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Abstract
Detailed knowledge on the effects of air pollutants on
human health is a prerequisite for the development
of effective policies to reduce the adverse impact of
ambient air pollution. However, measuring the effect of
exposure on health outcomes is an extremely difficult
task as the health impact of air pollution is known to
vary over space and over different exposure periods. In
general, standard approaches aggregate the information
over space or time to simplify the study but this strat-
egy fails to recognize important regional differences and
runs into the well-known risk of confounding the effects.
However, modelling directly with the original, disaggre-
gated data requires a highly dimensional model with
the curse of dimensionality making inferences unstable;
in these cases, the models tend to retain many irrele-
vant components and most relevant effects tend to be
attenuated. The situation clearly calls for an intermedi-
ate solution that does not blindly aggregate data while
preserving important regional features. We propose a
dimension-reduction approach based on latent factors
driven by the data. These factors naturally absorb the
relevant features provided by the data and establish the
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740 GAMERMAN et al.

link between pollutants and health outcomes, instead
of forcing a necessarily high-dimensional link at the
observational level. The dynamic structural equation
approach is particularly suited for this task. The latent
factor approach also provides a simple solution to the
spatial misalignment caused by using variables with dif-
ferent spatial resolutions and the state-space represen-
tation of the model favours the application of impulse
response analysis. Our approach is discussed through
the analysis of the short-term effects of air pollution
on hospitalization data from Lombardia and Piemonte
regions (Italy).

K E Y W O R D S

Bayesian dynamic factor models, cardiovascular and respiratory
diseases, environmental epidemiology, impulse response analysis,
spatio-temporal models, structural equation models

1 INTRODUCTION

It is well known that exposure to high levels of air pollution can cause a variety of adverse effects
on human health. Although air quality has been generally improved over the last decades, many
recent epidemiological studies have consistently shown positive associations between low-level
exposure to air pollution and health outcomes. Hence, adverse health effects of air pollution, even
at relatively low levels, remain a public concern.

The statistical literature on health care research is very rich and includes a plethora of models
referring to different types of study designs. Most of these studies are usually based on time series
studies, developed both in single and multisites frameworks (e.g. Dominici et al., 2002; Blangiardo
et al., 2019; Peng et al., 2006), cohort studies (e.g. Dockery et al., 1993; Lepeule et al., 2012) and
areal unit studies (e.g. Bruno et al., 2016; Lee & Sahu, 2016; Lee & Shaddick, 2010; Lee et al., 2014).
However, because air pollution concentrations vary at fine spatio-temporal scales, quantifying the
impact of air pollution appears more as an inherently spatio-temporal problem (see, for example,
Greven et al., 2011; Knorr-Held, 2000; Lawson et al., 2012; Shaddick & Zidek, 2015).

The statistical literature on spatio-temporal designs, however, is sparse and, to the best of
our knowledge, only a few papers consider the short-term impact of single pollutants on single
diseases (see, for example, Choi et al., 2009; Liu et al., 2020). Only a limited number of papers
consider the joint long-term effects of multiple air pollutants on single diseases (see, for example,
Huang et al., 2018; Rushworth et al., 2014). As a result, this paper intends to contribute to the
existing literature on spatio-temporal models by assessing the short-term effects of multiple air
pollutants on multiple health outcomes. We mainly do this by exploiting the advantages of factor
models, which cope with many sites and variables via dimension reduction, and impulse response
analysis, which describes the temporal health effects of a given impulse on pollution.

Short-term effects are usually estimated by regressing daily counts of disease cases against
air pollution concentrations using ecological regression models. However, directly modelling
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GAMERMAN et al. 741

multivariate, spatially and temporally referenced data, poses challenges to statistical accuracy,
model interpretability and computational complexity. Aggregating the information over space,
or time, simplifies the study but it fails to recognize important regional or temporal interval
differences and runs into the well-known risk of confounding the effects. Here, as an interme-
diate solution, we introduce a Bayesian Generalized Spatio-Temporal Structural Equation model
(GST-SEM) which we feel is appealing on several grounds.

For example, it extends to the space-time framework the models in Liu et al. (2005) and Blan-
giardo et al. (2019), which have been developed in a pure spatial or temporal setting. Also, by using
a fully Bayesian framework, where the uncertainty is propagated through all model components,
it overcomes the shortcomings of the two-step approach of Huang et al. (2018).

Furthermore, we avoid the direct use of the health regression model for estimating the impact
of multiple correlated pollutants simultaneously. In practice, our model enables the modelling
of the temporal relationship between dependent (health data) and regressor (air pollution) vari-
ables in a latent space. The observed processes can thus be described by a potentially small set
of common dynamic latent factors with the advantage of overcoming the difficulties related to
collinearity and low signal-to-noise ratio issues usually found with multiple pollutants. As dis-
cussed in Dominici et al. (2010), Wilson et al. (2018), Huang et al. (2018) and Blangiardo et al.
(2019), this represents a challenge for scientific research and air quality management.

By modelling the spatial variation via spatially structured factor loadings, we entertain the
possibility of identifying clusters of spatial sites that share common temporal trends of risk. Also,
from time series studies, it is known that an important scientific objective is to understand how
the risk of hospitalization propagates over multiple days in the future for an increase of air pol-
lution (Peng et al., 2009). In the following, we show that our model allows for the application of
impulse response analysis at different levels of the hierarchy and that this facilitates the study of
the distribution of the risk of hospitalization both at global (i.e. whole area of interest) and local
(i.e. specific areal unit) scales for a given impulse over some or all the common latent factors
summarizing the pollutants.

Lastly, our model offers a simple approach suitable for handling variables and indicators mea-
sured at different scales and coming from independent sources. Health outcomes are typically
collected over a discrete, areal spatial domain whereas pollution levels are collected over a con-
tinuous, pointwise spatial domain. Linking the two different types of spatial resolution poses the
well-known spatial misalignment problem (Gotway & Young, 2002). A naíve solution for this
problem involves pre-specification of sets of point-level measurements to be related to areal mea-
surements (e.g. point level pollution measurements from a single areal unit are linked only to
health measurements from the same areal unit). Other approaches, based for example on block
average calculations, are discussed in Banerjee and Gelfand (2002) and Gelfand et al. (2001). Ren
and Banerjee (2013) also use factor analysis with spatial misalignment but their factors vary with
space and their misalignment is restricted to a single spatial resolution, designed mainly to handle
varying-location settings.

Our approach is simple as the relations between health data and pollutants are established
at a latent level, where the effect of space is marginalized. Therefore no pre-specified choices of
locations or block average calculations are required.

The remainder of the paper is organized as follows. In Section 2, we provide a brief descrip-
tion of the motivating example and the data used in this study. In Section 3, we introduce the
statistical model while Section 4.1 provides details on prior specification with particular reference
to the estimation of the factor loading matrices and common factors. In Sections 4.2 and 4.3, we
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742 GAMERMAN et al.

consider further inferential issues and related computational problems and in Section 4.4 we dis-
cuss possible uses of the model. In Section 5, we provide results from a simulation study and in
Section 6 we fit the model to real data. Finally, Section 7 concludes the paper with a discussion.

2 MOTIVATING EXAMPLE

This paper is motivated by the study of the association between urban pollution and hospital
admissions observed in Lombardia and Piemonte regions (Italy) in 2011. The hospital admissions
are aggregated by Health Authorities at regional level and, for a given health outcome, daily time
series are constructed by cause and by summing the number of emergency admissions in each
district. These data provide the basis for challenging modelling issues and, to our knowledge, this
is the first time that a statistical analysis has been conducted on them.

Pollution data refer to daily-average concentration levels of CO, NO2, PM10 and O3. Through-
out the paper, these variables are denoted as Xl, and the entire set of information for these data,
observed at a specific monitoring site, uj, and time point t, is denoted by

{
Xl(uj, t),uj ∈ x ⊆ 

2},
l = 1, … ,nx; j = 1, … ,Nxl ; t = 1, … ,T, where nx is the number of available pollutants, Nxl is
the number of sites available for each variable Xl, and T is the length of the time series.

It is common practice in spatial statistics to treat these variables as geostatistical data and,
as such, the Xl are collected at a number of monitoring sites1 within a region of interest x. A
relevant issue here is that, since the variables only share some of the sample locations in which
they have been observed, we work under a partial heterotopy framework (Wackernagel, 2003).
The number of the monitoring sites (Nxl ) available for each pollutant is 94 for CO, 168 for NO2,
96 for PM10 and 94 for O3. The percentage of missing data is reasonably small and is equal to
2.53% for CO, 3.02% for NO2, 2.94% for PM10 and 2.61% for O3. We assume that the missing-data
mechanism is completely at random and we let the model estimate missing data by borrowing
information across different variables.

Our model exploits the correlation between pollutants, temporally and spatially, due to the
processes by which they are formed. For example, PM10 as well as the other pollutants considered
here are driven by combustion processes and, in particular, diesel combustion. CO is a toxic gas
emitted as a result of combustion processes which, in urban areas, are almost entirely from road
traffic emissions, as is the nitrogen dioxide NO2. Associations between the levels of pollutants
are also due to their relations with meteorological conditions. The top panel of Figure 1a (see the
Supplementary Material, Section A) shows the heat maps of correlation coefficients computed
between pairs of pollutant time series, while the bottom panel shows the average of correlation
coefficients within and between pollutants. The figure shows that, for many pairs of time series,
the correlations are larger than 0.8. On average, the within-group correlations are around 0.7 for
CO, NO2, PM10 and 0.83 for O3. The between-group correlations also tend to be moderately high
and show that O3 is negatively correlated with the other pollutants. A deeper inspection of the cor-
relations suggests that the values decrease with distance between the monitors and that the rate
of decay of the correlations depends on the type of pollutant (see Figure 2a of the Supplementary
Material, Section A).

As regards health data, we work with population level summaries collected over time in a fixed
study area, y. Henceforth, the complete set of information for the health data will be denoted

1The monitoring networks are managed by the environmental agencies, ARPA, of Piemonte and Lombardia.
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GAMERMAN et al. 743

F I G U R E 1 Map of the 28 districts and the complete monitoring network (dots). The thicker border in the
middle separates Piemonte from Lombardia. The label within each district represents the acronymous of the
Aziende Sanitarie Locali [Colour figure can be viewed at wileyonlinelibrary.com]

as
{

Yk(si, t), si ∈ y
}

, k = 1, … ,ny; i = 1, … ,Ny; t = 1, … ,T,where ny is the number of con-
sidered diseases, and Ny is the number of areal units, si, within y. For our case study, health
data consist of counts of daily hospital admissions for cardiovascular disease (ICD-9, 390-429)
and all respiratory diseases (ICD-9:460-519) in 2011. The two health outcomes (i.e., ny = 2) are
available at Ny = 28 districts (i.e. Aziende Sanitarie Locali, ASL) and refer to citizens with age 65
or older. Note that the classification of the diseases is consistent with the International Classifi-
cation of Disease proposed in the APHENA (European and North American Approach) project
(Katsouyanni et al., 2009).

It is worth noticing in this study that, while all the series are aligned in time, pollution and
disease data result spatially misaligned because the geographical scales at which the data are
measured are different (i.e. x and y have different spatial structures). In particular, pollution
concentrations appear spatially sparse and are not available in all the areal units at which the
disease data are recorded. For our case study, this feature is clearly shown in Figure 1 where both
the monitoring sites and the 28 ASL of Piemonte and Lombardia are displayed.

Numerous studies have found positive associations between air pollution and hospital admis-
sions for cardiovascular and respiratory diseases. The effect of air pollution to health in a
population is usually represented by a concentration-response function, which is typically based
on Relative Risk (RR) estimates. In practice, the differences in the population sizes and demo-
graphics between areal units are accounted for by computing the expected number of disease
Ek(si, t)which is computed by external standardisation, using age and gender specific respiratory
admissions rates for Italy. Based on the pair (Yk(si, t),Ek(si, t)), a simple estimate of disease risks
in areal unit si, and time t, is represented by the standardized morbidity ratio (SMR), which is
defined as the ratio Yk(si, t)∕Ek(si, t), k = 1, 2.

Figure 3a (see the Supplementary Material, Section A) shows the map of correlation coeffi-
cients (ordered according to the longitude of the districts) computed between pairs of SMR time
series, both for cardiovascular and respiratory diseases. About 60% of the correlations within the
cardiovascular disease is larger than 0.45. The correlations for the respiratory disease are smaller;
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744 GAMERMAN et al.

F I G U R E 2 Map of the standardised morbidity ratio (SMR) for hospital admissions due to cardiovascular
(left) and respiratory (right) diseases in 2011. The lable within each district represents the acronymous of the
Aziende Sanitarie Locali [Colour figure can be viewed at wileyonlinelibrary.com]

only about 10% is larger than 0.45 and this is especially true for pairs of districts within Lombar-
dia. Considering the between-disease correlations, the percentage of values above 0.45 is equal to
25% and, again, it refers to pairs of ASL within Lombardia region.

To provide more insight on the way in which the disease risks spread out to surround-
ing districts, Figure 2 below shows maps of raw standardized morbidity ratios obtained by
averaging the SMR values across time. In general, the SMR maps show evidence of localized
spatial clusters and suggest that, on average, Lombardia appears as the region most at risk.
However, the strength of cross-sectional dependence is difficult to predict visually as the maps
show evidence of some pairs of neighbouring areal units exhibiting similar risks and others
having quite different values. Further analysis also gives an indication of overdispersion in
some districts, especially in Lombardy region. In fact, as shown in Figure 4a (see the Sup-
plementary Material, Section A), both for cardiovascular and respiratory diseases, the means
and the variances of hospital admissions computed (across time) at each district are quite
different.

Providing a spatio-temporal model useful to describe the spatio-temporal variability of the
disease risks and its association with multiple pollutants, while accounting for the spatial mis-
alignment and the presence of potential confounding factors that could bias the results of the
analysis, is the objective of the next sections.

3 THE MODEL

This section introduces the GST-SEM model as a tool for modelling the spatio-temporal associa-
tion existing between air pollution and hospital admissions. The model is developed within the
framework of Structural Equation Modelling (Bollen, 1989) which provides a very general and
convenient approach for multivariate statistical analysis.

There has been a growing literature developing different kinds of linear and nonlinear struc-
tural equation models and estimation methods for them. Our modelling approach outlines a
measurememt (response) model for a vector of observed variables and a structural model for a
corresponding set of latent variables. In particular, conditional on these latent variables, the
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GAMERMAN et al. 745

measurement model is a generalized linear model specified by a linear predictor, a link, and a
distribution from the exponential family. The structural model, instead, reflects the dynamics
of the latent variables through a set of regression and auto-regression equations. With the mod-
elling of the (multivariate) spatial and temporal dependence shown by the data, the GST-SEM
model can be viewed as a spatio-temporal generalization of the static structural equation model
of Joreskog (1981), though many other dynamic spatial models could be specified by imposing
zero restrictions on some model parameter matrices.

Assume that Y and X are two multivariate spatio-temporal processes observed at temporal
instants t = 1, 2, … , T and generic locations, s ∈ y and u ∈ x respectively. Assume also that X
is a predictor of Y , which thus represents the process of interest. For the two different processes,
the spatial sites s and u can denote the same location but, in general, they need not be the same.
Furthermore,y andx usually refer to different spatial domains.

Let ny be the number of observed variables for Y and nx the number of observed variables
for X . The most informative case is represented by the isotopic configuration where, for each
multivariate process, Y or X , all variables are ‘collocated’ and measured at all their respective sites.
In this case, let Y(s, t) = [Y1(s, t), … ,Yny(s, t)]

′ be the vector of the ny values of Y at site s and time
t. Equivalently, we write X(u, t) = [X1(u, t), … ,Xnx (u, t)]

′ for the vector of the nx values of X at
site u and time t. The opposite case is the completely heterotopic case (Wackernagel, 2003) where
not all the variables can be observed at the same site − this is especially true for X in our study.
For the sake of simplicity, we use here the notation for the isotopic case, though our modelling
approach allows to cope with the heterotopic case. Accordingly, the ny variables of Y are observed
at the same sites si, i = 1, … ,Ny and the nx variables of X are observed at sites uj, j = 1, … ,Nx.

Let ñy = ny × Ny and ñx = nx × Nx. At a specific time t, by using a site ordering, the (ñy × 1)
and (ñx × 1) dimensional spatial processes are denoted as Y(t) = [Y(s1, t)′, … ,Y(sNy , t)

′]′ and
X(t) = [X(u1, t)′, … ,X(uNx , t)

′]′. However, the data may also be ordered by variable. In this case,
we write Y(t) = [Y1(t)′, … ,Yny(t)

′]′ and X(t) = [X1(t)′, … ,Xnx (t)
′]′, where Yk(t) is the vector of

Ny observations for variable Yk, and Xl(t) is the vector of Nx observations for variable Xl. The two
orderings are connected by a suitable permutation matrix. The variable ordering is often more
convenient as it clearly shows the relevant contribution of each variable and the joint contribu-
tions of pairs of variables. Most of the models for regional data have been given in this form and,
henceforth, unless differently stated, a variable ordering is assumed.

The GST-SEM is a hierarchical model with first level measurement equations for the condi-
tionally independent variables,

Yk(s, t)|𝜂yk (s, t), 𝜎
2
yk

ind∼ Fy
(
𝜂yk (s, t), 𝜎

2
yk

)
, k = 1, … ,ny

Xl(u, t)|𝜂xl (u, t), 𝜎
2
xl

ind∼ Fx
(
𝜂xl (u, t), 𝜎

2
xl

)
, l = 1, … ,nx,

where 𝜎2
yk

and 𝜎2
xk

are dispersion parameters. In general, the distributions Fy and Fx are allowed
to be from any exponential family distribution. By choosing appropriate canonical link func-
tions, the specification of the first level is completed with the specification of the following linear
predictors

gy[𝜂yk (s, t)] = 𝜇yk (s, t) + 𝜙yk (s, t)

= 𝜇yk (s, t) +
m∑

i=1
hyk ,i(s) fy,i(t) (1)
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746 GAMERMAN et al.

gx[𝜂xl (u, t)] = 𝜇xl (u, t) + 𝜙xl(u, t)

= 𝜇xl (u, t) +
r∑

i=1
hxl,i(u) fx,i(t), (2)

where 𝜇yk (s, t) and 𝜇xl (u, t) are fixed effect terms representing the large-scale spatio-temporal vari-
ability of the processes, and 𝜙yk (s, t) and 𝜙xl(u, t), are random effects introduced to capture any
residual spatio-temporal autocorrelation.

Equations (1) and (2) show that the random effect terms can be rewritten as truncated expan-
sions in which, hyk ,i(s) and hxl,i(u) are factor loadings of variables Yk and Xl, and fy,i(t) and fx,i(t) are
corresponding common factors. In general, we expect that m << ñy and r << ñx. These equations
also state that while the factor loadings are functions of space, the common factors are temporally
dependent. Note also that, in matrix form, Equations (1) and (2) can be rewritten as

gy
[
𝜼y(t)

]
= 𝝁y(t) +Hy fy(t), gx

[
𝜼x(t)

]
= 𝝁x(t) +Hx fx(t)

where Hy and Hx are (ñy ×m) and (ñx × r) matrices of factor loadings.
In the second level of the hierarchy we model the dynamics of the common factors through

the following equations

fx(t) =
s∑

i=1
Difx(t − i) + vx(t) (3)

fy(t) =
p∑

i=1
Bify(t − i) +

q∑

i=0
Cifx(t − i) + vy(t) (4)

where Bi, Ci and Di are coefficient matrices of dimension, (m × m), (m × r) and (r × r), respec-
tively. Both vx(t) and vy(t) are zero mean normal error processes, i.e. vx(t) ∼ N(0,𝚺vx ) and vy(t) ∼
N(0,𝚺vy).

Model completion requires specific forms for 𝝁y(t) and 𝝁x(t). The simplest specifica-
tion of the mean components assumes the form of a linear regression function to take
care of the effects of confounders, that is 𝜇xl (u, t) =

∑c
i=1

∑g
j=0𝛽xl,ij(u) zi(u, t − j), and 𝜇yk (s, t) =∑c

i=1
∑g

j=0𝛽yk ,ij(s) zi(s, t − j), where zi(⋅, t), i = 1, … , c are observed covariates or components rep-
resenting seasonal and long-term trends introduced to take care of the effects of unmeasured
confounders (Peng et al., 2006; Shaddick & Zidek, 2015). Note that the zi(⋅, t) could also be
smoothed versions of measured confounders represented by natural cubic splines with specified
degree of freedom (see, for example, Bob et al., 2013).

Equations (1)–(4) give the complete formulation of the GST-SEM. More insight on the rela-
tionship exiting between the two sets of variables can be obtained from the following Figures 3
and 4 which show a simple example of path diagrams associated with the model.

Figure 3 shows the functional relationships between two latent factors (i.e. r = 2) and the cor-
responding measured air pollutants. The path also assumes that fx(t) follows a first order VAR
process — that is, s= 1 in Equation (3). However, the left side of Figure 4 shows the measurement
part for the health variables which, here, are assumed to be represented by three factors — that
is m = 3. The model completes with the structural part which provides a picture of the functional
relationship among the latent factors, fy(t) and fx(t), represented by Equation (4), with p = 1 and
q = 0. A feature of both path diagrams is that they clearly show that the factor loadings are writ-
ten as function of space. As a result, one might expect they should be able to provide a picture of
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GAMERMAN et al. 747

F I G U R E 3 This path diagram is for a 2-factor model (r = 2) with nx = 4 measured pollutants, where each
variable loads on all the factors. The dynamics of the factors in fx(t) is represented by a first order VAR process
(s = 1) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 This path diagram is for a 3-factor model (m = 3) with ny = 2 measured health data, where
each variable loads on all the factors. The dynamics of the factors in fy(t) is represented by a VARX process with
p = 1 (i.e. only one lag for the autoregressive component) and q = 0 (i.e. instantaneous effect of fx(t) onto fy(t)).
Some of the arrows in the structural part have been omitted to facilitate the representation of the impacts [Colour
figure can be viewed at wileyonlinelibrary.com]

the spatial distribution of the common factors fy(t) and fx(t). In this way, the model appears to be
spatially descriptive in that it can be used to identify possible clusters of locations whose tempo-
ral behavior is primarily described by a potentially small set of common dynamic latent factors.
Finally, we notice that the path diagrams are specified here according to an exploratory factor
analytic approach, where each variable loads on all the factors. However, further specific patterns
of the factor loadings can be favoured with the specification of flexible and spatially structured
prior information through the columns of the factor loading matrices Hy and Hx.
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748 GAMERMAN et al.

One clear advantage of the model is that, in the context of increasingly high-dimensional time
series, the temporal relationship between dependent and regressor variables can be modeled in
a reduced latent space. Equation (4), which represents the structural equation of the model, is in
the form of a Vector Autoregressive model with exogenous variables (VARX, Lutkepohl, 2005),
where the dynamics of the components in fy(t) are also controlled for the effects of fx(t). While
Equations (1) and (2) allow to model independently Y and X at their own spatial scales,
Equation (4) models their association in a latent space, which is independent of the spatial struc-
ture of the two processes. By marginalizing the effect of space, Equation (4) offers a strategy to
overcome the spatial misalignment problem of regressing health and air pollution data. Also,
with the help of Equation (3), if required, temporal forecasts of the variables of interest, Y , can be
obtained by modelling the dynamics of a few common factors in fy(t). We finally note that, differ-
ently from Rushworth et al. (2014), our modelling approach allows to take into account sources
of uncertainty related to the modelled air pollutant concentrations and the factor loadings.

4 BAYESIAN INFERENCE AND COMPUTATIONS

4.1 Prior specification

In this section, we discuss the choice of model priors with particular reference to issues that arise
in the estimation of the factor loading matrices and common factors. In practice, assumptions are
needed to reduce the total number of possible parameters and appropriate choices of these priors
allows us to regularize our inference.

Priors for factor loadings
The literature contains a variety of methods for specifying the common factors and the factor

loadings. One approach places structure only on the estimated factors, leaving loadings free. For
example, the factors could be the first few principal components, which are restricted to be mutu-
ally orthogonal, while the loadings are left unrestricted. Empirical orthogonal functions (Wikle
& Cressie, 1999) and principal kriging splines (Fontanella et al., 2019; Sahu & Mardia, 2005),
represent typical examples of this approach in the framework of spatio-temporal models.

A second approach, conversely, places structure only on the loadings, leaving factors free. To
ensure identifiability, one can take independent normal priors for each element of the factor load-
ing matrix and fix certain loadings to constant values. A widely used method is to restrict the
factor loading matrix to be an upper or lower triangular matrix with strictly positive diagonal
elements (Lopes & West, 2004). Further restrictions may also be imposed on the factor loading
matrix to allow for dedicated measurements. These restrictions impose patterns of zeros in the
factor loading matrix and postulates a priori the relationship between the observed variables and
their underlying latent factors. This structure is often assumed in practical problems because it
allows for simple interpretation of the underlying factors (Liu et al., 2005; Tsay, 2014). In prac-
tice, one can think of such hard constraints as the outcome of a Bayesian analysis with spiked
priors. However, one may want to impose soft constraints, shrinking estimates in certain direc-
tions without forcing them. That is, one may want to perform Bayesian analysis incorporating
qualitative prior information, so that likelihood information is blended with prior information
rather than simply discarded. By following this approach, which is in between posing no restric-
tions and forcing restrictions, some structures may be favoured probabilistically instead of being
imposed.
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GAMERMAN et al. 749

Let hxi =
(

h′x1i,h
′
x2i, … ,h′xnx i

)′
denote the i-th column of Hx in variable order, so that

hxji =
(

hxji(u1), hxji(u2), … , hxji(uNx )
)
′. In the context of spatial analysis, useful restrictions may

refer to functional forms that impose smoothness of loadings across the sites. If X(u, t) is an
nx-dimensional continuous spatial process observed on x, we model the elements of each
column of the measurement matrix Hx as realizations from a multivariate Gaussian spatial pro-
cess with correlation structure defined through the linear model of coregionalization (LMC,
Wackernagel, 2003).

Define hxi(u) = Ai𝝎(u), i = 1, 2, … , r, where Ai is a (nx × nx) full-rank lower-triangular
matrix containing scale and regression parameters for LMC (see, Schmidt & Gelfand, 2003),
and 𝝎(u) is a spatial process with nx independent components, 𝜔k(u), k = 1, … ,nx, each with
mean 0, unit variances and stationary correlation functions, 𝜌(|u − u′|, 𝜑ki). Then, the covariance
matrix of hxi can be written as

𝚺hxi = P′
( nx∑

k=1
Rk(𝜑ki)⊗ akia′ki

)

P, i = 1, 2, … , r

where aki represents the k-th column vector of Ai and P is a suitable permutation matrix used to
respect the variable ordering of the data. Following Schmidt and Gelfand (2003), for the elements
of Ai, we assign inverse gamma prior distributions to the scale parameters and normal priors,
with mean zero and a large variance for the regression parameters. One also needs to assign priors
on the set, say 𝜑x, of the range parameters of the spatial processes 𝝎(u). The prior for the ranges
depends upon the choice of correlation function. Following Ren and Banerjee (2013), we use an
exponential correlation function and set prior distributions for the range parameters relative to
the size of their domains. If X(u, t) is univariate (i.e. nx = 1), then the elements of each column of
the measurement matrix Hx can be modeled as realizations from r univariate Gaussian processes,
as described in Lopes et al. (2008).

Note that, through the use of spatially varying factor loadings, we allow the model to be spa-
tially descriptive. For simplicity, assume only NO2 is observed. We may have areas in which some
factor loadings may be large, indicating that, for example, the traffic pollution is particularly high
in NO2, while, in other areas, they may be small indicating that traffic pollution is relatively low
in NO2. Differently, in the case of spatially constant factor loadings, their map would suggest that
traffic produces a fixed amount of NO2 relative to its abundance regardless of location.

The modelling of the spatial correlation for the factor loadings hyi, i = 1, … ,m, correspond-
ing to multivariate spatial processes observed on a lattice, is also developed within the LMC. In
this case, however, the univariate latent spatial processes 𝜔j(s), j = 1, … ,ny, defined ony, are
in the form of conditional autoregressive CAR processes, also known as Gaussian Markov ran-
dom fields, where the spatial dependence is based on a 0/1 contiguity adjacency matrix W −
with elements equal to 1 if two districts share a common border and 0 otherwise − and the
spatial autocorrelation parameters 𝜌ji, j = 1, … ,ny; i = 1, … ,m. Within the LMC, we thus set
Rj(𝜌ji) = (W0 − 𝜌yji W)−1

, j = 1, … ,ny, where W0 = diag(W1Ny ). As for the prior elicitation of
the model parameters, we consider a uniform distribution in (0, 1) for the spatial autocorrelation
parameters and inverse gamma prior distributions for the scale parameters in matrix Ai.

Priors for common latent factors
Assume, without loss of generality, that p ≥max(s, q), Ci = 0 for i > q and Di = 0 for i > s. By

means of an appropriate concatenation of the common factors, i.e. f(t) = [fy(t)′ fx(t)′]′, it is useful
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750 GAMERMAN et al.

to specify the joint generation process of Equations (3) and (4) as a VAR(p) process (Lutkepohl,
2005)

f(t) = 𝚽1f(t − 1) + · · · +𝚽pf(t − p) + v(t)

where

𝚽i =

[
Bi Ci

0 Di

]

, v(t) =

[
vy(t)
vx(t)

]

.

Let 𝜶(t) = [f(t)′ f(t − 1)′ … f(t − p + 1)′]′. Then, the evolution of the joint common factors
can be represented by the following transition equation

𝜶(t) = 𝚪𝜶(t − 1) + 𝜻 , 𝜻 ∼ N(0,𝚲) (5)

where 𝚪 is a (k × k) block coefficient matrix, with k = (m + r)p, characterizing the dynamic
evolution of the joint common factors and 𝚲 is a covariance matrix with elements 𝜆ij, i, j =
1, … , k. The prior for the latent process 𝜶(t) is completed by 𝜶(0) ∼ N(a0,𝚺0), with known
hyperparameters a0 and 𝚺0.

Equation (5) represents exactly the dynamic evolution of a standard vector autoregressive pro-
cess for which several priors can be elicited for the autoregressive parameters. In general, these
differ in relation to three issues. First, VARs are not parsimonious models. Without prior informa-
tion, it is hard to obtain precise estimates of many coefficients and thus, features such as impulse
responses and forecasts will tend to be imprecisely estimated (i.e. posterior or predictive standard
deviations can be large). For this reason, it can be desirable to ‘shrink’ forecasts and prior infor-
mation offers a sensible way of doing this shrinkage. Second, the priors used with VARs differ
in whether they lead to analytical results for the posterior and predictive densities or whether
MCMC methods are required to carry out Bayesian inference. Third, the priors differ in how eas-
ily they can handle departures from unrestricted specifications (e.g. those allowing for different
equations to have different explanatory variables or allowing for VAR coefficients to change over
time).

Priors which are enjoying increasing popularity, which can be thought of as automatically
selecting a restricted VAR (Fernandez et al., 2001), that are flexible enough in prior elicitation and
simple in computation, are known as Stochastic Search Variable Selection (SSVS) priors (George
& McCulloch, 1993). These priors favour shrinkage and lead to restricted VARs in an automatic
fashion that requires only minimal prior input from the researcher. Posterior computation in the
VAR with SSVS prior is also simple as it can be carried out using a Gibbs sampling algorithm.
Let 𝜸 be a parameter vector collecting all the coefficients in 𝚽i, i = 1, … , p, and let 𝛾j denote its
generic element. Then, on each coefficient, SSVS specifies a hierarchical prior which is a scale
(variance) mixture of two Normal distributions

𝛾j|𝛿j ∼ (1 − 𝛿j)  (0, 𝜅2
0j) + 𝛿j  (0, 𝜅2

1j)

where 𝛿j is a dummy variable. If 𝛿j equals one then, the autoregressive parameter, 𝛾j, is drawn
from the second Normal and if it equals zero then 𝛾j is drawn from the first Normal. The prior is
hierarchical since 𝛿j is treated as an unknown parameter and estimated in a data-based fashion.
The SSVS aspect of this prior arises by choosing the first prior variance, 𝜅2

0j, to be small (so that
the coefficient is constrained to be virtually zero) and the second prior variance, 𝜅2

1j, to be large
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GAMERMAN et al. 751

(implying a relatively noninformative prior for the corresponding coefficient). George et al. (2008)
discuss a default semi-automatic approach to choosing the two variances which requires minimal
subjective prior information from the researcher. Hereafter, to take care about model sparsity (in
the structural part) and model selection, we shall focus on SSVS.

Other Priors
We place a non-informative multivariate normal prior with mean 𝝁

𝛽⋅
and variance 𝚺

𝛽⋅
on the

slope parameters of the linear regression functions which parametrize 𝝁y(t) and 𝝁x(t). For all the
model variances we have assigned independent Inverse Gamma prior distributions, with infinite
variance and means equal to 1. Exceptions refer to 𝚺vx and 𝚺vy in 𝚲 which are identity matrices
for identifiability conditions.

4.2 Posterior inference and computational issues

Let𝚯 be the vector containing all unknown parameters in the model. Under the Bayesian frame-
work, we make use of Markov chain Monte Carlo (MCMC) methods to obtain samples from the
posterior distributions (see, for example, Gamerman & Lopes, 2006). Computationally, we only
need to calculate the full conditionals of each parameter given all other parameters, which is
usually not hard. A Metropolis-Hastings algorithm (Gamerman & Lopes, 2006), however, is used
when the full conditionals are not of a known form, and therefore there is not a straightforward
way to draw samples from them.

An important part of the estimation refers to the sampling of the common factors. For Gaus-
sian data (i.e. identity link function), posterior inference for the proposed class of spatial dynamic
factor models is facilitated by the fact that standard MCMC algorithms for dynamic linear models
can be easily adapted to our model specification such that posterior and predictive analysis are
readily available (Ippoliti et al., 2012; Valentini et al., 2013). Conditional on r and m, the number
of common factors, the MCMC scheme described in Lopes and West (2004) can be easily adapted
where the common factors are jointly sampled via the well-known forward filtering backward
sampling (FFBS) scheme (Carter & Kohn, 1994; Frühwirth-Schnatter, 1994). However, Bayesian
computation of the GST-SEM for non-normal data is more challenging. An efficient proposal is
difficult to obtain. Especially for time series with large T, sampling of the common factors is com-
putationally demanding. One possibility is to consider a block sampling scheme that combines
techniques such as extended Kalman filter and block sampling, as proposed in Lopes et al. (2011).
Another possibility is to consider a dynamic extension of the IWLS algorithm for maximum like-
lihood calculation in generalized linear models, as proposed in Gamerman (1998). A dynamic
extension of block updating algorithms described in Knorr-Held and Rue (2002) may also be a
possibility. However, these solutions are computationally expensive in our context and are not
feasible in practice. A more computationally efficient solution will be discussed in Section 6.

4.3 Model selection

Selecting an appropriate GST-SEM fit to a data set has some similarities to the problems in choos-
ing a dynamic or spatial factor model for temporal or spatial series. For simplicity, in this paper
we first rely on a particular form of the Deviance Information Criterion (DIC) which is particu-
larly suited for latent variable models (Celeux et al., 2006). In this case, the likelihood function
f ([YX]|𝚯) is evaluated conditional on a fixed number of common factors and the effective number
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752 GAMERMAN et al.

of parameters, which corrects the posterior mean deviance, E𝚯[−2 log f ([YX]|𝚯)], is given by the
posterior variance of the deviance, 2Var𝚯[log f ([YX]|𝚯)], see Celeux et al. (2006) for more details.

Finally, we also check the adequacy of the model fits by evaluating the Bayesian p-values com-
puted on two different statistics. The first, examines how well the model fits the observed data
based on the quantity Pr(yk(s, t) ≥ ŷk(s, t)), where ŷk(s, t) is from the predictive distribution. The
second, computes the Chi-square statistic

𝜒

2
y =

∑

k,s,t

(yk(s, t) − 𝜂k(s, t))2

𝜂k(s, t)
,

and then evaluates the Bayesian p-value, Pr(𝜒2
y ≥ 𝜒

2
ŷ ), where 𝜒2

ŷ is the same as 𝜒2
y , but based on

ŷk(s, t) - see for example Marshall and Spiegelhalter (2003).
Bayesian p-values close to 0.5 indicate that the generated data are compatible with the model

while, as suggested by Tzala and Best (2008), values close to the boundary of the unit interval are
an indication of poor fit.

4.4 Uses of the model

Forecasting and Interpolation
Since the GST-SEM is highly structured and flexible, it can be used to solve most of the

statistical problems commonly encountered in the analysis of spatio-temporal data.
Time series is primarily concerned with forecasting into the future the variable of inter-

est. The state space model proposed here enables easy calculation of the predictive distribution
p(Y(T + k)|Y, X) and details can be found in Lopes et al. (2011).

A spatial analysis of the pollutant variables may also require the interpolation of Xj at
ungauged sites. From Equation (4), we know that this is not a necessary step to model the rela-
tionship existing between X and Y ; however, in practice, spatial interpolation may be useful both
for descriptive purposes and for multiplier analysis− see below. Interpolating a pollutant over the
districts of interest, for example, is relatively easy and requires first the interpolation of the condi-
tionally independent column random vectors, hxi, of Hx. A full explanation of the procedure for
the univariate case can be found in Ippoliti et al. (2012). A generalization of the procedure to the
multivariate case can be found in Schmidt and Gelfand (2003) and we refer to them for detailed
results.

Multiplier Analysis
This type of analysis (Lutkepohl, 2005) allows to describe how the disease risks observed at

specific areal units change over time to an increase of the pollutant levels, thus providing an
informative tool for characterizing the time course of risk of hospitalization. This is a question
that may be raised by policymakers who, in general, are often interested in knowing how the
occurrence of a certain future event would affect the future values of the variable of interest.

While simple in composition, effectively using a multiplier analysis in a spatio-temporal
design can be challenging for at least two reasons. For example, obtaining precise estimates of the
response function is difficult because the covariates are often highly collinear resulting in inflated
standard errors. Furthermore, one may find it difficult to interpret the shape of the impulse
response function as an effect of a pollution control policy since, in practice, policymakers can
only control for general factors (e.g. traffic, combustion, etc), and not for single pollutants.
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GAMERMAN et al. 753

The procedures listed below provide details on how to perform multiplier analysis within our
modelling framework and describe possible strategies to overcome the drawbacks listed above.
In particular, we show that the model allows to investigate the relation between the risk of hos-
pitalization and air pollution by tracing out the effect of an exogenous shock in all or some of the
common factors of X . This approach, allows to estimate impulse response functions at different
levels of the hierarchy.

1. Second-level Impulse response analysis. In this case, multiplier analysis is performed at
the structural level of the model. The impulse responses are thus the coefficients in the vector
moving averaging (VMA) representation of Equation (5). With VAR models, the parameters
themselves, as opposed to functions of them such as impulse responses, are rarely of direct
interest. In addition, the fact that there are so many of them makes it hard for the reader to
interpret tables of VAR coefficients. Applying an impulse response analysis at the structural
level of the model may thus be useful to understand which of the causal factors, fx,i(t), have
more impact on the fy,k(t).

2. Impulse response analysis for the Y variables. An important part of the analysis is to
quantify the day-to-day changes in the relative risk of hospitalization as an effect of the
impulse on the causal factors fx,i(t). This can be done by estimating the impulse response, say
IRyk (s, t), through the VMA representation of the linear predictor in Equation (1) - see also
Equation (6) below — which, in turn, depends on the VMA form of the state Equation (5).

3. Impulse response analysis for the X variables. The multiplier analysis concludes by study-
ing the response of the pollutant variables as a result of a unit shock in the causal factors, fx,i(t).
In this context, the following steps describe how to estimate the impulse response function of
Xl(u, t) within a generic area unit s:
a. write Equation (3) in its VMA form and substitute it into Equation (2) to estimate the

impulse response of Xl(u, t), denoted IRxl (u, t), as an effect of exogenous impulses on the
uncorrelated causal factors fx,i(t);

b. estimate the day-to-day changes in air pollution levels within the district of interest s. The
desired impulse response, IRxl(s, t), of Xl, for area unit s is defined as

IRxl (s, t) = ∫u∈s
IRxl (u, t) du,

which is the average of the responses across a fine grid within the areal unit s, computed
by using Monte Carlo integration.

5 SIMULATION

An initial assessment of the proposed methodology is performed in a simulation framework in
which the health data and pollutants are generated from Poisson and Gaussian distributions
respectively. The simulation is conducted to ensure appropriate identification of the features of
the generating model and, in particular, of the second-level impulse response functions. Recov-
ering the true path of these functions is of particular interest as the IR coefficients provide an
estimate of the short-term effects of environmental exposures on daily hospitalization.

To keep the complexity of the simulation at a relatively simple level, the data are generated
from a factor model with ny = nx = 2 and measurement equations
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754 GAMERMAN et al.

ln
[
𝜼y(t)
E(t)

]
= 𝝁y(t) +Hy fy(t) + 𝝐(t),

x(t) ∼ N
(
𝝁x(t) +Hx fx(t); 𝜎2

x Ir
)

where Ny = 28, Nx = 100, T = 200, r = 3, m= 2, 𝜎2
x = 4, 𝝐 ∼ N(0, 𝜎2

𝜖

I2) and 𝜎2
𝜖

= 0.10. The expected
numbers of disease are the same as those used in the application section. For simplicity, the
mean terms are assumed constant across the variables, that is 𝜇xk = 30 and 𝜇xk = 2, k = 1, 2. The
factor loadings are considered as realizations of zero mean Gaussian processes with full-rank

lower-triangular matrices Ax = Ay =
[

1 0
0.5 1

]
. For the X variables, an exponential correlation

function with spatial dependence parameter 𝜑 = 10 is considered for the latent spatial processes
𝜔k(u), k = 1, 2. For the Y variables, instead, we assume that the two latent spatial CAR processes
both have a spatial correlation parameter equal to 𝜌y = 0.5. The variances of the factor loadings are
also considered constant with 𝜎2

hyi
= 0.1, i = 1, 2 and 𝜎2

hxj
= 0.5, j = 1, 2, 3. Finally, the structural

Equations (3) and (4) for the common factors are based on the following matrices:

C0 =

[
0.75 0 0
1.50 0 0

]

, C1 =

[
0.75 1.50 0.50
0.50 0 0

]

,

C2 =

[
0 −0.50 −1.50
0 0.50 0

]

, C2 =

[
0 0 0

−0.50 0 0

]

,

B1 = 0.5I2, Bi = 0, i = 2, 3, 4;D1 = 0.5I3, D2 = 0.2I3 and Di = 0, i = 3, 4.
Using this parametrization, the simulated IR functions represented (red colour) in Figures 5

and 6 show the short-term impacts of the common factors fxi(t), i = 1, 2, 3, of the pollutants on the
common factors fyj(t), j = 1, 2, of hospitalizations. As it can be noticed, the proposed parametriza-
tion underlays different latencies and oscillations of the impulse response functions, including a
scenario of mortality displacement in which the IR function is first positive at early lags and then
negative at later lags (Welty et al., 2009) — see the bottom-left panel of Figure 5. Furthermore,
based on 200 replicated datasets and 50,000 draws of the MCMC algorithm for each of the sim-
ulated datasets, all the subplots show the posterior mean IRFs (black) averaged across the 200
simulations with the 95% confidence bands (grey area). As discussed in Section 4.1, the model
parameters of the state equation have been estimated by using the spike and slab procedure with
s, p and q fixed a priori at the value of 4. A visual inspection of the results indicates that the MCMC
procedure performs consistently well and that we are able to retrieve the different patterns and
the different delayed responses of hospitalization. Although not shown here for conciseness, both
the other model parameters and the spatial patterns of the factor loadings are also well estimated.

6 SPATIO-TEMPORAL ANALYSIS OF HOSPITAL
ADMISSIONS

In this section, we continue the statistical analysis of the data described in Section 2 and consider
whether the GST-SEM is useful to understand how the pollutants impact on hospital admissions
for respiratory and cardiovascular diseases.
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GAMERMAN et al. 755

F I G U R E 5 Posterior mean IR functions (black) and 95% confidence bands (grey) showing the short-term
impacts of the common factors fxi

(t), i = 1, 2, 3 on the first common factor fy1
(t). The true IR functions are

represented in red [Colour figure can be viewed at wileyonlinelibrary.com]

Poisson data are very common in public health research. Hence, we assume Yk(s, t) ∼
Poisson(𝜂yk (s, t)) and consider a regression with a log link function, such that

ln
[
𝜂yk (s, t)
Ek(s, t)

]
= 𝜇yk (s, t) +

m∑

i=1
hyk ,i(s) fy,i(t) + 𝜖k(s, t), t = 1, … ,T (6)

where Ek(s, t), assumed fixed and known, serves as offsets in the model. The final component,
𝜖k(s, t), is a zero mean normal pure error term with variance 𝜎2

𝜖k
, introduced to accommodate for

the overdispersion usually encountered in epidemiological studies — see the exploratory analysis
of Section 2. As it is known (Banerjee et al., 2008), in the case of non-Gaussian data models, as
long as the structure on the covariance associated with 𝜖k(s, t) is simple, by including this residual
error process one can also implement an efficient MCMC estimation. In fact, reparametrizing
the process 𝜙yk (s, t) as in Equation (6), both the trend parameters in 𝜇yk (s, t) (see below) and the
spatio-temporal process𝜙yk (s, t) can be updated jointly by an efficient conjugate Gibbs step within
the overall MCMC.

Regarding the measurement equation for X we note that is convenient to operate on a log-
arithmic scale to reduce the variability and to make data conform more closely to the Normal
distribution. In principle, each pollutant could be included separately in Equation (6) in order to
identify its relative impact on the health data. However, since air pollution measurements exhibit
strong correlations (see Section 2), it seems inappropriate to include them directly in the model.
Therefore, assuming Xl(u, t) ∼ N(𝜂xl (u, t), 𝜎

2
xl(u)), l = 1, … , 4, we model the mean as

𝜂xl(u, t) = 𝜇xl (u, t) +
r∑

i=1
hxl,i(u) fx,i(t). (7)
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756 GAMERMAN et al.

F I G U R E 6 Posterior mean IR functions (black) and 95% confidence bands (grey) showing the short-term
impacts of the common factors fxi

(t), i = 1, 2, 3 on the second common factor fy2
(t). The true IR functions are

represented in red [Colour figure can be viewed at wileyonlinelibrary.com]

The dynamics of the common factors, fx,i(t) and fy,i(t), are modelled in the second level of the
hierarchy through the structural Equations (3) and (4) - see below.

The structure of the large-scale variation follows typical specifications discussed in many time
series studies and include time varying trends, the effects of temperature (temp) and humidity
(hum) and dummy variables for calendar effects −, that is, weekend (WE) and festivities (FE). In
particular, the mean term of Y takes the following form

𝜇yk (s, t) = 𝛽yk ,0(s) + 𝛽yk ,1(s)We(t) + 𝛽yk ,2(s)Fe(t) + ns1(temp) + ns2(hum)

+ 𝛽yk ,5(s) temp(t)0−2 + 𝛽yk ,6(s)hum(t)0−2 + ns
(

t, 𝜷xj,7(u)
)

(8)

where ns1(temp) = ns
(
temp(t), 𝜷yk ,3(s)

)
, ns2(hum) = ns

(
hum(t), 𝜷yk ,4(s)

)
and ns

(
t, 𝜷xj,7(u)

)
,

denote natural cubic splines with 3 degrees of freedom, and temp(t)0−2 = 1∕3
∑2

j=0temp(t − j) and
hum(t)0−2 = 1∕3

∑2
j=0hum(t − j), are simply running means of the same variables for the specified

lengths (Peng et al., 2009). We note that several daily time series of temperature and humidity are
available over the two regions. However, because Lombardy and Piemonte tend to show very sim-
ilar climate conditions, these time series appear highly correlated (in many cases the correlation
is above 0.9) and, hence, only the averaged (across sites) time series of temperature and humidity
were considered here.

For X the mean component takes a similar form and is given by

𝜇xl (u, t) = 𝛽xl,0(u) + 𝛽xl,1(u)We(t) + 𝛽xl,2(u)Fe(t) + ns
(
temp(t), 𝜷xl,3(u)

)

+ ns
(
hum(t), 𝜷xl,4(u)

)
+ ns

(
t, 𝜷xl,5(u)

)
. (9)

As it can be noticed, the mean functions allow for spatial varying coefficients. In general, esti-
mation of these parameters can be performed by using structured priors as shown, for example,
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GAMERMAN et al. 757

in Gelfand et al. (2005). However, since the spatial correlation is captured through the factor load-
ings as well as through the effects of covariates, as specified in Section 4.1, we only use vague
priors for these regression coefficients.

Furthermore, since the GST-SEM encompasses a large class of spatial-temporal models, we
provide examples of the flexibility of the model by discussing two different parametrizations of
the random effects, 𝜙yk (s, t) and 𝜙xl(u, t). The first, which represents a generalized common fac-
tor model, allows to perform separate analyses for each pollutant and disease. In this case, as in
the simulation section, each variable is represented by one single common latent factor. The sec-
ond model, instead, is much more general and favours the learning of complex interactions by
borrowing strength across all the variables. Hence, the two parametrizations imply a trade-off
between model complexity (and accuracy) and interpretability.

For all the fitted models, the MCMC algorithm was run for 500,000 iterations. Posterior
inference was based on the last 40,000 draws using every 10th member of the chain to avoid
autocorrelation within the sampled values. From the computational viewpoint, we first sample
ln[𝜂y(s, t)] from its marginal distribution using the adaptive rejection sampling (Gilks & Wild,
1992) and then we draw all the other parameters. Conditional on ln[𝜂y(s, t)], the full conditional
posterior distributions take convenient functional forms and can be easily sampled from. The only
exceptions are for the conditional distributions of the spatial correlation parameters which are
sampled through Metropolis-Hastings steps. Convergence of the chains of the model was moni-
tored visually through trace plots as well as using the R-statistic of Gelman (1996) on two chains
simultaneously started from different initial points.

6.1 The common factor model

In this section, we briefly discuss the results from a generalized common factor model which is
useful, for example, when initial separate analyses are performed for pairs of variables Yk and Xj.
Using this model parametrization the number of latent variables is fixed a priori as it is assumed
that each variable is driven by its own single common factor. The model represents an extension to
the space-time setting of the model introduced by Wang and Wall (2003). To provide an example of
the potentialities of the model, consider the daily hospital admissions for respiratory diseases and
PM10. With the mean functions specified as in Equations (8) and (9), the measurement equations
for this model are given by

ln
[
𝜂y(s, t)
E(s, t)

]
= 𝜇y + hy(s) fy(t) + 𝜖(s, t),

x(u, t) ∼ N
(
𝜇x + hx(u) fx(t); 𝜎2

x
)

and the structural equations, based on the single common factors fx(t) and fy(t), are

fx(t) =
4∑

i=1
difx(t − i) + vx(t)

fy(t) =
4∑

i=1
bify(t − i) +

4∑

i=0
cifx(t − i) + vy(t).

To simplify model selection, as in the simulation, we set the values of the maximum lag-length of s,
p and q at the relatively large value of 4 and use the spike and slab prior to favour a sparse solution
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758 GAMERMAN et al.

F I G U R E 7 Posterior mean of the factor loadings associated with PM10 and interpolated over the two
regions (left). Map of the posterior mean of the factor loadings associated with PM10 and averaged over the 28
districts (right). The labels within each district represents the acronyms of the Aziende Sanitarie Locali [Colour
figure can be viewed at wileyonlinelibrary.com]

in the estimation of the parameters. To check possible differences with models commonly used
in the time series literature, we compare results from our model with those obtained estimating
a Bayesian distributed lag model (Welty et al., 2009) on the time series of Y and X averaged over
all districts and monitoring sites.

Figure 7 shows the posterior mean of the factor loadings hx(u) interpolated, as described in
Lopes et al. (2008), over the two regions. The map allows for a spatial descriptive analysis of the
distribution of PM10 and clearly shows that the largest values are concentrated in the area of
Milan (MI, MI1, and MI2), one of the most polluted cities of Europe, Varese (VA), Como (CO),
Lecco (LC) and Monza (MZ). The area is bordered at the north by mountains which render very
low air mass exchange. In general, the high degree of pollution is due to a greater contribution
of emissions2 as well as to adverse meteorological and thermodynamic conditions of the atmo-
sphere. Also, the area counts many industrial facilities as well as small and medium enterprises
which are major centres of activity and are therefore prime traffic generators. The average value
of the factor loadings over these districts is about 0.35, which suggests that an increase of about
(exp{0.35} − 1) × 100 ≈ 42% of pollution is expected in the area as a consequence of a one-unit
increase of fx(t). This means that, considering for example the district of Milan, where the aver-
aged level of PM10 is about 50 𝜇g∕m3, the expected effect of a unitary variation of fx(t) consists in
an increase of 21 𝜇g∕m3 in the same district.

Focusing on the temporal dynamics of the phenomenon, Figure 8 shows the result of an
impulse response analysis at the structural level. The figure describes how the common fac-
tor fy(t), summarising the temporal dynamics of the hospitalization, reacts over two weeks to
a one-unit shock of the factor fx(t) representing the dynamics of PM10. Both the 90% and 95%
credible intervals, represented by the shaded areas, suggest that the peak response of hospital
admissions for respiratory diseases occurs after four days and then gradually decreases and dies
out in about ten days.

However, by modulating the values of this impulse response function by the factor loadings
hy(s), one can better understand the spatio-temporal variation of the risk of hospitalizations. For

2http://www.inemar.eu/xwiki/bin/view/InemarDatiWeb/Emissioni+provinciali+2012
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GAMERMAN et al. 759

F I G U R E 8 Posterior median impulse responses (solid line) of fy(t) to a one-unit shock of fx(t). The
credibility intervals at 90% and 95% are represented by shaded areas [Colour figure can be viewed at
wileyonlinelibrary.com]

example, Figure 9 shows the posterior mean of the impulse response functions, IRyk (s, t), for a
selection of representative districts (located in different areas of the regions and with different
levels of pollution). Controlling for confounding effects, the subplots show how the relative risk
changes over districts and time as an effect of a one-unit shock of the common factor fx(t). As it
can be noticed, the response functions appear similar in shape. However, the rate of decay, the
persistence of the effect (i.e. the area which does not include the zero) and the levels of risk change
with the districts. For example, considering the maximum peak, the risk varies between 7‰, for
the third district of Torino (TO3), and 1.2% for the district of Milan. In general, the comparison
of the impulse response functions shows that the effect is weaker at TO3 and worse at MI. The
posterior mean of the function of Brescia (BS) is roughly comparable with that of Sondrio (SO);
however, the effect estimated at SO is less persistent and the credible interval is larger than that
of BS. It is also worth noticing that Sondrio (SO), the largest district in the Alpine administrative
province, is the site for which the environmental agency Inemar-ARPA (Atmospheric Emissions
Inventory) of Lombardy estimates the greater per capita consumption of wood. Hence, there is the
hint that the effect of hospitalization in this district might be due to high values of Benzo(a)pyrene
(BaP) which, formed by residential wood combustion, is one of the toxic components in the PM10
and promotes pulmonary injury.

In Figure 5b of the Supplementary Material, Section B, we also show the impulse response
function obtained by estimating the Bayesian distributed lag (DL) model of Welty et al. (2009)
with trend function similar to that specified in Equation (8). Based on the averaged (across space)
time series, the IR function gives the percentage increase in daily hospitalization associated with
a 1% increase in PM10 at lags 1, … , 14. Results suggest that, for the DL model, the significant
effects of the pollutant start after three days and that soon after an exponentially decaying pat-
tern can be noticed. Furthermore, it also results that the expected short-term cumulative effect on
daily hospitalization appears to be about 0.13% overall the region of interest. However, consider-
ing our common factor model, we have that the estimated cumulative effect on hospitalization for
a one-unit shock of fx(t) is about 5.1%. Since over the whole region the expected increase of PM10
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760 GAMERMAN et al.

F I G U R E 9 Posterior median impulse responses (solid line) of respiratory diseases to a unit shock of fx . The
credibility intervals at 90% and 95% are represented by shaded areas. As an example, the panels show the
response functions at the third district of Torino (TO3), Brescia (BS), Milano (MI) and Sondrio (SO) [Colour
figure can be viewed at wileyonlinelibrary.com]

is about 33% for a one-unit shock of fx(t), it follows that the expected cumulative effect on hospi-
talization for a 1% increase of PM10 is 5.1/33 = 0.15%. It thus appears that the two models tend
to provide similar information and that small differences may be due to their different intrinsic
characteristics. However, while the DL model only works with single time series and, as in our
case, can only provide an estimate of a general effect over the whole region using spatially aggre-
gated series, our model, is able to weight the effects of PM10 by means of the factor loadings, and
can thus provide district-specific IR functions as in Figure 9.

6.2 The full GST-SEM model

In this section, we discuss results from the generalized spatio-temporal structural equation model
which allows to examine relationships among all the variables. As an extension of the common
factor model discussed above, it is assumed that there may be more than one underlying factor,
and that relationships among the latent variables, modelled by means of Equations (3) and (4),
are of primary interest.
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GAMERMAN et al. 761

For model selection, we again set the values of the maximum lag-length of the structural
equations (i.e. s, p and q) at the large value of 4 and use the spike and slab prior to achieve spar-
sity in the coefficient matrices Bi, Ci and Di. To facilitate the interpretation of the common factors
fx,i(t), the AR parameter matrices Di are also assumed diagonal. Then, by considering an increas-
ing number of common factors, with r and m ranging from 1 to 6, the DIC criterion proposed for
latent variable models (see, Section 4.3), suggests that the optimal choice is found for a model with
four common factors for X and one common factor for Y . The DIC also suggests that the model
fit is improved by accounting for the spatial distribution of the factor loadings, with a full model
specification of the LMC performing much better than a separable one. Diagnostic results from
the Bayesian p-values computed for the predicted checks (mean value, 0.44) and the Chi-square
goodness-of-fit test (0.17), also suggest an adequate fit of the model as the estimated values lie
within the interval [0.1, 0.9]. The posterior mean of the VARX model and the posterior inclusion
probabilities of the associated parameters, are shown in the following Tables 1–3.

The ‘median model’, that is, the model containing the variables with posterior inclusion prob-
abilities greater than 0.5 (Barbieri & Berger, 2004), shows that the SSVS prior excludes many of the
estimated coefficients ensuring parsimony in the structural part of the model. The autoregressive
parameters of both fy(t) and fx(t) are mainly concentrated at the first lag, with only one parame-
ter found at the second lag for fx,2(t) — see Tables 1 and 3. Regarding the regression parameters

T A B L E 1 Posterior mean of Bi for lags 1 to 4 and its probability of inclusion (in brackets). In bold the
parameters with inclusion probabilities greater than 0.5

B1 B2 B3 B4

0.10 0.01 0.06 −0.01

(0.66) (0.32) (0.49) (0.29)

T A B L E 2 Posterior mean of Ci for lags 0 to 4 and associated inclusion probabilities (in brackets). In bold
the parameters with inclusion probabilities greater than 0.5

lag 0 0.01 0.01 0.03 0.00 lag 1 0.06 −0.17 0.05 0.04

(0.29) (0.32) (0.37) (0.28) (0.49) (0.84) (0.48) (0.41)

lag 2 0.00 0.16 −0.01 0.05 lag 3 0.14 −0.01 −0.13 0.00

(0.33) (0.83) (0.34) (0.47) (0.82) (0.33) (0.76) (0.30)

lag 4 0.00 0.00 −0.02 0.00

(0.32) (0.28) (0.37) (0.26)

T A B L E 3 Posterior mean of diag(Di) for lags 1 to 4 and associated inclusion probabilities (in brackets). In
bold the parameters along the diagonal of Di with inclusion probabilities greater than 0.5

lag 1 0.68 0.59 0.67 0.86 lag 2 −0.06 −0.01 −0.02 0.25

(1.00) (1.00) (1.00) (1.00) (0.21) (0.95) (0.08) (0.99)

lag 3 −0.05 0.01 0.01 0.00 lag 4 0.00 0.02 0.06 0.01

(0.36) (0.10) (0.11) (0.07) (0.07) (0.15) (0.46) (0.07)
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762 GAMERMAN et al.

F I G U R E 10 Posterior median impulse responses (solid line) of fy1 to a fxi shock. The credibility intervals at
90% and 95% are represented by shaded areas [Colour figure can be viewed at wileyonlinelibrary.com]

in Ci, we note that none of the coefficients on the fourth lag seem to be significant and only two
coefficients on third lags are found to be important — see Table 2.

The interpretation of the results is facilitated by exploring the spatial patterns of the interpo-
lated surfaces of the factor loadings for CO, NO2, PM10 and O3, and the impulse response functions
obtained from Equation(4). Figure 10 suggests that only the impact of fx,1(t) on fy,1(t) is of real
interest as both the 90% and 95% credible intervals do not include the zero. As shown in the top-left
panel, the associated impulse response function is hump-shaped with the peak response of hospi-
tal admissions for cardio-respiratory diseases occurring at the third day; the response then tends
to gradually decrease dying out in about five/six days.

Considering the first common factor fx,1(t), which represents a summary of the amount of
air pollution over the entail region, Figure 11 shows the posterior mean of the associated factor
loadings. In particular, the maps on the left show the factor loadings interpolated over the two
regions and those on the right show the areas in which the 95% credible intervals of the factor
loadings do not include the zero. The posterior mean estimates of the other three factors are shown
in Figures 6c–8c of the Supplementary Material, Section C, and an interesting feature is that some
of these factors clearly separate Piemonte from Lombardia.
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GAMERMAN et al. 763

(a) (b)

(c) (d)

(e) (f)

(g) (h)

F I G U R E 11 Posterior mean surfaces of the first factor loading hx1. Left: CO, NO2, PM10 and O3. Right: in
blue are shown the areas in which the 95% credible intervals do not include the zero [Colour figure can be viewed
at wileyonlinelibrary.com]
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764 GAMERMAN et al.

As noticed in the previous analysis, the spatial patterns shown in Figure 11 suggest that,
in general, the levels of pollution in Piemonte are lower than those observed in Lombardy and
that, again, the higher values can be observed in the most industrialized and busy areas at the
North-East part of Milan. It also appears that the patterns of NO2 and PM10 are much more local-
ized than other pollutants and it is interesting to note that these patterns do agree with those
shown in the report published by Regione Emilia-Romagna3 on the Northern Italy Network to
Forecast Aerosol pollution (NINFA), which is a system based on the Chimere chemical transport
model driven by the meteorological model COSMO-I7.

By focusing on the NO2 and PM10 variables, we have that the average values of the factor
loadings over the regions are about 0.023 and 0.033 respectively. Following the arguments given
in Section 6.1, this suggests that an increase of about 2.3% and 3.3% of these pollutants is expected
as an effect of a one-unit increase of fx1(t). Then, if we were interested in evaluating the impact
over the whole area, we might consider, for example, the average levels of NO2 (38.65 𝜇g∕m3) and
PM10 (38.05 𝜇g∕m3), and find that the expected increase for these variables is about 0.86 𝜇g∕m3

for NO2 and 1.26 𝜇g∕m3 for PM10. Accordingly, considering that the EU limit values are fixed at
40 𝜇g∕m3 for both variables, it follows that, in general, the risk of exceeding the threshold, mainly
for traffic and industrial activities, is quite high.

For CO and O3, the spatial maps suggest that these variable are widespread overall in the
region and that a variation of about 4.5% and −15.0% is expected as a consequence of a one-unit
increase of fx1(t). Their average levels, equal to 0.79 mg∕m3 for CO and 83.72 𝜇g∕m3 for O3,
appear far from their EU limits of 10 mg∕m3 (CO) and 120 𝜇g∕m3 (O3) and they make us think of
a quite good control policy for these variables.

Following the procedure described in Section 4.4, Figures 9d–12e (see the Supplementary
Material, Section D) also show the estimated impulse response functions for the pollutants. For
a specific district, each panel gives information about the day-today variation in air pollution
levels as a result of a unit shock to the factor fx,1(t). For example, the first panel on the top-left
corner of Figure 9d, suggests that giving a unit shock in fx1 at time t, we expect to observe
about 15% increase in CO at time t + 1 in the district of Torino 1 (TO1). In general, these also
show that, in any of the variables, a unit shock dies away quite rapidly due to the stability of
the processes.

Extending the analysis at the level of hospitalization, Figure 12 shows the differences in the
impulse response functions IRyk (s, t) of a selection of districts. The panels suggest that, controlling
for confounding effects, the response to a unit shock in fx,1(t) starts after two days and the effect
tend to die away in about six days. The peaks of the relative risk appear at the third lag and range
between 0.08% (Torino 3) and 1.2% (Milano), with the higher values found for the cardiovascular
diseases. Furthermore, wherever the factor loadings of a district are small, and close to zero, the
impulse response functions do not show any relevant effect of the pollutants in that area. An
example is shown in the last column of Figure 12 for the districts of Torino3 (TO3) and Milano1
(MI1).

In general, the response of the respiratory disease is weaker and the way it spreads over the
area does not support the idea of a neighbourhood effect. This is probably due to the fact that
the spatial correlation is not as strong as in the cardiovascular case, a feature already anticipated
in Section 2. The impulse response functions, estimated for all the districts, can be examined in
Figures 13e–16e of the Supplementary Material, Section E.

3https://www.arpae.it/cms3/documenti/_cerca_doc/aria/rapporto_ninfa.pdf
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F I G U R E 12 Posterior median impulse responses (solid line) of respiratory and cardiovascular diseases to a
unit shock of fx1. The credibility intervals at 90% and 95% are represented by shaded areas. As an example, the
panels show the response functions at TO1, TO3, MI, MZ and CO [Colour figure can be viewed at
wileyonlinelibrary.com]

7 DISCUSSION

It is common in public health research to have multivariate regional and geostatistical data. Often,
it is desirable to examine relationships among these variables both in time and within and across
regions. When the objective is to study the short-term effect of air pollution on health, it is com-
mon practice to consider one pollutant at a time, due to their high correlation. Multi pollutant
methods have been recently proposed, mainly consisting of collapsing the different pollutants
into air quality indexes. Other spatio-temporal approaches have proposed a multi-step analysis
and have been found difficult to be extend to more than two pollutants (see, for example, Huang
et al., 2018).

In this paper, we have proposed a factor analysis approach and introduced a multivari-
ate spatio-temporal structural equation model to study the relations among multiple variables
in a latent space. The model deals with both multiple diseases and multiple pollutants in a
spatio-temporal design and also allows the observed variables to be from any exponential family
distribution. By controlling for the effects of covariates which, if ignored can bias the esti-
mated health effects of air pollution, the GST-SEM provides a flexible modelling of the residual
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spatio-temporal variability by rewriting the random effect terms as a finite combination of factor
loadings and dynamic common factors. Also, by allowing for spatially structured factor loadings,
we have shown that their maps can reveal spatial patterns of interest overall the whole region.
A further principal benefit of the GST-SEM is its ability to estimate the shape of the impulse
response function relating increases in air pollution to health outcomes in short periods of time
after an air pollution episode. This is a subject that has only been investigated in a time series
context to date. In this paper, we have suggested possible strategies to produce impulse response
functions at different levels of the hierarchy and this has allowed to estimate the response of
the system both at global (whole region) and local (district) levels. All the models estimated
here suggest that significant effects on hospitalizations can be noticed after two or three days
from a given shock on pollution. However, effectively using a multiplier analysis in a multivari-
ate spatio-temporal design remains challenging. According to our modelling strategy, we have
studied how the effect of a shock (at the structural level) on the common factors propagates
through the measurement equations on both health data and pollutants. The principle underly-
ing this approach is that the air we breathe is a complex mixture of different pollutants which,
because of the strong linear correlations, are generated by common processes or driven by sim-
ilar factors, such as traffic or combustion. Hence, it is difficult in practice to disentangle the
effect of the single pollutants and policymakers can only control for these general factors. How-
ever, although the results of our analysis suggest some possible hypotheses, more focused studies
have to be conducted to obtain more precise information about the biological mechanisms. As
suggested by one of the referees, this may be favoured by also controlling for further covariates
related to the spatial topography of the territory and air mass exchange. This will be an issue
for future work.
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