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Conditional aggregation operators are defined by the Choquet integral and the Sugeno integral 
with respect to a monotone set function that assesses positive measure of the conditioning set. 
General Hausdorff and packing measures are introduced and examples of infinite s-sets with 
positive and finite generalized Hausdorff and packing measures are constructed and their fractal 
dimensions are compared. Coherent upper conditional previsions on the linear space of all 
Choquet integrable random variables are defined by the Choquet integral with respect to the 
general Hausdorff and packing measures when the conditioning event has positive and finite 
generalized Hausdorff and packing measures in its respective fractal dimensions. Conditional 
aggregation operators are defined by the Sugeno integral with respect to general Hausdorff and 
packing measures on the class of all Sugeno integrable random variables. Actually, the general 
Hausdorff and packing dimensions are proven to be the Sugeno integral with respect to the 
Lebesgue measure of the general Hausdorff and packing measures respectively.

1. Introduction and statements of results

The paper focuses on the integral representation by the Choquet integral [7] and by the Sugeno integral [38] of conditional 
aggregation operators defined in [15]. These two non-additive integrals have been widely studied in the literature ([11], [18], [25], 
[29], [30], [32], [33], [42]).

In this paper the Choquet integral is defined for bounded and unbounded random variables and the Sugeno integral for bounded 
and unbounded positive random variables; for each integral respectively the class of all Choquet integrable and the class of all Sugeno 
integrable random variables are considered to be the domain of the conditional aggregation operator.

The definition of conditional aggregation operator considered in this paper is more restrictive than that one proposed in [2] and 
[3] since it is required to satisfy the condition that for each conditioning set 𝐵 the conditional aggregation operator of the indicator 
function of 𝐵, conditioned to 𝐵 is equal to 1. This condition is a necessary condition to assure that aggregating any random variable 
on the partition of singletons is equivalent to knowing the random variable. In fact when the partition is the partition of singletons 
then we have complete information about the random variable, so knowing the conditional aggregation operator is equivalent to 
knowing the random variable. When data obtained by different sources are aggregated it is important that the contribution coming 
from each source is considered so that information is not lost in the aggregation process (see Example 1). A necessary condition to 
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define such conditional aggregation operator, by the two non-additive integrals with respect to a monotone set function 𝑚 is that the 
conditioning set 𝐵, belonging to the partition that represents partial information, has a positive and finite measure 𝑚. For this reason, 
different general Hausdorff and packing outer measures have been introduced, and the corresponding fractal dimensions have been 
introduced in a metric space. They are obtained considering the definition of the classical Hausdorff and packing outer measures and 
the different functions of the diameter of each set in the coverings. Conditional aggregation operators defined by the Choquet integral 
with respect to the general Hausdorff or packing outer measure are proven to be coherent upper conditional prevision [41] if the 
conditioning event has a positive and finite fractal measure in its fractal dimension. The necessity to introduce a new tool to define 
coherent conditional previsions occurs because the axiomatic definition of conditional expectation [1] may contradict a necessary 
condition of coherence (see [12], [13])). A new model of coherent upper conditional previsions defined on the linear space of all 
Chouqet integrable random variables by Hausdorff outer measures [36] has been proposed in [14]. When the conditioning event 
has a Hausdorff measure equal to zero we can compute the general Hausdorff outer measure or the general packing outer measure 
and if one of them assesses positive and finite measure to the conditioning event then the model proposed in this paper allows us to 
define a coherent conditional prevision continuous from below and not a 0-1 valued finitely, but not countably, additive probability. 
In a recent paper [16] a model of coherent upper conditional previsions based on Hausdorff outer measures has been proposed 
to solve some bias of human reasoning. The contribution put in evidence how the proposed model describes one of the capacity 
of unconscious human brain activity, which is to manage unexpected events, as it occurs in the selective attention. In the quoted 
paper different metric spaces are introduced to represent different reactions of people to unexpected events. The result proposed in 
this paper deals with a new model of coherent upper conditional previsions based on different fractal outer measures that assign 
different outer measures to the events. The model can be applied to represent in the same metric space different reactions of people 
to unexpected events. Another aspect investigated in this paper is the possibility to represent the fractal dimension of a set as the 
Sugeno integral with respect to the Lebesgue measure. Following [6] the Sugeno integral of the general outer Hausdorff measure or 
of the packing outer measure of a set with respect to the Lebesgue measure of the Borel sets of [0, +∞[, is proven to be the Hausdorff 
or the packing dimension of the set. These results put in evidence the connection between general fractal measures and their fractal 
dimension with the Sugeno integral.

Examples of sets are constructed to investigate the relations between the two general outer measures and to compute the Sugeno 
integral of the two general measures of these sets as a function of 𝑠, with respect to the Lebesgue measure; in Example 2, an infinite 
𝑠-set with a positive and finite general Hausdorff measure is constructed. In Example 3 and Example 4, we construct compact sets 
with the same general Hausdorff and packing dimensions so that the Sugeno integral of the general measures of these sets with 
respect to the Lebesgue measure coincides. In Example 5 a set with a positive and finite general Hausdorff measure is constructed. 
In Example 12, it is proven that the Sugeno integrals with respect to the Lebesgue measure, the general Hausorff measure, and the 
general packing measure of the homogeneous Moran set relating to the Fibonacci sequence coincide.

2. Conditional aggregation operators

Let (Ω, 𝑑) be a metric space and let B be a partition of Ω. A random variable is a function 𝑋 ∶ Ω →ℜ∗ =ℜ ∪ {−∞;+∞} and 
𝐿∗(Ω) is the class of all random variables defined on Ω, which is not a linear space; let 𝐿+(Ω) be the class of positive random 
variables contained in 𝐿∗(Ω); for every 𝐵 ∈ B denote by 𝑋|𝐵 the restriction of 𝑋 to 𝐵 and by sup(𝑋|𝐵) the supremum value that 
𝑋 assumes on 𝐵. Denote by 𝐼𝐴 the indicator function of any event 𝐴 ∈℘(𝐵), i.e. 𝐼𝐴(𝜔) = 1 if 𝜔 ∈ 𝐴 and 𝐼𝐴(𝜔) = 0 if 𝜔 ∈ 𝐴𝑐 . A 
monotone set function 𝜇 ∶℘(Ω) →ℝ+ is such that 𝜇(∅) = 0 and if 𝐴, 𝐵 ∈℘(Ω) with 𝐴 ⊂ 𝐵, then 𝜇(𝐴) ≤ 𝜇(𝐵).
Definition 1. Let 𝐁 be a partition of Ω. For any set 𝐵 ∈ 𝐁 let 𝐾 be class of random variables contained in 𝐿+(𝐵); a conditional 
aggregation operator given 𝐵 is any mapping 𝐴(⋅|𝐵)∶ 𝐾 → [0, ∞[ such that

1) 𝐴(⋅|𝐵) is non-decreasing, i.e., 𝟎 ≤𝑋|𝐵 ≤ 𝑌 |𝐵 implies 𝐴(𝑋|𝐵) ≤𝐴(𝑌 |𝐵),
2a) 𝐴(𝟏𝐵𝑐 |𝐵) = 0,

2b) 𝐴(𝟏𝐵|𝐵) = 1

If 𝐵 = Ω and 𝐾 is the class of all and bounded random variables 𝐿+(𝐵), then Definition 1 is the classical definition of the 
aggregation operator [4,21]. If 𝐾 =𝐿+(𝐵) then the mapping 𝐴(𝑋|𝐵) can assume values +∞ and so condition 2b) of Definition 1 is 
not satisfied.

Definition 2. 𝐴(𝑋|𝐁) is the random variable defined on Ω such that to each 𝜔 ∈Ω associates 𝐴(𝑋|𝐵) if 𝜔 belongs to 𝐵.

Partial information about a random variable can be represented by a partition 𝐁 of Ω in the sense that we do not know the exact 
value assumed by the random variable, but we know if the value belongs to 𝐵 for each 𝐵 ∈ 𝐁. If 𝐁 is the partition of singletons, 
information about the random variable is complete because we know the exact values it assumes. The following condition assures 
that to aggregate a random variable conditioned to the partition of singletons is equivalent to knowing the random variable itself.

Definition 3. Let 𝐁 be the partition of singletons of Ω. A conditional aggregation operator 𝐴(⋅|𝐵)∶ 𝐋+(𝐵) → [0, ∞[ is coherent if 
2

𝐴(𝑋|𝐁) =𝑋, ∀𝑋 ∈𝐿+(𝐵).
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Condition 2b) of Definition 1 is a necessary condition for a conditional aggregation operator to satisfy Definition 3. The following 
example shows that in general 𝐴(𝑋|𝐁) ≠𝑋.

Example 1. Let Ω = [0, 𝑇 ] be a time-lapse and let 𝑋(𝜔) the amount, in 𝑙∕𝑚2 of rainfall recorded in a city, at the time 𝜔. Let B be the 
partition of singletons of [0, 𝑇 ]. If

𝑋(𝜔) =
{

0 if 𝜔 ≠ 𝜔,
500 if 𝜔 = 𝜔,

to have information about the function 𝑋 we have to require that the conditional aggregation operator 𝐴(𝑋|B) =𝑋 if 𝑋 is constant 
on the atoms of the partition.

Let 𝜇 be a monotone set function and let 𝐵 ∈ 𝐁 such that 𝜇(𝐵) ≠ 0, then examples of conditional aggregation operators can be 
given by the Choquet integral and the Sugeno integral.

2.1. Conditional aggregation operator defined by the Choquet integral

The Choquet integral with respect to a monotone set function 𝜇 is defined by

∫ 𝑋𝑑ℎ𝑠 =

0

∫
−∞

(𝜇
({
𝜔 ∈Ω ∶𝑋(𝜔) ≥ 𝑥}) − 𝜇(Ω))𝑑𝑥+ +∞

∫
0

𝜇
({
𝜔 ∈Ω ∶𝑋(𝜔) ≥ 𝑥})𝑑𝑥.

The integral is in ℜ, or is equal to −∞ or +∞ or it does not exist.

Let 𝜇 be a monotone set function and let 𝑋 ∈𝐿+(𝐵), then the Choquet integral is defined by

𝐶ℎ𝑜

∫ 𝑋𝑑𝜇 =

+∞

∫
0

𝜇 {𝜔 ∈𝐵 ∶𝑋(𝜔) > 𝑥}𝑑𝜇.

If 
𝐶ℎ𝑜

∫ 𝑋𝑑𝜇 < +∞, then 𝑋|𝐵 is called Choquet integrable. Let 𝐾 be the class of all Choquet integrable positive random variables. The 

mapping 𝐴𝐶ℎ(𝑋|𝐵) defined on 𝐾 by

𝐴𝐶ℎ(𝑋|𝐵) = 1
𝜇(𝐵)

𝐶ℎ𝑜

∫ 𝑋𝑑𝜇

is a conditional aggregation operator.

Remark 1. We can observe that if in Example 1 the conditional aggregation operator is defined by the Choquet integral with respect 
to the Lebesgue measure then 𝐴(𝑋|B) = 0 and so the result of the aggregation process is a no correct knowledge of the random 
variable 𝑋. It occurs because the singletons of the partition B, have Hausdorff dimension 0 that is less than the Hausdorff dimension 
of the interval [0, 𝑇 ], which has Hausdorff dimension 1. Example 1 shows that to avoid that in the aggregation process information 
is lost it is important to consider different fractal measures for pieces of information having different fractal dimensions.

2.2. Conditional aggregation operator defined by the Sugeno integral

Let 𝜇 be a monotone set function and let 𝑋 ∈𝐿+(𝐵), then the Sugeno integral is defined by

𝑆𝑢(𝑋|𝐵,𝜇) = sup
𝑥≥0

{
𝑥 ∧ 𝜇 {𝜔 ∈ 𝐵 ∶𝑋(𝜔) ≥ 𝑥}}.

The integral is in ℜ or it is equal to +∞. If 𝑆𝑢(𝑋|𝐵, 𝜇) < +∞, then 𝑋|𝐵 is called Sugeno integrable. Let 𝐾 be the class of all Sugeno 
integrable random variables 𝑋|𝐵 ∈𝐿+(𝐵).

A random variable 𝑋 is trivial if 𝑋(𝜔) = 0, ∀𝜔 ∈ (0, +∞) or 𝑋(𝜔) =∞, ∀ 𝜔 ∈ (0, +∞).
Let 𝑚 be the Lebesgue measure on the class of Borel sets of [0, +∞). If 𝑋 is a non-trivial decreasing positive random variable by 

Theorem 3.2 of [6] we have that

𝑆𝑢(𝑋|𝐵,𝑚) = sup
𝑥≥0

{
𝑥 ∧𝑋|𝐵} = 𝑥0

where 𝑥0 is the unique point, called midpoint in [6], such that
3

𝑋|𝐵 < 𝑥 for any 𝑥0 < 𝑥 < +∞ and 𝑋|𝐵 > 𝑥 for any 0 < 𝑥 < 𝑥0
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If 𝐾 is the class of all positive and bounded random variables and 𝜇 is a probability measure on 𝐵, i.e. 𝜇(𝐵) = 1, then the midpoint 
𝑥0 is the fixed point of the function 𝐺𝜇(𝑥) = 𝜇 {𝜔 ∈𝐵 ∶𝑋(𝜔) ≥ 𝑥} and the Sugeno integral is the intersection of the first bisectrix 
and the function 𝐺𝜇(𝑥). The mapping 𝐴𝑆𝑢(𝑋|𝐵) defined on 𝐾 by

𝐴𝑆𝑢(𝑋|𝐵) = 1
𝑚(𝐵)

𝑆𝑢(𝑋|𝐵,𝑚) if 𝑚(𝐵) ≠ 0,

is a conditional aggregation operator. In Section 6 we prove that the fractal dimension of a set can be represented as the Sugeno 
integral with respect to the Lebesgue measure of the corresponding fractal measure; it puts in evidence that the Hausdorff dimension 
of a set is an aggregation operator of the data represented by the set.

3. General fractal measures and dimensions

In this section, we will be defining various notions of fractal measures and dimensions in a general setting.

Let 𝑓 and 𝑔 be two functions on (0, 𝑎), 0 < 𝑎 ≤ +∞ with the following properties:

(H1) 𝑓 and 𝑔 are continuous, positive and strictly decreasing on (0, 𝑎).
(H2) lim

𝑟→0
𝑓 (𝑟) = lim

𝑟→0
𝑔(𝑟) = +∞ and lim

𝑥→𝑎
𝑓 (𝑟) = 0.

(H3) lim
𝑟→∞

𝑓−1(𝑘𝑟+ 𝑐)
𝑓−1(𝑟)

= 0 for any 𝑘 > 1 and 𝑐 ∈ℝ.

(H4) lim sup
𝑟→0

(
𝑔(𝑟) − 𝑔(𝑘𝑟)

)
< +∞ for 𝑘 > 1.

It is clear that (H1) and (H2) guarantee that the function 𝑓−1 is defined on (0, ∞). For 𝑠 ≥ 0, we consider now the family of functions 
ℎ𝑠(𝑟) which are defined as follows

ℎ𝑠(𝑟) =
⎧⎪⎨⎪⎩
𝑓−1(𝑠𝑔(𝑟)), for 𝑟 > 0

0, for 𝑟 = 0.

It is easy to see that the functions ℎ𝑠 are continuous and increasing on [0, ∞), thus are a family of Hausdorff functions. Also let us 
formally set 𝑓−1(0) = 𝑎, including the case when 𝑎 =+∞.

Let (Ω, 𝜌) be a metric space. A 𝛿-cover of a set 𝐸 ⊆ Ω is a finite or countable collection of sets 𝐸𝑖 ⊆ Ω such that 𝐸 ⊆ ∪𝑖𝐸𝑖 and 
diam

(
𝐸𝑖

) ≤ 𝛿 for all 𝑖. The general Hausdorff measure on Ω corresponding to ℎ𝑠 is defined as follows:

ℋℎ𝑠
𝛿
(𝐸) = inf

{∑
𝑖

ℎ𝑠
(
diam

(
𝐸𝑖

))
∣
{
𝐸𝑖

}
𝑖

is a 𝛿-cover of 𝐸

}
and

ℋℎ𝑠 (𝐸) = lim
𝛿→0

ℋℎ𝑠
𝛿
(𝐸).

Remark 2. There is no countable cover by sets of diameter less than 𝛿 if Ω is not separable for small enough 𝛿 > 0. As a result, the 
empty set is the infinimum in the definition of Hausdorff’s outer measure, and after that, it is +∞. Hence, +∞ is the upper limit 
for 𝛿 reaching zero. Then, the Hausdorff measure and Hausdorff dimension for a non-separable set Ω are ℋℎ𝑠 (Ω) = +∞ and +∞, 
respectively.

A 𝛿-packing of the set 𝐸 ⊂ Ω is a finite or countable collection of disjoint closed balls 
{
𝐵
(
𝑥𝑖, 𝑟𝑖

)}
𝑖

with centers in 𝐸 and such 
that 2𝑟𝑖 ≤ 𝛿 for every 𝑖. We define the pre-packing measure as follows

𝒫
ℎ𝑠

𝛿 (𝐸) = sup

{∑
𝑖

ℎ𝑠
(
2𝑟𝑖

)
∣
{
𝐵
(
𝑥𝑖, 𝑟𝑖

)}
𝑖

is a 𝛿-packing of 𝐸

}
,

𝒫
ℎ𝑠 (𝐸) = lim

𝛿→0
𝒫
ℎ𝑠

𝛿 (𝐸).

It follows from [20] that 𝒫
ℎ𝑠

is not in general countably sub-additive, so there is one more step necessary to obtain an outer measure, 
that is, defining

ℎ𝑠

{∑ ℎ𝑠 ( ) }

4

𝒫 (𝐸) = inf
𝑖

𝒫 𝐸𝑖 ∣𝐸 ⊆ ∪𝑖𝐸𝑖 .
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Initially, rather than utilizing their radii, Taylor and Tricot [39] developed packing measurements using the diameters of balls. The 
same outcome is obtained in 𝑅𝑑 but not in all generic metric spaces. According to Cutler [5], the radius definition is more practical 
because the packing measure’s regularity characteristics are maintained. Generally speaking, metric space is used, but the diameter 
specification is not always the case. This also applies to the following significant relationship, for all 𝑠 ≥ 0,

ℋℎ𝑠 (𝐸) ≤𝒫ℎ𝑠 (𝐸), for all 𝐸 ⊆Ω.

They are metric outer measures, as shown by almost the same proof as in the typical case. It is clear that (H3) and (H4) imply the 
following:

lim
𝑟→0

ℎ𝑠1 (𝑘𝑟)
ℎ𝑠2 (𝑟)

= 0 for 𝑠1 > 𝑠2 and any 𝑘 ≥ 1.

Thus we can define generalized Hausdorff and packing dimensions based on the family of the functions ℎ𝑠 , respectively, as follows

dim𝑓,𝑔(𝐸) = sup
{
𝑠 > 0 ∣ℋℎ𝑠 (𝐸) = +∞

}
= inf

{
𝑠 > 0 ∣ℋℎ𝑠 (𝐸) = 0

}
and

Dim𝑓,𝑔(𝐸) = sup
{
𝑠 > 0 ∣𝒫ℎ𝑠 (𝐸) = +∞

}
= inf

{
𝑠 > 0 ∣𝒫ℎ𝑠 (𝐸) = 0

}
.

It is clear that

dim𝑓,𝑔(𝐸) ≤Dim𝑓,𝑔(𝐸).

This generality can be used, for example, to the possibility of fine-tuning the Hausdorff function by adding logarithmic factors. 
Families of functions that are frequently seen include:

(I) ℎ𝑠(𝑟) = 𝑟𝑠 corresponding to 𝑓 (𝑟) = 𝑔(𝑟) = − log 𝑟 gives the usual Hausdorff and packing measures ℋ𝑠, 𝒫𝑠.

(II) ℎ𝑠(𝑟) = 2−𝑟−𝑠 corresponding to 𝑓 (𝑟) = log2
(
log2

(
1
𝑟

))
, 𝑔(𝑟) = − log2(𝑟).

(III) ℎ𝑠(𝑟) = 2−
(
log2

(
1
𝑟

))𝑠
corresponding to 𝑓 (𝑟) = 𝑔(𝑟) = log2

(
log2

(
1
𝑟

))
.

(IV) ℎ𝑠(𝑟) = 2−𝑀 ( 1
𝑟
)𝑠

corresponding to 𝑓 (𝑟) = log2
(

1
𝑀

log2
(
1
𝑟

))
, 𝑔(𝑟) = − log2(𝑟), for all 𝑀 > 0.

(V) ℎ𝑠(𝑟) = 2−𝑀
(

1
𝑀

log2
(
1
𝑟

))𝑠
corresponding to 𝑓 (𝑟) = 𝑔(𝑟) = log2

(
1
𝑀

log2
(
1
𝑟

))
, for all 𝑀 > 0.

Let’s mention that certain functions, like those in (II) or (IV), can be used to determine the dimension of infinite-dimensional sets. 
These Hausdorff functions may be valuable because they vanish more quickly than any power (see for example [8,24,26–28,40]) 
which gives a great interest in these general fractal measures.

4. Some examples

In the following example, an infinite 𝑠-set with positive and finite generalized Hausdorff measure is constructed.

Example 2. We will start by introducing a group of compact, completely disconnected metric spaces that are manageable and useful 
for further study. For 𝑘 ∈ ℕ we take 𝑎𝑘 ∈ ℕ, and 𝐴𝑘 =

{
1,… , 𝑎𝑘

}
be a discrete set. Let Ω =

∏∞
𝑗=1𝐴𝑗 . Clearly 𝜎 =

(
𝜎𝑗
)∞
𝑗=1 ∈ Ω when 

𝜎𝑗 ∈ 𝐴𝑗 for every 𝑗. In order to prove that the product topology on 𝑛 is a finite sequence, we shall now establish a metric 𝜌 on Ω
for 𝑥 =

(
𝑥𝑗
)𝑛
𝑗=1 with 𝑥𝑗 ∈𝐴𝑗 for every 𝑗 = 1, … , 𝑛. The empty segment 𝐴 is the only starting segment with length zero by definition. 

Write |𝑥| to denote the length of 𝑥 for 𝑥 is an initial segment. For 𝑛 ∈ ℕ, take Ω𝑛 stand for the collection of all 𝑛-length beginning 
segments. Let Ω∗ = ∪∞

𝑗=0Ω
𝑗 be the set of all initial segments. Let 𝜎 ∈Ω write 𝜎|𝑛 for the initial segment 

(
𝜎1,… , 𝜎𝑛

)
∈Ω𝑛. We could 

place the following partial order on Ω∗: For 𝑥, 𝑦 ∈ Ω∗ such that 𝑥 =
(
𝑥1,… , 𝑥𝑗

)
and 𝑦 =

(
𝑦1,… , 𝑦𝑘

)
, we write 𝑥 < 𝑦 if 𝑗 < 𝑘 and 

𝑥𝑖 = 𝑦𝑖 for all 𝑖 = 1, … , 𝑗. If 𝑥 < 𝑦, then 𝑦 is said to be a descendant of 𝑥. Let now 𝑥 ∈ Ω𝑛, we take 𝑥′ denote the unique element of 
Ω𝑛−1 such that 𝑥′ < 𝑥, 𝑥′ is called the parent and 𝑥 the child. Also if 𝑥 ∈Ω𝑛 is an initial segment, then we can define the cylinder as 
follows

[𝑥] =
{
𝜎 ∈Ω ∣ 𝜎𝑖 = 𝑥𝑖 for all 𝑖 = 1,… , 𝑛

}
.

Assign a number 𝑟(𝑥) > 0 matching the following conditions to each 𝑥 ∈ Ω∗ in order to construct a metric on 𝜌 on Ω:

(a) 𝑟(𝐴) > 0.

(b) 𝑟(𝑦) < 𝑟(𝑥) for all 𝑦 > 𝑥.( )

5

(c) lim
𝑛→∞

𝑟 𝜎|𝑛 = 0.
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If the longest common initial segment of 𝜎, 𝜏 ∈ Ω is 𝛼, then we can define 𝜌(𝜎, 𝜏) = 𝑟(𝑥). Furthermore, we define 𝜌(𝜎, 𝜎) = 0. The 
product topology on Ω is then induced by a metric called 𝜌 (see [19]). Remark that if 𝜎, 𝜏 ∈ Ω and 𝑟 

(
𝜎|𝑛) ≤ 𝜀 < 𝑟 (𝜎|𝑛−1), then 

𝜌(𝜎, 𝜏) ≤ 𝜀 is equivalent to 𝜎𝑖 = 𝜏𝑖 for 𝑖 = 1, … , 𝑛 which implies that 𝐵(𝜎, 𝑟) =
[
𝜎|𝑛].

This will be of particular interest because of an intriguing particular form of sequence space. Take 𝑠 > 0, 𝐴𝑘 =
{
1,… ,22𝑘−1

}
and 

we can choose 𝑟 ∈ (0, 1) such that 1
𝑟𝑠

= 2. Now, if 𝑥 ∈ Ω𝑛, we define 𝑟(𝑥) = 𝑟𝑛. Infinite 𝑠-space will be the name of the generated 
sequence space. In the following, we shall find that the Hausdorff function that best describes the dimensions of this space is provided 
by ℎ𝑠(𝑟) = 2−𝑟−𝑠 . More precisely, it follows from [26,27] that

if (Ω, 𝜌) is infinite 𝑠-space, then ℋℎ𝑠 (Ω) = 1
2
.

In the following example, we construct compact sets with the same generalized Hausdorff and packing dimension.

Example 3. Let (Ω, 𝜌) be a separable metric space and let 𝒦(Ω) denote the set of non-empty compact subsets of Ω. We can define 
now a metric 𝜌̃ on the space 𝒦(Ω) as follows: For 𝐴, 𝐴̃ ∈𝒦(Ω) let

𝜌(𝐴, 𝐴̃) = max

{
sup
𝑥∈𝐴

{
dist(𝑥, 𝐴̃)

}
, sup
𝑦∈𝐴̃

{
dist(𝑦,𝐴)

}}
.

The Hausdorff metric space, often known as the hyperspace associated with Ω, is the space (𝒦(Ω), ̃𝜌) and it inherits numerous 
attractive geometrical qualities from Ω. As an illustration, 𝒦(Ω) is complete or compact depending on the value of Ω, and vice 
versa. The Hausdorff metric is discussed in [19, Section 2.4], along with proofs of the aforementioned statements. Tildes will be 
employed to indicate references to the hyperspace in order to prevent confusion between metric spaces and the related hyperspaces. 
For instance, the closed ball of radius 𝜀 about the set 𝐴 is denoted by 𝐵𝜀(𝐴) ⊂𝒦(Ω). This is the case if 𝐴 ⊂Ω is compact and 𝜀 > 0.

The similarity dimension, which only applies to sets that are similar to themselves, is the following useful concept of dimension. 
The following is how self-similar sets are obtained: Let 𝑚 ∈ ℕ and for 𝑖 = 1, … , 𝑚 let 𝑆𝑖 ∶ Ω → Ω be a similarity with ratio 𝑟𝑖 ∈
(0, 1). This means that for every 𝑥, 𝑦 ∈ Ω we have 𝜌 

(
𝑆𝑖(𝑥), 𝑆𝑖(𝑦)

)
= 𝑟𝑖𝜌(𝑥, 𝑦). In this case, a singular non-empty compact set 𝐸 ⊂ Ω

exists such that 𝐸 = ∪𝑚
𝑖=1𝑆𝑖(𝐸). This results in a set 𝐸 that is considered to be self-similar. The singular positive number 𝑠0 with 

the property that 
∑𝑚
𝑖=1 𝑟

𝑠0
𝑖

= 1 is the definition of the similarity dimension of the set 𝐸 (see [19, Chapter 4] for further details on 
self-similar sets).

The standard Hausdorff dimension dim𝐻 (𝐸), upper box dimension dim𝐵(𝐸), and similarity dimension 𝑠0 are related as follows:

dim𝐻 (𝐸) ≤ dim𝐵(𝐸) ≤ 𝑠0.
If the set of contractions 

{
𝑆𝑖
}𝑚
𝑖=1 meets the open set condition, this relationship may be reinforced in Euclidean space. In other 

words, there is an open set 𝑂 if and only if 𝑂 ⊃ ∪𝑚
𝑖=1𝑆𝑖(𝑂) with this union disjoint. The aforementioned inequalities can be changed 

into equalities assuming that the open set requirement is met.

Now, let 𝐸 ⊂ℝ𝑛 be a self-similar set satisfying the open set condition. We assume that 𝑠0 is the similarity dimension of 𝐸 and let 
ℎ𝑠(𝑟) = 2−𝑟−𝑠 for 𝑠 ≥ 0. Then, by using [26,27], we have that

ℋℎ𝑠 (𝒦(𝐸)) =
⎧⎪⎨⎪⎩

0 for 𝑠 > 𝑠0

+∞ for 𝑠 < 𝑠0

and

𝒫ℎ𝑠 (𝒦(𝐸)) =
⎧⎪⎨⎪⎩

0 for 𝑠 > 𝑠0

+∞ for 𝑠 < 𝑠0

which implies that

dim𝑓,𝑔(𝒦(𝐸)) = Dim𝑓,𝑔(𝒦(𝐸)) = 𝑠0 = dim𝐻 (𝐸) = dim𝐵(𝐸).

Example 4. Let (Ω, 𝜌) be a metric space as in Example 1. Suppose that Ω is a sequence space with dim𝐻 (Ω) = 𝑠0 < +∞. Let ℎ𝑠(𝑟) =
2−𝑟−𝑠 for all 𝑠 ≥ 0. It follows from [26] that

ℋℎ𝑠 (𝒦(Ω)) =
⎧⎪⎨⎪⎩

0 for 𝑠 > 𝑠0

+∞ for 𝑠 < 𝑠0
6

and we have
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Fig. 1. The construction of the set 𝐸.

dim𝑓,𝑔(𝒦(Ω)) = 𝑠0 = dim𝐻 (Ω).

The next example gives a metric space with a positive and finite general Hausdorff measure.

Example 5. Let Ω =
{
𝑥0, 𝑥1,… , 𝑥∞

}
be a countable metric space with a metric 𝜌 fulfilling, for a sequence 𝑎𝑛 ↘ 0 as 𝑛 → +∞,

𝜌
(
𝑥𝑛, 𝑥∞

)
= 𝑎𝑛 and 𝜌

(
𝑥𝑛, 𝑥𝑚

) ≥ 𝑎𝑛 for all 𝑚< 𝑛 <∞.

It is clear that ℋℎ𝑠 (Ω) = 0 for every 𝑓 and 𝑔 satisfying the conditions (H1)-(H4). Now, if we suppose moreover the functions ℎ𝑠
satisfies ℎ𝑠

(
𝑎𝑛
)
= 2−𝑛, then it follows from [26] that

1
2
≤ℋℎ𝑠 (𝒦(Ω)) ≤ 1.

In the next three examples, we will create a set 𝐸 that has both a positive and finite general Hausdorff measure as well as the zero 
or infinite classical Hausdorff measure. In the following example, a set 𝐸 that satisfies the strong separation condition is constructed 
such that its Hausdorff outer measure and its packing outer measure coincide for every 𝑠 ≥ 0 since the coverings of the set 𝐸 are 
packings of 𝐸. This condition is not sufficient to assure that the generalized Hausdorff measures and the generalized packing outer 
measures coincide.

Example 6. A generalization of the Cantor set construction could be conceived of as the following generic construction of a subset 
of ℝ. Let [0, 1] = 𝐸0 ⊃ 𝐸1 ⊃ 𝐸2 ⊃… be a decreasing sequence of sets, with each 𝐸𝑘 a union of a finite number of disjoint closed 
intervals which are called 𝑘th level basic intervals, with each interval of 𝐸𝑘 containing at least two intervals of 𝐸𝑘+1, and the length 
of 𝑘th level intervals is 𝑟𝑘 = 2−𝑘2 . Then we consider the set

𝐸 =
∞⋂
𝑘=0

𝐸𝑘.

We assume that the (𝑘 +1)th level intervals 𝐼1 and 𝐼2 contained in 𝐼 are of equal length and evenly spaced in the overall construction 

of the collection 𝐸 for each 𝑘th level interval 𝐼 (see Fig. 1). Write now ℎ𝑠(𝑟) = 2−
(
log2

(
1
𝑟

))𝑠
. It is clear that

ℋ
ℎ 1
2

𝑟𝑘
(𝐸) ≤ 2𝑘ℎ 1

2
(𝑟𝑘) ≤ 2𝑘2−𝑘 = 1

which implies that

ℋ
ℎ 1
2 (𝐸) ≤ 1.

Now, distribute a mass 𝜇 on 𝐸 in such a way that 𝜇(𝐼) = 2−𝑘 = ℎ 1
2
(𝑟𝑘) whenever 𝐼 is any level 𝑘 interval. By using similar techniques 

such as in [20, Example 4.4], it follows from [26, Lemma 3.3.2] that

ℋ
ℎ 1
2 (𝐸) ≥ 𝜇(𝐸) > 0.

This implies that

0 <ℋ
ℎ 1
2 (𝐸) < +∞.

Now, since

ℎ 1 (𝑟)
7

lim
𝑟→0

2

𝑟𝑠
= +∞ for each 𝑠 > 0,
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we also have

ℋ𝑠(𝐸) =𝒫𝑠(𝐸) = 0 for all 𝑠 > 0.

Here, too, we may apply Judit’s methods in [22,23] to get ℋ
ℎ 1
2 (𝐸) = 1.

Example 7. Let 𝑠 > 0. Write 𝑔𝑠(𝑟) = 𝑟𝑠 and ℎ𝑠(𝑟) = 2−
(
log2

(
1
𝑟

))𝑠
for 𝑟 ∈ (0, 1). Simple calculus is used to obtain

lim
𝑟→0

𝑔𝑠(𝑟)
ℎ𝑠(𝑟)

=
⎧⎪⎨⎪⎩

0 if 𝑠 < 1,

+∞ if 𝑠 ≥ 1.

It follows that

(1) if 𝑠 < 1 and 𝐸 satisfies 0 <ℋℎ𝑠 (𝐸) < +∞, then we always that ℋ𝑔𝑠 (𝐸) = 0;

(2) if 𝑠 ≥ 1 and 𝐸 satisfies 0 <ℋℎ𝑠 (𝐸) < +∞, then we always have ℋ𝑔𝑠 (𝐸) = +∞.

In particular, if 𝑠 ≥ 1, then we cannot have both 0 <ℋℎ𝑠 (𝐸) < +∞ and ℋ𝑔𝑠 (𝐸) = 0.

Example 8. Let 𝑠 > 0. Write 𝑔𝑠(𝑟) = 𝑟𝑠 and ℎ𝑠(𝑟) = 2−
(
1
𝑟

)𝑠
for 𝑟 ∈ (0, 1). It is clear that

lim
𝑟→0

𝑔𝑠(𝑟)
ℎ𝑠(𝑟)

= +∞.

It follows that, if 𝑠 > 0 and 𝐸 satisfies 0 <ℋℎ𝑠 (𝐸) < +∞, then we always have ℋ𝑔𝑠 (𝐸) = +∞.

5. Coherent upper conditional previsions defined by the Choquet integral with respect to general fractal dimensional 
metric outer measures

In this section, we extend the results proven in [14] for Hausdorff outer measures to the general case where the Choquet integral 
is defined with respect to general fractal outer measures. A particular class of conditional aggregation operators can be considered 
to construct coherent upper conditional expectations. For every 𝐵 ∈ B coherent upper conditional expectations or previsions 𝑃 (⋅|𝐵)
are functionals defined on a linear space 𝐿(𝐵).

Definition 4. Coherent upper conditional previsions are functionals 𝑃 (⋅|𝐵) defined on 𝐿(𝐵), such that the following axioms of 
coherence hold for every 𝑋 and 𝑌 in 𝐿(𝐵) and every strictly positive constant 𝜆:

(i) 𝑃 (𝑋|𝐵) ≤ sup(𝑋|𝐵);
(ii) 𝑃 (𝜆𝑋|𝐵) = 𝜆𝑃 (𝑋|𝐵) (positive homogeneity);

(iii) 𝑃 (𝑋 + 𝑌 |𝐵) ≤ 𝑃 (𝑋|𝐵) + 𝑃 (𝑌 |𝐵) (subadditivity).

When 𝐿(𝐵) is the linear space of all bounded random variables, Definition 1 is the definition given in [41]. Suppose that 𝑃 (𝑋|𝐵)
is a coherent upper conditional expectation on 𝐿(𝐵). Then its conjugate coherent lower conditional expectation is defined by

𝑃 (𝑋|𝐵) = −𝑃 (−𝑋|𝐵).
If for every 𝑋 belonging to a linear space 𝐿(𝐵) we have 𝑃 (𝑋|𝐵) = 𝑃 (𝑋|𝐵) = 𝑃 (𝑋|𝐵), then 𝑃 (𝑋|𝐵) is called a coherent linear 
conditional expectation (de Finetti (1972) [9], de Finetti (1974) [10], Dubins (1975) [17], Regazzini (1985) [34], Regazzini (1987) 
[35]) and it is a linear, positive and positively homogenous functional on 𝐾 (Walley (1991) [41, Corollary 2.8.5]). The unconditional 
coherent upper expectation 𝑃 = 𝑃 (⋅|Ω) is obtained as a particular case when the conditioning event is Ω. Coherent upper conditional 
probabilities are obtained when only 0-1 valued random variables are considered. From axioms i)-iii) and by the conjugacy property, 
we have that

1 ≤ 𝑃 (𝐼𝐵|𝐵) ≤ 𝑃 (𝐼𝐵|𝐵) ≤ 1

so that

𝑃 (𝐼𝐵|𝐵) = 𝑃 (𝐼𝐵|𝐵) = 1.

In [15] coherent upper conditional previsions have been defined on the linear space of all bounded random variables through 
conditional aggregator operators.

According to the following conclusion, coherent conditional previsions are defined on the linear space of all Choquet integral 
8

random variables 𝑋|𝐵 as the Choquet integral with respect to a fractal outer measure ℋℎ𝑠 such that ℋℎ𝑠 (𝐵) ≠ 0 and they are 
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defined by a 0-1-valued finitely but not countably additive probability when the conditioning event has a fractal outer measure ℋℎ𝑠

zero or infinity in it dimension.

Theorem 1. Let (Ω, 𝑑) be a metric space, 𝑠 ≥ 0, and let B be a partition of Ω. For every 𝐵 ∈ B denote by 𝑠 the dimension dim𝑓,𝑔 of the 
conditioning event 𝐵 and by ℋℎ𝑠 the 𝑠-dimensional outer measure.

(1) Let 𝑚𝐵 be a 0-1 valued finitely additive, but not countably additive, probability on ℘(𝐵). Then for each 𝐵 ∈ B the functional 𝑃 (𝑋|𝐵)
defined on the linear space of all Choquet integral random variable 𝕃(𝐵) by

𝑃 (𝑋|𝐵) =
⎧⎪⎪⎨⎪⎪⎩

1
ℋℎ𝑠 (𝐵) ∫

𝐵

𝑋𝑑ℋℎ𝑠 if 0 <ℋℎ𝑠 (𝐵) < +∞,

∫
𝐵

𝑋𝑑𝑚𝐵 if ℋℎ𝑠 (𝐵) ∈ {0,+∞}

is a coherent upper conditional prevision.

(2) Let 𝑚𝐵 be a 0-1 valued finitely additive, but not countably additive, probability on ℘(𝐵). Thus, for each 𝐵 ∈ B, the function defined on 
℘(𝐵) by

𝑃 (𝐴|𝐵) = ⎧⎪⎨⎪⎩
ℋℎ𝑠 (𝐴 ∩𝐵)
ℋℎ𝑠 (𝐵)

if 0 <ℋℎ𝑠 (𝐵) < +∞,

𝑚𝐵 if ℋℎ𝑠 (𝐵) ∈ {0,+∞}

is a coherent upper conditional probability.

(3) All above results hold for the general dimensional packing measures 𝒫ℎ𝑠 .

Proof. (1) Since 𝕃(𝐵) is a linear space it suffices to prove that, for every 𝐵 ∈ B 𝑃 (𝑋|𝐵) satisfies conditions (i), (ii), (iii) of Defini-

tion 4. If 𝐵 has finite and positive ℋℎ𝑠 outer measure in its dimension dim𝑓,𝑔 , then

𝑃 (𝑋|𝐵) = 1
ℋℎ𝑠 (𝐵) ∫

𝐵

𝑋𝑑ℋℎ𝑠 ,

which implies that properties (i) and (ii) are satisfied since they hold for the Choquet integral [11, Proposition 5.1]. Now, 
property (iii) follows from the Subadditivity Theorem [11, Theorem 6.3] since ℋℎ𝑠 outer measures are monotone, submodular, 
and continuous from below. If 𝐵 has an outer measure ℋℎ𝑠 in its dimension equal to zero or infinity we have that the class 
of all coherent (upper) previsions on 𝐿(𝐵) is equivalent to the class of 0-1 valued additive probabilities defined on ℘(𝐵), then 
𝑃 (𝑋|𝐵) =𝑚(𝐵). Then properties (i), (ii), (iii) are satisfied since 𝑚 is a 0-1 valued finitely additive probability on ℘(𝐵).

(2) Coherent upper conditional probabilities can be generated by limiting coherent upper conditional predictions to the class of 
indicator functions. A coherent upper conditioning prediction model built on dimensional outer measures is the end outcome. 
The coherent upper conditional probability, which is often employed as a gauge of the possibility of an event occurring given 
that another event has already occurred (by assumption, presumption, assertion, or evidence), is defined in the model using the 
𝑠-dimensional outer measure.

(3) The proof of Assertion (3) is identical to the proof of the statement in the first and the second assertion and is therefore 
omitted. □

Remark 3. In Theorem 1 for each conditioning set 𝐵 such that the general Hausdorff or packing outer measure id equal to zero or 
infinity, conditional probability is defined by a 0-1 valued finitely, but not countably, additive probability. It assures that, in this 
case, the restriction of the conditional probability to the Borel 𝜎-field is a full conditional probability in the sense of Dubins [17] and 
in particular it satisfies the general compound rule for every Borelian sets 𝐴, 𝐵, 𝐶

𝑃 (𝐴 ∩𝐵|𝐶) = 𝑃 (𝐴|𝐵 ∩𝐶)𝑃 (𝐵|𝐶).
6. Fractal dimensions defined by the Sugeno integral of generalized fractal measures

In this section, fractal dimensions dim𝑓,𝑔 and Dim𝑓,𝑔 introduced in Example 4 are proven to be respectively the Sugeno integral 
with respect to the Lebesgue measure of the generalized fractal measures ℋℎ𝑠 and 𝒫ℎ𝑠 .

Theorem 2. Let (Ω, 𝑑) be a metric space, let 𝐸 be a subset of Ω, and let 𝑚 be the Lebesgue measure on the class of Borel sets of [0, +∞). 
For 𝑠 ≥ 0 let( ) {( ) ( )}
9

𝜈𝑠, 𝑠0 ∈ ℋℎ𝑠 ,dim𝑓,𝑔 , 𝒫ℎ𝑠 ,Dim𝑓,𝑔 .
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Then the Sugeno integral of the function 𝜈𝑠(𝐸), as a function of 𝑠, with respect to 𝑚 is equal to fractal dimension 𝑠0, that is

𝑆(𝜈𝑠(𝐸),𝑚) = 𝑠0.

Proof. Firstly consider the case 0 < 𝑠0 <∞; 𝜈𝑠(𝐸), as function of 𝑠 is a decreasing non-trivial positive function, then by Theorem 
3.2 and Theorem 3.11 of [6] we have

𝑆𝑢(𝜈𝑠(𝐸),𝑚) = sup
𝑥≥0

{
𝑥 ∧ 𝜈𝑠(𝐸)

}
= 𝑠0

where 𝑠0 is the unique midpoint [6], i.e. it is the unique point such that

𝜈𝑠(𝐸) < 𝑥 for any 𝑠0 < 𝑥 < +∞ and 𝜈𝑠(𝐸) > 𝑥 for any 0 < 𝑥 < 𝑠0.

Let 𝑠0 = 0; 𝜈𝑠(𝐸), as function of 𝑠, is a decreasing trivial function such that 𝜈𝑠(𝐸) ∈ℜ+ ∪{+∞} for 𝑠 = 𝑠0 = 0 and 𝜈𝑠(𝐸) = 0 for 𝑠 > 0, 
then

𝑆𝑢(𝜈𝑠(𝐸),𝑚) = 0 = 𝑠0. □

Remark 4. By the previous theorem, we have that fractal dimensions dim𝑓,𝑔 and Dim𝑓,𝑔 are examples of aggregation operators. 
In general, the Sugeno integral with respect to the Lebesgue measure 𝑚 does not define conditional aggregation operators since 
condition 2b) of Definition 1 may be not satisfied. It occurs for example if 𝐸 is the Cantor set because 𝑆(𝟏𝐸 |𝐸|, 𝑚) = 0 ≠ 1.

In the following examples, some consequences of the results proven in the paper are shown.

Example 9. Let Ω as in Example 1 and 𝒦(Ω) as in Example 3 then by Theorem 2 we have that

𝑆(ℋℎ𝑠 (𝒦(Ω)),𝑚) = 𝑆(ℋ(Ω),𝑚).

Example 10. Let 𝐸 be the set as in Example 5 and ℎ𝑠(𝑟) = 2−
(
log2

(
1
𝑟

))𝑠
. By using Theorem 2, we get

𝑆(ℋℎ𝑠 (𝐸),𝑚) = 1
2
= 𝑆(𝒫ℎ𝑠 (𝐸),𝑚).

We can observe that if we chose ℎ𝑠(𝑟) = 𝑟𝑠, then we obtain ℋ𝑠(𝐸) = 0 = 𝒫𝑠(𝐸), ∀𝑠 > 0 and ℋ0(𝐸) = +∞ = 𝒫0(𝐸) so that the 
dim𝐻 (𝐸) = 0 = dim𝑃 (𝐸). By using Theorem 2 we have

𝑆(ℋ𝑠(𝐸),𝑚) = 0 = 𝑆(𝒫𝑠(𝐸),𝑚).

Example 11. Let us recall the class of homogeneous Moran sets [37]. We denote by {𝑛𝑘}𝑘≥1 a sequence of positive integers with 
𝑛𝑘 ≥ 2 and Φ = {Φ𝑘}𝑘≥1 be a sequence of vectors satisfying

Φ𝑘 = (𝑐𝑘,1, 𝑐𝑘,2,⋯ , 𝑐𝑘,𝑛𝑘 ), with 0 < 𝑐𝑘,𝑗 < 1, ∀𝑘 ∈ ℕ, ∀1 ≤ 𝑗 ≤ 𝑛𝑘.
𝐷𝑚,𝑘 =

{(
𝑖𝑚, 𝑖𝑚+1,… , 𝑖𝑘

)
; 1 ≤ 𝑖𝑗 ≤ 𝑛𝑗 , 𝑚 ≤ 𝑗 ≤ 𝑘} and 𝐷𝑘 =𝐷1,𝑘.

Define 𝐷 =
⋃
𝑘≥1

𝐷𝑘.

Let 𝜎 =
(
𝜎1,… , 𝜎𝑘

)
∈𝐷𝑘, 𝜏 =

(
𝜏𝑘+1,… , 𝜏𝑚

)
∈𝐷𝑘+1,𝑚,we denote 𝜎 ∗ 𝜏 =

(
𝜎1,… , 𝜎𝑘, 𝜏𝑘+1,… , 𝜏𝑚

)
.

We say that the collection ℱ =
{
𝐽𝜎, 𝜎 ∈𝐷

}
fulfills the Moran structure if it satisfies the following conditions:

(1) For all 𝜎 ∈ 𝐷, 𝐽𝜎 is similar to 𝐽 , that is there exists a similarity mapping 𝑆𝜎 ∶ ℝ𝑑 → ℝ𝑑 such that 𝑆𝜎(𝐽 ) = 𝐽𝜎 . Here we set 
𝐽∅ = 𝐽 .

(2) For all 𝑘 ≥ 0 and 𝜎 ∈𝐷𝑘, 𝐽𝜎∗1, 𝐽𝜎∗2, … , 𝐽𝜎∗𝑛𝑘+1 are subsets of 𝐽𝜎 , and satisfy that 𝐽 ◦
𝜎∗𝑖 ∩ 𝐽

◦
𝜎∗𝑗 = ∅ (𝑖 ≠ 𝑗), where 𝐴◦ denotes the 

interior of 𝐴.

(3) For any 𝑘 ≥ 1, 𝜎 ∈𝐷𝑘−1 and 1 ≤ 𝑗 ≤ 𝑛𝑘, 𝑐𝑘,𝑗 =
|||𝐽𝜎∗𝑗 |||||𝐽𝜎 || , 1 ≤ 𝑗 ≤ 𝑛𝑘, where |𝐴| denotes the diameter of 𝐴.

Let ℱ =ℱ
(
𝐽,

{
𝑛𝑘
}
,
{
Φ𝑘

})
be a collection having a Moran structure. The set

𝐸(ℱ) =
⋂ ⋃

𝐽

10

𝑘≥1 𝜎∈𝐷𝑘
𝜎
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is called a Moran set determined by ℱ. It is convenient to denote 𝑀
(
𝐽,

{
𝑛𝑘
}
,
{
Φ𝑘

})
the collection of Moran sets determined by 𝐽 , {

𝑛𝑘
}

and 
{
Φ𝑘

}
. If we ask 𝑐𝑘,𝑗 = 𝑐𝑘 for all 1 ≤ 𝑗 ≤ 𝑛𝑘, where {𝑐𝑘}𝑘≥1 is a sequence of positive numbers, we can get the Moran structure 

and Moran sets. In this situation, we call them by homogeneous Moran structure and the collection of Moran sets and denote by 
ℱ =ℱ

(
𝐽,

{
𝑛𝑘
}
,
{
𝑐𝑘
})

and ℳ =ℳ
(
𝐽,

{
𝑛𝑘
}
,
{
𝑐𝑘
})

. If lim
𝑘→+∞

sup
𝜎∈𝐷𝑘

||𝐽𝜎 || > 0, then E contains interior points. Thus the measure and 

dimension properties will be trivial. We assume therefore lim
𝑘→+∞

sup
𝜎∈𝐷𝑘

||𝐽𝜎 || = 0. Now, define

𝑠 ∶= lim inf
𝑘→+∞

log(𝑛1⋯𝑛𝑘)
− log(𝑐1⋯ 𝑐𝑘)

and

𝑠 ∶= limsup
𝑘→+∞

log(𝑛1⋯𝑛𝑘)
− log(𝑐1⋯ 𝑐𝑘)

.

It follows from Theorem 2 that

𝑆(ℋ𝑠(𝐸(ℱ)),𝑚) = 𝑠 and 𝑆(𝒫𝑠(𝐸(ℱ)),𝑚) = 𝑠.

It is clear that if 𝐽 = [0, 1], 𝑛𝑘 = 2 and 𝑐𝑘 =
1
3 for all 𝑘 ≥ 1, then the set 𝐸(ℱ) is the middle-third Cantor set which implies that

𝑆(ℋ𝑠(𝐸(ℱ)),𝑚) =
log(2)
log(3)

= 𝑆(𝒫𝑠(𝐸(ℱ)),𝑚).

Example 12. Let 𝐴 = {𝑎, 𝑏} be a two-letter alphabet, and 𝐴∗ the free monoid generated by 𝐴. Let 𝐹 be the homomorphism on 𝐴∗, 
defined by 𝐹 (𝑎) = 𝑎𝑏 and 𝐹 (𝑏) = 𝑎. It is easy to see that 𝐹𝑛(𝑎) = 𝐹𝑛−1(𝑎)𝐹𝑛−2(𝑎). We denote by |𝐹𝑛(𝑎)| the length of the word 𝐹𝑛(𝑎), 
thus

𝐹𝑛(𝑎) = 𝑠1𝑠2⋯ 𝑠|𝐹𝑛(𝑎)|, 𝑠𝑖 ∈𝐴.

Therefore, as 𝑛 →∞, we get the infinite sequence

𝜔 = lim
𝑛→+∞

𝐹𝑛(𝑎) = 𝑠1𝑠2𝑠3⋯ 𝑠𝑛⋯ ∈ {𝑎, 𝑏}ℕ

which is called the Fibonacci sequence. For any 𝑛 ≥ 1, write 𝜔𝑛 = 𝜔|𝑛 = 𝑠1𝑠2⋯ 𝑠𝑛. We denote by ||𝜔𝑛||𝑎 the number of the occurrence 

of the letter 𝑎 in 𝜔𝑛, and ||𝜔𝑛||𝑏 the number of occurrence of 𝑏. Then ||𝜔𝑛||𝑎 + ||𝜔𝑛||𝑏 = 𝑛. It follows from [37] that lim
𝑛→+∞

||𝜔𝑛||𝑎
𝑛

= 𝜂, 

where 𝜂2 + 𝜂 = 1.

Let 0 < 𝑟𝑎 <
1
2 , 0 < 𝑟𝑏 <

1
3 , 𝑟𝑎, 𝑟𝑏 ∈ℝ. In the above Moran construction (Example 10), let

|𝐽 | = 1, 𝑛𝑘 =
⎧⎪⎨⎪⎩
2, if 𝑠𝑘 = 𝑎

3, if 𝑠𝑘 = 𝑏

and

𝑐𝑘 =
⎧⎪⎨⎪⎩
𝑟𝑎, if 𝑠𝑘 = 𝑎

𝑟𝑏, if 𝑠𝑘 = 𝑏
, 1 ≤ 𝑗 ≤ 𝑛𝑘.

Then we construct the homogeneous Moran set relating to the Fibonacci sequence and denote it by 𝐸(𝜔) =
(
𝐽,

{
𝑛𝑘
}
,
{
𝑐𝑘
})

. By the 
construction of 𝐸(𝜔), we have

||𝐽𝜎|| = 𝑟||𝜔𝑘||𝑎𝑎 𝑟
||𝜔𝑘||𝑏
𝑏

, ∀𝜎 ∈𝐷𝑘.

For 𝑘 ∈ ℕ, define

𝑠𝑘 = −
||𝜔𝑘||𝑎 log (2) + ||𝜔𝑘||𝑏 log (3)||𝜔𝑘||𝑎 log 𝑟𝑎 + ||𝜔𝑘||𝑏 log 𝑟𝑏 .

It follows from [37] that

𝑠 ∶= lim
𝑘→+∞

𝑠𝑘 = −
log (2) + 𝜂 log (3)
log 𝑟𝑎 + 𝜂 log 𝑟𝑏
11

exists, where 𝜂2 + 𝜂 = 1. By using Theorem 2, this implies that
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𝑆(ℋ𝑠(𝐸(𝜔)),𝑚) = 𝑠 = 𝑆(𝒫𝑠(𝐸(𝜔)),𝑚).

The previous examples can be considered to construct conditional aggregation operators defined by the Sugeno integral with 
respect to Generalized Haudorff and packing measures.

Theorem 3. Let (Ω, 𝑑) be a metric space and let 𝐁 a partition of Ω. For each 𝐵 ∈ 𝐁 define(
𝜈𝑠(𝐵), 𝑠0

)
∈
{(

ℋℎ𝑠 (𝐵),dim𝑓,𝑔(𝐵)
)
,
(
𝒫ℎ𝑠 (𝐵),Dim𝑓,𝑔(𝐵)

)}
.

If 𝜈𝑠0 (𝐵) > 0, then a conditional aggregation operator 𝐴𝑆𝑢(𝑋|𝐵) can be defined by the Sugeno integral on the class of all Sugeno integral 
random variables

𝐴𝑆𝑢(𝑋|𝐵) = 1
𝜈𝑠0𝑠(𝐵)

𝑆𝑢(𝑋|𝐵,𝜈𝑠0 ) if 𝜈𝑠0 (𝐵) ≠ 0

and 𝑠0 is the Sugeno integral of 𝜈𝑠(𝐵) as a function of 𝑠, with respect to the Lebesgue measure on the class of the Borel sets of [0, +∞),

𝑆(𝜈𝑠(𝐵),𝑚) = 𝑠0.

Proof. It follows from the property of the Sugeno integral. □

In the following example, a set is constructed such that its Hausdorff measure is equal to zero and its packing measure is positive 
and finite in its dimension. So we can compute the Sugeno integral of the packing measure of the set with respect to the Lebesgue 
measure.

Example 13. Take ℎ𝑠 = 𝑟𝑠 for 𝑠 ≥ 0 and let 2
𝑝 = 𝑝 × 𝑝, where 𝑝 is the middle-𝛼 Cantor set with 𝛼 = 1 − 2𝑝 which obtained by 

repeated removal of the middle proportion 𝛼 of intervals. Then the middle-𝛼 Cantor set can be written as

𝑝 =
{
𝑥 = (1 − 𝑝)

∞∑
𝑖=0
𝑎𝑖 𝑝

𝑖 ∶ 𝑎𝑖 ∈ {0,1}

}
,

for 0 < 𝑝 < 1
2 where 𝛼 = 1 − 2𝑝. It is well known that dim𝐻 (𝑝) = log2

log𝑝−1 .

The family of projections 
{
proj𝜃 2

𝑝

}
0≤𝜃<𝜋 is affine-equivalent to the self-similar sets generated by iterated function systems 

{𝑝𝑥, 𝑝𝑥 + 1, 𝑝𝑥 + 𝑢, 𝑝𝑥 + 1 + 𝑢}𝑢>0. We want to have dimH 2
𝑝
< 1, so we assume that 𝑝 < 1

4 . We may assume also, without loss of 

generality, that 𝑢 ≥ 1. It follows from [31] that for every 𝑝 ∈
(
1
6 ,

1
4

)
and for almost every 𝜃 ∈

[
𝑎𝑟𝑐𝑡𝑎𝑛

1−2𝑝
𝑝
, 𝑎𝑟𝑐𝑡𝑎𝑛

2
1−3𝑝

]
we obtain

ℋ𝑠
(
proj𝜃 2

𝑝

)
= 0 and 0 <𝒫𝑠

(
proj𝜃 2

𝑝

)
<∞,

where 𝑠 is the similarity dimension log4
log𝑝−1 . So we have

𝐴𝑆𝑢(𝑋|𝐵) = 1

𝒫
log4

log𝑝−1
(
proj𝜃 2

𝑝

)𝑆𝑢(𝑋|𝐵,𝒫 log4
log𝑝−1

)

and

𝑆
(
𝒫𝑠

(
proj𝜃 2

𝑝

)
,𝑚

)
=

log4
log𝑝−1

.

7. Conclusions

The results proposed in this paper permit to put in evidence the relations among important concepts such as coherent conditional 
previsions, Choquet integral, Sugeno integral, dimensional fractal outer measures, and fractal dimensions. We have that a coherent 
upper conditional prevision of a Choquet integrable random variable 𝑋|𝐵 can be defined as the Choquet integral of 𝑋|𝐵 with 
respect to the 𝑠0-dimensional fractal measure where 𝑠0 is the fractal dimension of set 𝐵 and the 𝑠0-dimensional fractal measure of 𝐵
is positive and finite; 𝑠0 is the Sugeno integral with respect to the Lebesgue measure on the class of the Borel sets of [0, +∞) of the 
𝑠0-dimensional fractal outer measure of 𝐵. As a consequence for all sets E such that the fractal dimension 𝑠0 is known, the Sugeno 
integral with respect to the Lebegue measure of the fractal measure 𝜈𝑠(𝐸), as a function of 𝑠, can be determined.
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