixer – 0.72 0.73 0.90 0.75 
ResNet50 – 0.27 0.10 0.80 0.25 
VGG16 – 0.52 0.48 0.82 0.43 
DenseNet121 – 0.39 0.34 0.79 0.34 
AtrousCNN – 0.63 0.70 0.85 0.63 
InceptionV2CNN – 0.61 0.64 0.84 0.64 
InceptionACNN – 0.65 0.65 0.85 0.67 
InceptionBCNN – 0.65 0.68 0.85 0.67 

AUC, area under the curve; CI, confidence interval; PPV, positive predictive 
value; NPV, negative predictive value. 

Fig. 5. Confusion matrix of the automatic stenosis classification and the Matthews Correlation Coefficient (MCC) for: (a) class 3 vs. 4 vs. 5, and (b) class 0 vs. 1–2 vs. 
3–4 vs. 5. 

Fig. 6. Decision-making support system analysis: interobserver variability in 
stenosis assessment with and without the support of the automatic classification 
for CAD-RADS (see text for more details) to highlight the presence of obstruc
tive stenosis (i.e., 0–2 vs. 3–5), and to differentiate between classes (0 vs. 1–2 
vs. 3–4 vs. 5). 
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performance. This might be especially difficult for clinical tasks, as la
beling medical data is costly, and thus, hardly available. Moreover, 
reducing the number of parameters might control overfitting and thus 
greatly improved the testing accuracy. Inspired by the recent successful 
in computer vision of ViT, and by the more recently token mixer ar
chitectures, ConvMixer is able to encode long-range spatial information 
using exclusively convolutions with the effect of adding inductive bia
ses, and thus leading for high data efficiency. As shown in Fig. 8, in 
contrast to conventional approaches that enable to increase the 
respective fields, as atrous convolution or inception module, ConvMixer 
can manipulate long-range dependencies more efficiently and with less 
number of parameters, thus leading to a better accuracy/cost trade-off. 

Incorporating knowledge of larger region rather than just locally might 
help the algorithm to capture the whole vessel structure in order to 
detect and classify lesions from multiple sizes, thus contributing to the 
overall performance improvement. 

The results showed that our neural network was able to identify 
obstructive stenosis accurately (AUC = 0.93). From a clinical perspec
tive, the diagnosis of obstructive CAD is relevant considering that severe 
lesions may lead to adverse acute events as myocardial ischemia. 
Indeed, several studies have demonstrated that patients with moderate 
to severe stenosis had an increased risk of adverse cardiovascular events 
compared to non-obstructive CAD and, therefore, need further func
tional assessment and intensive treatment [55,56]. In contrast, patients 
with non-obstructive CAD are generally not related to myocardial 
ischemia and may not need further diagnostic work-up or extensive 
follow-up. CCTA has increasingly been used to exclude obstructive ste
nosis in suspected CAD due to its high accuracy and NPV [57]. If CCTA 
fails to detect obstructive CAD, optimal medical care is uncertain. 
Indeed, from a clinical perspective, FN are more dangerous than FP as 
subject to decreasing prevalence. While the cost of FP is generally 
limited to the cost of additional assessments and/or therapies, the cost of 
FN is, in this scenario, the risk of future acute coronary syndrome, as 
myocardial ischemia. Recently, Chang et al. [58] demonstrated that 
about 75% of the lesions that will develop acute coronary syndrome 
were non-obstructive stenosis. Our algorithm demonstrated to be good 
in discriminating segments with obstructive CAD from those without 
non-obstructive CAD or no CAD, reporting a NPV of 0.93. This may help 
the clinician in the diagnosis reducing the interobserver variability, to 
guide subsequent management and, thus making patient management 
more efficient. Further analysis revealed that even in the hardest sce
nario to differentiate between CAD-RADS 0 vs. 12 vs. 34 vs. 5, the NPV 
was still clinically relevant (0.90). Furthermore, when ≥50% luminal 
stenosis was diagnosed as CAD, we investigated whether the algorithm 
was able to identify coronary artery segments with a total occlusion, 
especially considering that patients in the extreme case (i.e., CAD-RADS 
5) always need invasive coronary angiography. Results validated the 
robust performance of the presented DL algorithm in detect total oc
clusion. However, the differentiation between moderate and severe 
stenosis remains challenging. This is not surpassing, considering that 
even for expert clinicians, image interpretability often results in 
non-negligible interobserver variability. 

The application of deep learning systems based on token mixer ar
chitectures in cardiac radiology might represent an important step in the 
detection and management of patients with suspected CAD. An auto
matic algorithm for accurate CAD classification can be helpful in sup
porting clinicians in their health-care delivery, reducing the time of 
analysis and facilitating the diagnosis of patients with significant ste
nosis that may benefit from medical therapy and further investigation. 
Furthermore, as the majority of patients who undergo CCTA for sus
pected CAD results in no evidence of obstructive CAD, automatic deep 
learning analysis might represent a helpful tool for reducing the number 

Fig. 7. Visual samples of Multiplanar Reconstruction (MPR) images (gray) and 
their corresponding visual attention map (color) generated by Grad-CAM [48]. 

Fig. 8. Visual comparison of attention maps generated by Grad-CAM [48] between ours (ConvMixer) and CNNs with either atrous convolutions (AtrousCNN) or 
Inception module (InceptionV2CNN, InceptionACNN, InceptionBCNN). 
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of patients who undergo further unnecessary invasive investigation. 
Results in Fig. 6 highlight the potential role that the deep learning might 
represent in improving the current clinical workflow, reducing the 
interobserver variability, and promoting for consistency diagnosis. 
Moreover, especially in small hospitals, due to the lack of expert radi
ologists or cardiologists, these algorithms might be a valid tool for 
assisting and training unexpert clinicians. 

Besides the reported results, this study has several limitations. First, 
the dataset was sourced by a single hospital adopting the same imaging 
protocol, thus limiting reproducibility of the deep learning algorithm. 
Moreover, although CCTA were acquired using two different scanners, it 
should be mentioned that these scanners are of recent generation and 
therefore, the algorithm may not generalize well on images obtained 
with other versions of scanners characterized by a lower level of signal- 
to-noise-ratio. Second, despite our sample size was comparable with 
those of previous works [14–16,18], a larger dataset would allow 
enhancing the conclusion about the effective role of the deep learning 
algorithm in the decision-making process. Despite the computationally 
efficient approach, a large, annotated dataset is still required due to the 
high number of classes to be classified. Indeed, in the most general 
evaluation only 4 classes (0 vs. 1–2 vs. 3–4 vs. 5) were considered, but 
still representing a step forward compared to many of the previous 
works. Third, image noise and potentially annotations errors of the 
CAD-RADS class may affect the algorithm accuracy. Indeed, using 
invasive coronary angiography as reference instead of visual estimation 
of CCTA may reduce CAD-RADS classification errors of expert readers. 
However, in clinical practice, this procedure is limited to severe lesions. 
Fourth, our algorithm was designed as a support in the evaluation of 
coronary stenosis, but the inherent limited explicability of the algorithm 
results might limit its applicability in the clinical practice. Indeed, the 
classification of the algorithm cannot provide intuitive explanations and 
reasoning of the diagnosis like clinical experts. To overcome this limi
tation, the visual attention maps generated by Grad-CAM were provided. 
By visualizing the attention maps generated by the Grad-CAM, clinicians 
can visualize potentially salient areas in the images focused by the al
gorithm to predict stenosis degree. 

As future extension of this work, instead of focusing only on the 
assessment of the most severe lesion of a given coronary tree, an object 
detection approach could be investigated to deal with the need of 
improving the quality of diagnostic accuracy. 

In conclusion, alongside the increased number of patients with sus
pected CAD and the need to reduce patients that undergoing further 
unnecessary invasive analysis, a deep learning algorithm that auto
matically evaluates the coronary stenosis degree according to the recent 
CAD-RADS classification score is proposed. The proposed algorithm is 
based on a token mixer architecture that by adopting depthwise sepa
rable convolutions, can combine both inductive biases of convolutions, 
with the capacity of encoding long-range dependencies of Transformers. 
With several experiments, we have shown that compared to traditional 
CNN-based architectures our algorithm achieved better performances 
with a smaller number of parameters, representing a support system to 
reduce the interobserver variability in coronary artery stenosis 
assessment. 
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