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spaces for the corresponding linear problem.

Mathematics Subject Classification. 35R11, 26A33, 45K05.

Keywords. Time-fractional Hamilton–Jacobi equations, Caputo deriva-
tive, Adjoint method, Schauder estimates.

Contents

1. Introduction 2
2. Notations and preliminaries 4
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1. Introduction

In recent times, to model memory effects and subdiffusive regimes in appli-
cations such as transport theory, viscoelasticity, rheology and nonmarkovian
stochastic processes, there has been an increasing interest in the study of
time-fractional differential equations, i.e. differential equations where the stan-
dard time derivative is replaced by a fractional one, typically a Caputo or a
Riemann–Liouville derivative. A significant number of papers has been devoted
to extend properties holding in the standard setting to the fractional one (see
for example [2,20,35,37,59]).

Aim of this paper is to study existence, uniqueness and regularity prop-
erties of classical solutions to the time-fractional Hamilton–Jacobi equation{

∂β
(0,t]u(x, t) − Δu + H(x,Du) = V (x, t) (x, t) ∈ QT = T

d × (0, T ),
u(x, 0) = u0(x) x ∈ T

d,
(1)

where T
d is the unit torus, H a convex, coercive Hamiltonian in Du and ∂β

(0,t]u,
for β ∈ (0, 1), denotes the Caputo time-fractional derivative

∂β
(0,t]u(x, t) =

1
Γ(1 − β)

t∫
0

∂τu(x, τ)
(t − τ)β

dτ.

In the study of (1), we are mainly motivated by problems arising in Mean
Field Games theory for subdiffusion processes (see [7]), where typically H =
H(x, p) behaves like |p|γ , γ > 1 in p and V is a so-called regularizing coupling
[8].
Starting with [32], quasi-linear equations of the form (1) with standard time
derivative have been extensively studied in literature and several results are
available depending on growth conditions on H with respect to the gradient
variable (see [12,24,44] and references therein). Recently, a theory of weak
solutions (in viscosity sense) for the Hamilton–Jacobi equation (1) has been
investigated in [23,33,53]. In [29], existence results for (1) are obtained by
means of Fourier transform in space. Here, we propose a study of (1) based on
a combination of a priori estimates for the linear problem combined with the
so-called nonlinear adjoint method developed by Evans (see [21], [24] and ref-
erences therein). This latter scheme was introduced to study more deeply the
gradient shock structures of viscosity solutions to non-convex Hamilton–Jacobi
equations. In particular, it relies on studying the adjoint of the linearization of
the Hamilton–Jacobi equation via integration by parts rather than relying on
maximum principles arguments. In this analysis, since we are dealing with
time-fractional derivatives, we introduce the time-fractional Fokker–Planck
equation{

∂β
[t,τ)ρ − σΔρ − div(DpH(x,Du)ρ) = 0 in Qτ := T

d × (0, τ) ,

ρ(x, τ) = ρτ (x) in T
d,

(2)
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τ ∈ (0, T ), driven by the drift b(x, t) := DpH(x,Du(x, t)), where

∂β
[t,τ)ρ = − 1

Γ(1 − β)

τ∫
t

∂sρ(x, s)
(s − t)β

ds,

stands for the backward Caputo derivative. We will henceforth refer to the
solution ρ of (2) as the adjoint variable. In the first part of the paper, as an
important preliminary step to the study of (1), we review and extend maximal
regularity results in Lebesgue and Holder spaces for abstract linear differential
equations of the form{

∂β
(0,t]u(t) + Au(t) = f(t), on I,

u(0) = u0,
(3)

where I ⊆ R, X a Banach space with norm ‖ · ‖, u : I → X, A : D(A) → X
is an unbounded linear operator, being D(A) a linear subspace of X (the so-
called domain of A) equipped with the graph norm ‖x‖D(A) = ‖x‖ + ‖Ax‖
and u0 belongs to a suitable Banach space. From the functional viewpoint,
the main peculiarity of (3) is that the usual semigroup property fulfilled by
the solution operator is lost because of the memory effect due to the fractional
derivative. However, by formally taking the Laplace transform of the equation,
(3) can be rewritten as the following abstract Volterra equation

u(t) = u(0) +

t∫
0

gβ(t − τ)Au(τ)dτ + F (t), (4)

where gβ(t) = tβ−1/Γ(β) and F (t) = 1
Γ(β)

t∫
0

(t − τ)β−1f(τ)dτ . The Volterra

equation (4) allows to exploit regularity results in Lebesgue and Hölder’s
spaces. In particular, concerning estimates in Lebesgue spaces, we recall the
classical maximal regularity result in [57,60] (see also the monographs [47,48]
and references therein), which is obtained in the parabolic class

βV
2
p (Q) := Hβ

p (I;Lp(Td)) ∩ Lp(I;W 2,p(Td)). (5)

Moreover, with the aim of giving a self-contained presentation, we provide a
detailed discussion of the embeddings for the parabolic spaces βV

2
p (Q), since

these results are the basis for the subsequent study of (1) via linearization
arguments. We also recall some tools from interpolation theory in Banach
spaces, inspired by [30,31] and lately developed in [13], for equations of the
form (1) with standard time derivative.

Concerning Hölder’s estimates, the analysis of Volterra equations in such
framework began with [15,46]. In the following, we provide a PDE oriented
proof of these estimates, which is reminiscent of the classical approach via
semigroup theory to abstract Cauchy problems (see e.g. [39] and references
therein). For the fractional Laplacian, Schauder’s estimates have been investi-
gated in [6], while a different approach, based on interpolation theory methods,
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has been developed in [13]. Here, a crucial ingredient is a Duhamel-like formula
for (1) defined via the so-called Mittag-Leffler families.

The previous preliminary tools provide the basis for the analysis of the
time-fractional Hamilton–Jacobi equations. The main result of the paper is
the following existence and uniqueness result for classical solutions to (1) with
smooth right-hand side V (assumptions (H1)–(H5) are detailed at the begin-
ning of Sect. 5).

Theorem 1.1. Let β ∈ (0, 1), H satisfying (H1)–(H5), p > d + 2/β, u0 ∈
W

2− 2
pβ

p (Td) and V ∈ Lp(QT ). Then, there exists τ∗ < T such that (1) admits
a unique (strong) solution u ∈ βV

2
p (Td × (0, τ∗)).

Moreover, if β ∈ (1
2 , 1), u0 ∈ C4+ γ

β (Td) and V ∈ C([0, T ];C2+ γ
β (Td)), there

exists a unique (global) solution u ∈ C([0, T ];C4+ γ
β (Td)) to (1), and the fol-

lowing estimate holds

‖u‖
C([0,T ];C

4+ γ
β (Td))

≤ C
(
‖V ‖

C([0,T ];C
2+ γ

β (Td))
+ ‖u0‖

C
4+ γ

β (Td)

)
.

The proof of the previous theorem relies on a contraction mapping princi-
ple, in the spirit of recent works for time-fractional quasi-linear equations (see
[17,59]). Here, the result is achieved by combining the analysis of the parabolic
Sobolev spaces outlined above with an a priori gradient bound on the solution
of (1), which allows to treat (1) as a perturbation of a time-fractional heat
equation. For the latter argument, a crucial step is an estimate of the crossed
quantity ∫∫

|Du|γρ dxdt , (6)

with ρ solving (2), which is accomplished by means of the aforementioned non-
linear adjoint method. We remark that bounds of type (6) play an important
role in Mean Field Games theory and stochastic control [13,24,44], Sobolev
regularity for the Fokker–Planck equation ([5,14,41]), Hamilton–Jacobi equa-
tions [12]. Some comments on space-time Hölder regularity results for (1) as
well as on the restriction β ∈ (1/2, 1) are provided in Remark 5.9.

The paper is organized as follows. In Sect. 2, we introduce the functional
spaces where the problem is studied and we discuss several of their properties.
Section 3 is devoted to the study of the time-fractional heat equation (4) and
Sect. 4 to the corresponding Schauder estimates. Finally, in Sect. 5, we prove
the main results of the paper, existence and gradient bound on the solution of
(1).

2. Notations and preliminaries

In this section, we shortly review some functional spaces and their properties.
Moreover we prove some embedding results for fractional Sobolev spaces.



NoDEA Results for viscous Hamilton–Jacobi equations Page 5 of 37 22

2.1. Hölder spaces

We recall here the definition of Hölder spaces on the torus and then define
space-time Hölder spaces typically associated to fractional heat-type equations.
Let α ∈ (0, 1) and k be a nonnegative integer. A real-valued function u defined
on T

d belongs to Ck+α(Td) if u ∈ Ck(Td) and

[Dru]Cα(Td) := sup
x�=y∈Td

|Dru(x) − Dru(y)|
dist(x, y)α

< ∞,

for each multi-index r such that |r| = k, where dist(x, y) is the geodesic dis-
tance from x to y on T

d. Note that in the definition of the previous (and follow-
ing) seminorm, dist(x, y) can be replaced by the Euclidean distance |x−y| and
the supremum can be taken in R

d since u can be seen as a periodic function
on R

d.
We first consider some vector-valued Hölder’s spaces. Let X be a Banach

space and γ ∈ (0, 1). Denote by Cγ(I;X), I ⊆ [0, T ], the space of functions
u : I → X such that the norm defined as

‖u‖Cγ(I;X) := sup
t∈I

‖u(t)‖X + sup
t�=τ

‖u(t) − u(τ)‖X

|t − τ |γ

is finite. Hence, specializing to X = Cα(Td), α ∈ (0, 1), we have that
Cγ(I;Cα(Td)) is the set of functions u : I → Cα(Td) with finite norm

‖u‖Cγ(I;Cα(Td)) := ‖u‖∞;Q + sup
t∈I

[u(·, t)]Cα(Td) + [u]Cγ(I;Cα(Td)) ,

where the last seminorm being defined as

[u]Cγ(I;Cα(Td)) := sup
t�=τ∈I

‖u(·, t) − u(·, τ)‖Cα(Td)

|t − τ |γ .

Let now Q = T
d × I. We define

[u]Cα
x (Q) := sup

t∈I
[u(·, t)]Cα(Td)

and

[u]Cγ
t (Q) := sup

x∈Td

[u(x, ·)]Cγ(I).

When dealing with regularity of parabolic equations with fractional oper-
ators, we also need Hölder spaces with different regularity in time and space.
Following the lines of [6,22], we define Cα,γ(Q) as the space of continuous
functions u with finite Hölder parabolic seminorm

[u]Cα,γ(Q) := [u]Cα
x (Q) + [u]Cγ

t (Q). (7)

The norm in the space Cα,γ(Q) is defined naturally as

‖u‖Cα,γ(Q) := ‖u‖∞;Q + [u]Cα,γ(Q) .

Note that if γ = α/2, the space Cα,γ(Q) coincides with Cα,α/2(Q). For these
latter classical parabolic Hölder spaces, we refer the interested reader to [32] for
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a detailed discussion. As pointed out in [22], the following equivalence between
seminorms holds

[u]Cα,γ(Q) ∼ sup
x,y∈Td,t,τ∈I

|u(x, t) − u(y, τ)|
dist(x, y)α + |t − τ |γ .

All the spaces above can be defined analogously on R
d and R

d ×I. More-
over, if u is a periodic function in the x-variable, norms on T

d and R
d coincide,

e.g. ‖u‖Cα(Td) = ‖u‖Cα(Rd), etc.

Remark 2.1. It is worth noticing that we have to distinguish the spaces
Cγ(I;Cα(Td)) and Cα,γ(Q), since it results

Cγ(I;Cα(Td)) � Cα,γ(Q) .

This can be easily seen by taking γ = α and a periodic function in the x-
variable that behaves like (x+t)α in a neighbourhood of (0, 0) (see in particular
[50, Section 4]).

2.2. Fractional Sobolev and Bessel potential spaces

This section is devoted to collect the definitions of Lebesgue and Sobolev
spaces we will use throughout the paper. Recall that Lp(Td) is the space of
all measurable and periodic functions belonging to Lp

loc(R
d) with norm ‖ ·

‖p = ‖ · ‖Lp((0,1)d). If k is a nonnegative integer, W k,p(Td) consists of Lp(Td)
functions with (distributional) derivatives in Lp(Td) up to order k. For μ ∈ R

and p ∈ (1,∞), we can define the Bessel potential space Hμ
p (Td) as the space

of all distributions u such that (I − Δ)
μ
2 u ∈ Lp(Td), where (I − Δ)

μ
2 u is the

operator defined in terms of Fourier series

(I − Δ)
μ
2 u(x) =

∑
k∈Zd

(1 + 4π2|k|2)μ
2 û(k)e2πik·x ,

and

û(k) =
∫
Td

u(x)e−2πik·xdx .

The norm in Hμ
p (Td) will be denoted by

‖u‖μ,p :=
∥∥∥(I − Δ)

μ
2 u

∥∥∥
p
.

Note that Hμ
p (Td) coincides with Wμ,p(Td) when μ is a nonnegative integer

and p ∈ (1,∞) (see [13, Remark 2.3]).
We recall that Bessel potential spaces can be also constructed via complex

interpolation (for additional details, we refer to [40, Chapter 2], [13] and ref-
erences therein). More precisely, for μ ∈ R, the space Hμ

p (Td) can be obtained
by complex interpolation between Lp(Td) and W k,p(Td) as

Hμ
p (Td) 
 [Lp(Td),W k,p(Td)]θ, where μ = kθ.

Bessel potential spaces can be defined also in R
d in the same manner. We

further recall that the operator (I − Δ)
μ
2 maps isometrically Hη+μ

p (Td) to
Hη

p (Td) for any η, μ ∈ R (see [13, Remark 2.3]).
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We shortly describe the so-called K-method, which allows to define frac-
tional Sobolev spaces Wμ,p as “intermediate” spaces between Lp(Td) and
W k,p(Td), but also Hölder’s spaces when p = ∞. Let X,Y be Banach spaces
with Y ⊂ X, θ ∈ [0, 1] and p ∈ [1,∞]. For every x ∈ X and t > 0, define

K(t, x,X, Y ) = inf
x=a+b,a∈X,b∈Y

‖a‖X + t‖b‖Y .

If I ⊂ (0,∞), we denote by Lp
∗(I) the Lebesgue space Lp(I, dt

t ) and L∞
∗ (I) =

L∞(I). We define the real interpolation space (X,Y )θ,p between the Banach
spaces X,Y as

(X,Y )θ,p = {x ∈ X + Y : t �→ t−θK(t, x,X, Y ) ∈ Lp
∗(0,+∞)},

endowed with the norm

‖x‖θ,p = ‖t−θK(t, x,X, Y )‖Lp
∗(0,+∞) .

It can be proved that (X,Y )θ,p is a Banach space. Then, one shows (see e.g.
[40, Example 1.8]) that

(C(Td), C1(Td))θ,∞ = Cθ(Td)

and

(Lp(Td),W 1,p(Td))θ,p = W θ,p(Td) .

We remark that such tool turns out to be useful to prove Hölder regularity of
the solution of the time-fractional heat equation in Theorem 4.1. We finally
point out that the aforementioned isometry properties via (I − Δ)

μ
2 transfer

also to the fractional Sobolev spaces Wμ,p (see e.g. [4, Theorem 6.2.7]).

2.3. Parabolic Sobolev spaces

In the next section we investigate some properties of the space

βV
2
p (Q) := Hβ

p (I;Lp(Td)) ∩ Lp(I;W 2,p(Td)),

which is the suited one to deal with Lp-maximal regularity for time-fractional
PDEs (see [47,48,57,59]). Here, the vector-valued space Hβ

p (I;X), X being a
Banach space and I an open subset of the real line, can be defined via the
aforementioned complex interpolation as

Hβ
p (I;X) 
 [Lp(I;X);W 1,p(I;X)]β (8)

for β ∈ (0, 1). Moreover, the vector-valued Slobodeckij scale W β,p(I;X), β ∈
R

+\N consists of all functions u ∈ W [β],p(I;X) such that [Dαu]β−[β],p < ∞
for α = [β], where [β] is the integer part of β, being

[u]pθ,p :=
∫

I×I

‖u(ω) − u(η))‖p
X

|ω − η|d+θp
dθdη , θ ∈ (0, 1) .

Since one usually needs estimates in I ⊆ [0, T ] stable at some time, it is neces-
sary to have a control of the trace, e.g. on the hyperplane t = 0. In the classical
parabolic case, the initial trace can be characterized via the trace method in
interpolation theory in Banach space (see e.g. [40, Section 1.2] and the discus-
sion in [13, Remark B.4], see also [48, Section 3.4]). For instance, in the case of
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W 2,1
p (Td×I) the initial trace u(0) turns out to belong to the fractional Sobolev

space W 2−2/p,p(Td) 
 (Lp(Td),W 2,p(Td))1−1/p,p (see e.g. [32, Lemma II.3.4]
and [40, Corollary 1.14]). In the time-fractional case, it is useful to transform
the time-fractional PDE into an abstract Volterra equations of the form (4)
and use the resolvent approach, which can be seen as a generalization of the
classical semigroup analysis to abstract Cauchy problems. Indeed, by classical
results (see e.g. [47, Theorem 4.2]) we know that by the subordination principle
A = −Δ admits a resolvent. Exploiting properties of Laplace transform and
the resolvent family of the problem (see e.g. the discussion in [48, Section 5.4])
it turns out that the space of initial traces of functions in βV

2
p is the fractional

space W 2−2/(pβ),p for β > 1/p (see [48, Proposition 4.5.14] and also [43])
Recently, time-fractional PDEs with null initial trace have been investi-

gated in the context of the parabolic spaces

βH
μ
p (Q) := {u ∈ Lp(I;Hμ

p (Td)), ∂β
(0,t]u ∈ Lp(I;Hμ−2

p (Td))}
for μ = 2, p > 1 (see e.g. [20,28]). The previous Sobolev spaces are clearly rem-
iniscent of the parabolic spaces W 2,1

p typically associated to the heat operator
∂t − Δ (i.e. when μ = 2 and β = 1). We note that the space βV

2
p is isomor-

phic to the parabolic space βH
2
p in the case of zero initial trace u(0) = 0

(see e.g. [16, Proposition 2]). Indeed, this can be seen by the representation
in (8) setting X = W 2,p(Td) and exploiting that, for sufficiently smooth u,
∂β
(0,t]u = ∂t(g1−β  u), which in turn allows to write

{u ∈ Lp(I;W 2,p(Td)) : ∂β
(0,t]u ∈ Lp(Q) , u(0) = 0}


 {u ∈ Lp(I;W 2,p(Td)) : ∂t(g1−β  u) ∈ Lp(Q) , u(0) = 0}

 {u ∈ Lp(I;W 2,p(Td)) : g1−β  u ∈ W 1,p(0, T ;Lp(Td)) , u(0) = 0}

and concluding using [54, Section 1.15.3].
In Sect. 2.4, we will also cover the case of parabolic spaces frequently

associated to the fully nonlocal operator

∂β
(0,t] + (−Δ)s , (9)

where (−Δ)s denotes the standard fractional Laplacian (see e.g. [13] and ref-
erences therein for a treatment on the torus). To this aim, we denote by

βV
2s
p (Q) := Hβ

p (I;Lp(Td)) ∩ Lp(I;H2s
p (Td)) .

Such spaces were first investigated in the context of stochastic PDEs in [10].
In [13], they are studied in connection with space-fractional PDEs using argu-
ments inspired by [30,31]. These spaces are natural in the context of para-
bolic PDEs and the corresponding Lp theory is crucial in the study of para-
bolic regularity properties even for equations with divergence-type terms (see
[5,12,14,41,44]).

2.4. Embedding results for parabolic Sobolev spaces

In this section, we prove some embedding results for the fractional parabolic
spaces introduced in Sect. 2.3 which will be applied in the study of (1), though
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they are of independent interest. We first recall some classical embeddings for
fractional Sobolev spaces Wμ,p and Hμ

p , μ ∈ R.

Lemma 2.2. (i) Let ν, μ ∈ R with ν ≤ μ, then Wμ,p(Td) ⊂ W ν,p(Td).
(ii) If pμ > d and μ − d/p is not an integer, then Wμ,p(Td) ⊂ Cμ−d/p(Td).
(iii) Let ν, μ ∈ R with ν ≤ μ, p, q ∈ (1,∞) and

μ − d

p
= ν − d

q
,

then Wμ,p(Td) ⊂ W ν,q(Td).

Proof. These results are well known in R
d (see [54, Section 2.8.1]). The transfer

to the periodic setting can be obtained exactly as in [13, Lemma 2.5]. �

For the proof of following result we refer to [13, Lemma 2.5].

Lemma 2.3. (i) Let ν, μ ∈ R with ν ≤ μ, then Hμ
p (Td) ⊂ Hν

p (Td).
(ii) If pμ > d and μ − d/p is not an integer, then Hμ

p (Td) ⊂ Cμ−d/p(Td).
(iii) Let ν, μ ∈ R with ν ≤ μ, p, q ∈ (1,∞) and

μ − d

p
= ν − d

q
,

then Hμ
p (Td) ⊂ Hν

q (Td).

Remark 2.4. Similar embeddings continue to hold for the vector-valued spaces
W β

p (I;X) and Hβ
p (I;X), being mainly based on interpolation theory argu-

ments. We refer the reader to [42, Proposition 2.10] and references therein for
further details.

Remark 2.5. By standard extension arguments with respect to the time vari-
able and multiplication by cut-off functions one, can extend functions on
βV

2
p (QT ) to βV

2
p (Td × R

+) and apply the related embedding results for the
half-line case (see e.g. [42, Lemma 2.5])

We can now state a Sobolev embedding theorem for the parabolic space
βV

2
p .

Theorem 2.6. Let p > 1, u ∈ βV
2
p (QT ) and u(0) ∈ W 2− 2

pβ ,p(Td). If α is such
that

1
pβ

< α < 1,

then βV
2
p (Q) is continuously embedded onto Cαβ− 1

p ([0, T ];H2−2α
p (Td)) and

there exists a constant C > 0 such that

‖u‖
C

αβ− 1
p ([0,T ];H2−2α

p (Td))
≤ C

(
‖u‖

βV2
p (QT ) + ‖u(0)‖

W
2− 2

pβ
,p

(Td)

)
.

Note that the constant C = C(d, p, α, β, T ) remains bounded for bounded values
of T .
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Proof. Let first u(0) = 0. This fact is basically a consequence of the mixed
derivative theorem (see [48, Corollary 4.5.10] and [56, Proposition 2.3.2 and
Chapter 3] for further discussions) after using Remark 2.5, which allows to
obtain for r ∈ [0, 1] the embedding

βV
2
p (QT ) ↪→ Hr

p(0, T ;H2−2r/β
p (Td)).

We take r := αβ ∈ (0, 1) and this gives

βV
2
p (QT ) ↪→ Hαβ

p (0, T ;H2−2α
p (Td)).

By using Remark 2.4, we get the embedding

Hαβ
p (0, T ;H2−2α

p (Td)) ↪→ Cαβ−1/p([0, T ];H2−2α
p (Td)).

To show the fact that the embedding constant can be bounded inde-
pendently of T > 0 by adding ‖u(0)‖

W
2− 2

pβ
,p

(Td)
one can argue as fol-

lows. After extending u to û on R
+ as pointed out in Remark 2.5, it suf-

fices to subtract a function ū ∈ βV
2
p (Td × R

+) such that ū(0) = u(0) and
‖ū‖

βV2
p (Td×R+) ≤ C‖u(0)‖

W
2− 2

pβ
,p

(Td)
. Then one concludes by applying the

results for null initial traces to u − ū. �

We will need the following embedding onto Hölder classes.

Proposition 2.7. The space βV
2
p (QT ) is continuously embedded onto

C([0, T ];W 2− 2
pβ ,p(Td)). Moreover, the space C([0, T ];W 1− 2

pβ ,p(Td)) is contin-
uously embedded onto C([0, T ];Cγ/β(Td)) for some γ ∈ (0, 1) when p > d+2/β.

Proof. The fact that

βV
2
p (QT ) ↪→ C([0, T ];W 2− 2

pβ ,p(Td))

is a proven in [48, Theorem 4.5.15]. As for the second assertion, by exploiting
classical embedding theorems for fractional Sobolev spaces (see Lemma 2.2(ii)),
we get that

C([0, T ];W 1− 2
pβ ,p(Td)) ↪→ C([0, T ];C

γ
β (Td)),

whenever (
1 − 2

pβ

)
p > d,

namely for p > d + 2/β and γ = β − 2/p − dβ/p ∈ (0, 1). �

Proposition 2.8. Let q ≥ p > 1, θ ∈ R such that

η < 2 +
d

q
−

d + 2
β (1 − θ)

p
.

Then, for any u ∈ βV
2
p (QT ), we have⎛

⎝ T∫
0

‖u(·, t)‖
p
θ
η,qdt

⎞
⎠

θ

≤ C

(
‖u‖p

βV2
p (QT ) + ‖u(0)‖p

W
2− 2

pβ
,p

(Td)

)
.
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Moreover, if 1 < p < d + 2
β and 1

q > 1
p − 2

d+ 2
β

‖u‖Lq(QT ) ≤ C

(
‖u‖

βV2
p (QT ) + ‖u(0)‖

W
2− 2

pβ
,p

(Td)

)
.

Proof. Let ν = (2 − 2α)(1 − θ) + 2θ, α > 1/(pβ). Then, we note that Hν
p

can be obtained as real interpolation between H2
p and H2−2α

p . Moreover, Hν
p

is continuously embedded onto H
ν+d/q−d/p
q in view of Lemma 2.3(iii). Hence,

for a.e. t, we have

C(d, p, s, β, α)‖u(t)‖ν+d/q−d/p ≤ ‖u(t)‖ν ≤ ‖u(t)‖1−θ
2−2α,p‖u(t)‖θ

2,p .

Owing to the inequality α > 1
βp we then obtain

η ≤ ν − d

p
+

d

q
= (2 − 2α)(1 − θ) + 2θ − d

p
+

d

q

= 2 − 2α(1 − θ) − d

p
+

d

q
< 2 +

d

q
−

d + 2
β (1 − θ)

p
.

Denote by H
2
p(QT ) the space Lp(0, T ;H2

p (Td)). Then
⎛
⎝ T∫

0

‖u(·, t)‖
p
θ
η,qdt

⎞
⎠

θ

≤
⎛
⎝ T∫

0

‖u(t)‖(1−θ) p
θ

2−2α,p ‖u(t)‖p
μ,pdt

⎞
⎠

θ

≤ C sup
t≤T

‖u(t)‖(1−θ)p
2−2α,p

⎛
⎝ T∫

0

‖u(t)‖p
2,pdt

⎞
⎠

θ

≤ C

(
‖u‖

βV2
p (QT ) + ‖u(0)‖

W
2− 2

pβ
,p

(Td)

)(1−θ)p

‖u(t)‖θp

H2
p(QT )

≤ C

(
‖u‖

βV2
p (QT ) + ‖u(0)‖

W
2− 2

pβ
,p

(Td)

)p

,

(10)

where in the last inequality we used Theorem 2.6 and Young’s inequality. The
last statement can be obtained by setting η = 0 and θ = p

q . �

Remark 2.9. We can actually reach the the threshold
1
q

=
1
p

− 2
d + 2

β

using a maximal regularity result. This is accomplished by using the embedding
presented in Proposition 2.7, namely

βV
2
p (QT ) ↪→ C([0, T ];W 2− 2

pβ ,p(Td)),

instead of Theorem 2.6, writing Hν
p as the real interpolation between H

2−2/(pβ)
p

and H2
p via the very same procedure.

We also remark that the above embedding theorems can be compared (and
are consistent) with the classical ones for the spaces W 2,1

p (i.e. corresponding
to the case β = 1) presented in [32, Lemma II.3.3] (see [3,25] for a proof).
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We conclude the embedding results by providing a Sobolev embedding
theorem onto the parabolic Hölder spaces introduced in Sect. 2.1 (compare
with the classical embeddings for the space W 2,1

p onto Hölder’s classes in [32,
Lemma II.3.3]).

Corollary 2.10. Let p > d
2 + 1

β . Then βV
2
p (QT ) is continuously embedded onto

C
γ
β , γ

2 (QT ) for

γ = β − 1
p

− dβ

2p
∈ (0, 1).

Proof. This is a consequence of Theorem 2.6 by taking

αβ − 1
p

=
γ

2

and exploiting the embedding, see Lemma 2.3(ii), of H2−2α
p onto C2−2α−d/p.

By the above choice of γ, one immediately checks that

2 − 2α − d

p
=

γ

β
. �

Remark 2.11. Compare the above result with [20, Corollary 7.19]. Similar
strategies to those in Theorem 2.6 can be implemented to show that the space
H

β/2
p (Lp) ∩ Lp(W 1,p) is embedded onto C

δ
2 ([0, T ];C

δ
β (Td)) ⊂ C

δ
β , δ

2 (QT ) for
δ = β/2 − 1/p − dβ/(2p) when p > d + 2/β. This will be useful to study regu-
larity in space-time Hölder spaces of quasilinear problems with time-fractional
Caputo derivative via a linearization procedure, see Remark 5.9 below.

The arguments previously discussed can be easily extended to yield par-
abolic embedding results for space-time fractional spaces associated to the
operator (9). We state the results without giving the proof, being similar to
the above case. See [13, Section 2] to compare the embeddings with those
corresponding to the case β = 1 and s ∈ (0, 1).

Theorem 2.12. Let p > 1, u ∈ βV
2s
p (QT ) and u(0) ∈ W 2s− 2s

pβ ,p(Td). If α is
such that

s

pβ
< α < 1,

then βV
2s
p (QT ) is continuously embedded onto C

αβ
s − 1

p ([0, T ];H2s−2α
p (Td)) and

there exists a constant C > 0 such that

‖u‖
C

αβ
s ([0,T ];H2s−2α

p (Td))
≤ C

(
‖u‖

βV2s
p (QT ) + ‖u(0)‖

W
2s− 2s

pβ
,p

(Td)

)
.

Note that the constant C = C(d, p, α, β, s, T ) remains bounded for bounded
values of T .

Proposition 2.13. Let q ≥ p > 1, θ, s ∈ (0, 1) such that

η < μ +
d

q
−

d + 2s
β (1 − θ)

p
.
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Then, for any u ∈ βV
2s
p (QT ) we have

⎛
⎝ T∫

0

‖u(·, t)‖
p
θ
η,qdt

⎞
⎠

θ

≤ C

(
‖u‖p

βV2s
p (QT ) + ‖u(0)‖p

W
2s− 2s

pβ
,p

(Td)

)
.

Moreover, if μ > 0 and 1 < p < d + 2s
β and 1

q > 1
p − 2s

d+ 2s
β

‖u‖Lq(QT ) ≤ C

(
‖u‖

βV2s
p (QT ) + ‖u(0)‖

W
2s− 2s

pβ
,p

(Td)

)
.

3. On time-fractional heat equations: Lp-maximal regularity
results and representation of solutions

In this section, we collect some definitions and results for the abstract linear
problem (4). We first recall the following notion of solution for (3) (see [47]).

Definition 3.1. If f ∈ Lp(I;X), a function u ∈ Lp(I;X) is said to be a strong
solution of (3) on I if u ∈ Lp(I;D(A)) and (4) holds a.e. on I.

Throughout this paper we will mainly work with strong solutions belong-
ing to the parabolic space βV

2
p . Anyhow, we will not specify during our boot-

strap procedure which kind of solution we mean, being implicit from the con-
text. At the end, in the existence theorem for the time-fractional Hamilton–
Jacobi equations, we will show the existence of a classical solution of the prob-
lem.

Proposition 3.2. Let u be a strong solution to (3) for A = −Δ and f ∈
C(I;X), X being a Banach space. Then (3) can be rewritten as the Volterra
equation (4).

Proof. The result is well-known and it can be seen by applying the Riemann–
Liouville integral operator to both sides of (3) (see e.g. [45,47,48]). Further-
more, it can be also obtained via a Laplace transform approach (see e.g. [1,
Appendix T]). �

The previous proposition shows that maximal regularity result to Eq. (3)
can be inferred from that of (4). We thus have the following important result,
whose proof can be found in classical references for abstract Volterra equation
(see e.g. the recent survey [60]), [48, Theorem 4.5.15] and also [47,57]).

Theorem 3.3. Let p > 1, β ∈ (0, 1) be such that β > 1
p , f ∈ Lp(Q) and

u0 ∈ W 2− 2
pβ ,p(Td). Then there exists a unique strong solution u ∈ βV

2
p (Q) to

(3) if and only if f ∈ Lp(QT ) and u0 ∈ W 2− 2
pβ ,p(Td) and it holds the estimate

‖u‖
βV2

p (Q) ≤ C

(
‖f‖Lp(Q) + ‖u0‖

W
2− 2

pβ
,p

(Td)

)
. (11)
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We also point out that solutions to (3) can be expressed via a suitable
modification of the classical variation of parameters formula, also known as
Duhamel’s formula. A proof is provided in [52] in the Hilbert space setting.
However, the proof can be readily accommodated to handle Banach spaces.
For each β ∈ (0, 1) we define the Mittag-Leffler operators

Eβ(−tβA) =

∞∫
0

Mβ(η)e−ηtβAdη,

Eβ,β(−tβA) =

∞∫
0

βηMβ(η)e−ηtβAdη,

where

Mβ(z) =
∞∑

n=0

zn

n!Γ(1 − β(1 + n))

denotes the Mainardi function (see [52]). We recall the following useful prop-
erty of Mβ (see [18, Proposition 2]).

Proposition 3.4. For β ∈ (0, 1) and −1 < r < ∞, when restricting Mβ to the
positive real line, it holds

Mβ(t) ≥ 0 for all t ≥ 0,

∞∫
0

trMβ(t)dt =
Γ(r + 1)
Γ(βr + 1)

.

Note that Eβ(−tβA) and Eβ,β(−tβA) are well-defined from X into X
and, for every x ∈ X, the functions t �−→ Eβ(−tβA)x and t �−→ Eβ,β(−tβA)x
are analytic from [0,∞) to X. The Mittag-Leffler operators do not generate
semigroups, but they fulfill some additional properties which are close to that
of semigroups. For instance, the function t �−→ Eβ(−tβA)x is continuous and
analytical when etA generate an analytic semigroup and satisfies

∂β
(0,t]Eβ(−tβA)x = −AEβ(−tβA)x , t > 0.

Proposition 3.5. Let u be a strong solution to (3). Then

u(t) = Eβ(−tβA)u0 +

t∫
0

ωβ−1Eβ,β(−ωβA)f(t − ω)dω. (12)

Proof. This result is classical and can be found in e.g. [36,52,55]. It can be
deduced using the following identity

L(∂β
(0,t]u)(ω) = ωβLu(ω) − ωβ−1u(0), (13)

for the Caputo derivative (see e.g. [34, Proposition 3.13]), where L stands for
the Laplace transform, together with the expression of the Laplace transform
of Eβ(z) (see [52, eq. (8.7)]). �
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Remark 3.6. A solution of (3) given by formula (12) is usually referred as a
mild solution of the problem (see e.g. [36]). We remark that if u is a strong
solution to an abstract Volterra equation, then u is also a mild solution accord-
ing to [47, Definition 1.1] and, in particular, the variation of parameter formula
holds as a consequence of [47, Proposition 1.2 and 1.3].

We also remark that a function described by the variation of parameter
formula is not necessarily a strong solution (see e.g. [47, Proposition 1.2 and
Proposition 1.3] and also [45, Section 3] for further discussions).

4. Schauder estimates for the time-fractional heat equation

This section is devoted to collect some Schauder-type results for problem (3).
We first present without proof an abstract result, giving necessary and suffi-
cient condition for maximal Hölder’s regularity for the problem (3), referring
to [15] and the recent results in [26].

Theorem 4.1. Let I ⊆ R be closed. We have the following:

(i) Let θ ∈ (0, 1). There exists a unique classical solution u such that ∂β
(0,t]u

and Au are bounded with values in (X,D(A))θ,∞ if and only if
(a) f ∈ C(I;X) ∩ B(I; (X,D(A))θ,∞), where B(I;X) stands for the

space of bounded functions with values in X;
(b) u0 ∈ D(A) and Au0 ∈ (X,D(A))θ,∞.
and it holds the estimate

‖∂β
(0,t]u‖B(I;(X,D(A))θ,∞) + ‖Au‖B(I;(X,D(A))θ,∞)

≤ C(‖Au0‖(X,D(A))θ,∞ + ‖f‖B([0,T ];(X,D(A))θ,∞)) (14)

(ii) Let γ < β and γ, β ∈ (0, 1). Then there exists a unique classical solution
to (3) such that ∂β

(0,t]u, Au belong to C
γ
2 (I;X) if and only if

(c) f ∈ C
γ
2 (I;X);

(d) u0 ∈ D(A) and Au0 + f(0) ∈ (X,D(A))γ/(2β),∞.

In particular, it holds the estimate

‖∂β
(0,t]u‖

C
γ
2 (I;X)

+ ‖Au‖
C

γ
2 (I;X)

≤ C(‖Au0‖(X,D(A))γ/(2β),∞ + ‖f‖
C

γ
2 (I;X)

) (15)

As a byproduct, from estimates (14) and (15), by taking X = C(Td), θ =
γ/(2β), A as the realization of the Laplacian in X so that (X,D(A))γ/(2β),∞ 

C

γ
β (Td), we get the Hölder estimate

‖∂β
(0,t]u‖

C
γ
β

,
γ
2 (Q)

+ ‖ − Δu‖
C

γ
β

,
γ
2 (Q)

≤ C
(
‖f‖

C
γ
2 (I;C

γ
β (Td))

+ ‖u0‖
C

2+ γ
β (Td)

)
. (16)

A similar estimate can be obtained for the fully nonlocal operator (9), i.e.
when A is the realization of the fractional Laplacian of order s ∈ (0, 1)
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‖∂β
(0,t]u‖

C
γ
β

,
γ
2s (Q)

+ ‖(−Δ)su‖
C

γ
β

,
γ
2s (Q)

≤ C

(
‖f‖

C
γ
2s (I;C

γ
β (Q))

+ ‖u0‖
C

2+ γ
β (Td)

)
.

We now provide a proof of the Hölder’s regularity estimate (16) which exploits
formula (12) and the K-method introduced in Sect. 2.2. This approach is
inspired by the tools used in [38] (see also [39,51]) which however requires
to restrict the range of β ∈ (1/2, 1). We remind the reader that Schauder type
estimates for the classical heat operator go back to [32] (see also [40]), while
for the space-fractional heat equation we refer the reader to [6,13,22].

We begin with some preliminary decay estimates for the fractional heat
semigroup etΔ in Hölder spaces.

Lemma 4.2. For every θ1, θ2 ∈ R, 0 ≤ θ1 < θ2, there exists C = C(θ1, θ2) such
that for all f ∈ Cθ1(Td)

‖etΔf‖Cθ2 (Td) ≤ Ct−(θ2−θ1)/2‖f‖Cθ1 (Td) .

Proof. Computations of [13, Remark 2.7] (in particular the representation for-
mula for heat semigroup and Young’s inequality for convolution) show that for
every k > h, k, h ∈ N ∪ {0} there exists C = C(h, k)

‖etΔf‖Ck+h(Td) ≤ Ct−
k
2 ‖f‖Ch(Td) .

This implies that etΔf : Ch(Td) → Ck+h(Td) is bounded for t > 0. Recall that,
as a consequence of the so-called Reiteration Theorem [39, Section 1.2.4] and
[38, Theorem 1.1.14 and Example 1.1.7] (whose proofs can be readily adapted
to the torus) we get

(Ch(Td), Ck+h(Td))α,∞ = Ch+α(Td) .

In addition, one also has etΔf : L∞(Td) → L∞(Td). By interpolation (see [39,
Proposition 1.2.6]), etΔ maps Cθ1(Td) onto Cθ2(Td) with the desired estimate.

�

We also recall the following interpolation result.

Lemma 4.3. Let 0 ≤ θ1 < θ2. For σ ∈ (0, 1) such that (1 − σ)θ1 + σθ2 is not
an integer, we have

(Cθ1(Td), Cθ2(Td))σ,∞ = C(1−σ)θ1+σθ2(Td)

Proof. The proof is a consequence of the Reiteration Theorem [39, Sec-
tion 1.2.4] �

Theorem 4.4. Let β ∈ (1/2, 1), γ ∈ (0, 1) with γ �= β, f ∈ C
γ
β , γ

2 (Q) and
u0 ∈ C2+ γ

β (Td). Then, there exists a constant C, depending on d, T, β, γ (which
remains bounded for bounded values of T ) such that every classical solution to
(3) fulfills

sup
t∈[0,T ]

‖u(·, t)‖
C

2+ γ
β (Td)

≤ C

(
sup

t∈[0,T ]

‖f(·, t)‖
C

γ
β (Td)

+ ‖u0‖
C

2+ γ
β (Td)

)
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Proof. The key point is to use Lemma 4.3, which gives the identity

C2+ γ
β (Td) =

(
C

γ
β +δ(Td), C

2
β + γ

β +δ(Td)
)

β−δβ/2,∞
.

We take δ < 4 − 2/β < 2 (note that 4 − 2/β > 0 since β > 1/2) in order to
have that β − δβ/2 ∈ (0, 1) and 1 − δ/2 − 1/β > −1. We write

u(t) = Eβ(−tβΔ)u0 +

t∫
0

τβ−1Eβ,β(−τβΔ)f(t − τ)dτ

=

∞∫
0

Mβ(η)e−(tβη−min{ξβη,tβη})Δe− min{ξβη,tβη}Δu0dη

+

min{ξ,t}∫
0

τβ−1Eβ,β(−τβΔ)f(t − τ)dτ

+

t∫
min{ξ,t}

τβ−1Eβ,β(−τβΔ)f(t − τ)dτ

= c(ξ) + a(ξ) + b(ξ) .

Then a(ξ) ∈ C
γ
β +δ(Td) and b(ξ), c(ξ) ∈ C

2
β + γ

β +δ(Td). Indeed, by Lemma 4.2

‖a(ξ)‖
C

γ
β

+δ
(Td)

≤ β

min{ξ,t}∫
0

τβ−1

∞∫
0

Mβ(η)η‖e−ητβΔf‖
C

γ
β

+δ
(Td)

dηdτ

≤ β

min{ξ,t}∫
0

τβ−1

∞∫
0

Mβ(η)η1−δ/2dη τ−δβ/2dτ sup
t∈[0,T ]

‖f(·, t)‖
C

γ
β (Td)

≤ C1ξ
β−δβ/2 sup

t∈[0,T ]

‖f(·, t)‖
C

γ
β (Td)

,

where we used that
∞∫
0

Mβ(η)η1−δ/2dη < ∞ by Proposition 3.4 and 1 − δ/2 >

−1. Moreover

‖b(ξ)‖
C

2+γ
β

+δ
(Td)

≤ β

t∫
min{ξ,t}

τβ−1

∞∫
0

Mβ(η)η‖e−ητβΔf‖
C

2+γ
β

+δ
(Td)

dηdτ

≤ β

t∫
min{ξ,t}

τβ−1

∞∫
0

Mβ(η)η1−1/β−δ/2dη τ−1−δβ/2dτ sup
t∈[0,T ]

‖f(·, t)‖
C

γ
β (Td)

≤ Cξβ−1−δβ/2 sup
t∈[0,T ]

‖f(·, t)‖
C

γ
β (Td)

.
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Finally

‖c(ξ)‖
C

2+γ
β

+δ
(Td)

≤
∞∫
0

Mβ(η)‖e−ηξβΔu0‖
C

2
β

+ γ
β

+δ+2−2
(Td)

≤ C

∞∫
0

Mβ(η)η1−δ/2−1/βdη‖u0‖
C

2+ γ
β (Td)

ξβ−1−δβ/2 ≤ Cξβ−1−δβ/2‖u0‖
C

2+ γ
β (Td)

.

Therefore

ξ−(β−δβ/2)K(ξ, u(t), C
γ
β +δ(Td), C

2
β + γ

β +δ(Td))

≤ ξ−(β−δβ/2){a(ξ) + ξ(b(ξ) + c(ξ))}

≤ C

(
sup

t∈[0,T ]

‖f(·, t)‖
C

γ
β (Td)

+ ‖u0‖
C

2+ γ
β (Td)

)
.

�

Remark 4.5. One can also study parabolic Schauder estimates for the operator
∂β
(0,t] + (−Δ)s and ∂t − Δ + (−Δ)s. In the second case, one has to use the fact

that the semigroup generated by the sum of −Δ + (−Δ)s is the composition
of the two semigroups and get the right decay bounds (see [13] and references
therein).

5. On time-fractional Hamilton–Jacobi equation

In this section, we prove existence and regularity results for the time-fractional
Hamilton–Jacobi equation (1). In the first part, via nonlinear adjoint method,
we get an a priori bound on the gradient of the solution. In the second part,
exploiting the previous bound, we prove existence and uniqueness of classical
solution to the problem.
From now on, we suppose that H = H(x, p) is C2(Td × R

d), H(x, p) ≥
H(x, 0) = 0 (if not, one may compensate by adding a positive constant to
V ) and there exist constants γ > 1 and cH , CH , C̃H > 0 such that

DpH(x, p) · p − H(x, p) ≥ CH |p|γ − cH , (H1)

|DpH(x, p)| ≤ CH |p|γ−1 + C̃H (H2)

|D2
xxH(x, p)| ≤ CH |p|γ + C̃H , (H3)

|D2
pxH(x, p)| ≤ CH |p|γ−1 + C̃H , (H4)

D2
ppH(x, p)ξ · ξ ≥ CH |p|γ−2|ξ|2 − C̃H (H5)

for every x ∈ T
d, p ∈ R

d and ξ ∈ R
d. Typical examples of Hamiltonians

we have in mind are related to the theory of Mean Field Games, where H is
convex and superlinear in the second entry. For instance, H1(x, p) = h1(x)|p|2
or H2(x, p) = h2(x){(1 + |p|2) γ

2 − 1} with hi ∈ C2(Td), i = 1, 2, fulfill the
above assumptions.
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5.1. Well-posedness and regularity results for the time-fractional Fokker–
Planck equation

We will use the following integration by parts formula, whose proof can be
found in e.g. [35, Lemma 2.8]

Lemma 5.1. Let u, v ∈ C1([0, τ ]). Then

τ∫
0

(∂β
(0,t]u(t))(v(t) − v(τ)) dt =

τ∫
0

(∂β
[t,τ)v(t))(u(t) − u(0)) dt

In particular, this is equivalent to

τ∫
0

v(t)∂β
(0,t]u(t) dt + u(0)(I1−β

[0,τ)v)(0) =

τ∫
0

u(t)∂β
[t,τ)v(t) dt + v(τ)(I1−β

(0,τ ]u)(τ) ,

where

(I1−β
(0,t] u)(t) =

1
Γ(1 − β)

t∫
0

u(s)
(t − s)β

ds,

(I1−β
(t,τ ]v)(t) =

1
Γ(1 − β)

τ∫
t

v(s)
(s − t)β

ds,

are the forward and backward Riemann–Liouville integrals. The integration by
parts formula remains true if u ∈ L1

loc(0, τ) for v ∈ C∞
c ((−∞, τ)).

Proof. The first identity is proved in [35, Lemma 2.8 and Remark 2.6]. The
second one is a consequence of the equalities

∂β
(0,t]u(t) =

d

dt

[
I1−β
(0,t] u(t)

]
− u(0)

tβΓ(1 − β)
,

∂β
[t,τ)v(t) = − d

dt

[
I1−β
[t,τ)v(t)

]
− v(τ)

(τ − t)βΓ(1 − β)
.

�

We consider now the (backward) time-fractional Fokker–Planck equation{
∂β
[t,τ)ρ − σΔρ − div(b(x, t)ρ) = 0 in Qτ := T

d × (0, τ) ,

ρ(x, τ) = ρτ (x) in T
d,

(17)

where σ is a positive constant and

∂β
[t,τ)ρ(x, t) = − 1

Γ(1 − β)

τ∫
t

∂sρ(x, s)
(s − t)β

ds,

is the backward Caputo derivative, τ < T . We first premise the following
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Definition 5.2. Let β ∈ (0, 1) and b ∈ L∞(Qτ ; Rd). We say that ρ ∈
L2(0, τ ;H1(Td)) with ∂β

[t,τ)ρ ∈ L2(0, τ ;H−1(Td)) is a weak solution to (17)
in the sense that

τ∫
0

∫
Td

ρ∂β
(0,t]ϕ + σρΔϕ − b · Dϕρdxdt =

τ∫
0

∫
Td

ρτ∂β
(0,t]ϕdxdt .

for every ϕ ∈ C∞(Td × (0, τ ]).

We recall that it is possible to define a weak notion of Caputo-time deriv-
ative as in [35]. Note also that compactly supported test functions are enough
by density arguments. In particular, it holds

τ∫
0

〈∂β
[t,τ)ρ, ϕ〉H−1(Td),H1(Td) +

τ∫
0

∫
Td

σDρ · Dϕ − b · Dϕρdxdt = 0,

for every ϕ ∈ L2(0, τ ;H1(Td)), 〈·, ·〉H−1(Td),H1(Td) being the duality between
H1(Td) and H−1(Td). We emphasize that the requirement ∂β

[t,τ)ρ ∈
L2(0, τ ;H−1(Td)) guarantees that ρ is continuous at the terminal time when-
ever β > 1/2, so that the left limit ρ(x, τ−) = ρτ (x) is well-defined, see e.g.
[35, Lemma 3.1(iii)]. Note that this restriction on β will be needed even in the
context of the Hamilton–Jacobi equation later on.

We prove the following existence result (a similar result appeared in [49,
Theorem 2.8].

Proposition 5.3. Let b ∈ L∞(QT ; Rd), ρτ ∈ L2(Td) with ρτ ≥ 0 and

W = {ρ ∈ L2(0, τ ;H1(Td)), ∂β
[t,τ)ρ ∈ L2(0, τ ;H−1(Td)).}

Then, there exists a unique weak solution to (17) which belongs to W . In
particular, we also have ρ ≥ 0 a.e. on Qτ and ‖ρ(t)‖L1(Td) = ‖ρτ‖L1(Td) for
a.e. t ∈ [0, τ).

Proof. We set σ = 1 for simplicity. Using the convexity of the L2-norm one
has

1
2
∂β
[t,τ)ρ

2(x, t) ≤ ∂β
[t,τ)ρ(x, t)ρ(x, t) (18)

for a.e. (x, t) ∈ Qτ (see e.g. [35, Lemma 2.4]). We can now use ϕ = ρ as a test
function in the weak formulation, (18), Lemma 5.1 and Young’s inequality to
conclude

1
2
∂β
[t,τ)‖ρ(t)‖2

L2(Td) +
∫
Td

|Dρ|2 dx ≤ 1
2

∫
Td

|Dρ|2 dx + C‖ρτ‖L2(Td) ,

where we also used that ‖ρ(s)‖L2(Td) ≤ C‖ρτ‖L2(Td) for a.e. s ∈ (0, τ) (these
are classical estimates that can be obtained, for instance, using the Duhamel-
like formula (12) for suitably regular drift vector fields, see also [49, Lemma
2.1]), giving in particular

1
2
∂β
[t,τ)‖ρ(t)‖2

L2(Td) +
1
2
‖Dρ‖2

L2(Td) ≤ C‖ρτ‖L2(Td) (19)
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for some positive constant C > 0. Using [35, Lemma 2.3] in (19), one obtains
the non-local control

sup
t∈(0,τ)

1
Γ(β)

t∫
0

(t − s)1−β(‖ρ(s)‖2
H1(Td)) ds ≤ C .

This yields an a priori estimate of ρ ∈ L2(H1) and supt∈(0,τ) I1−β
(0,t] (‖ρ(t)‖2

H1(Td))

in terms of the data. Using these bounds, the estimate of ∂β
[t,τ)ρ in L2(H−1)

follows immediately by duality.
To prove the existence, we can argue using e.g. the Leray-Schauder fixed point
theorem on the space W , which is a Banach space according to [28]. To this
aim, consider the map G : W × [0, 1] → W defined by m �−→ ρ = G[m; ζ] as
the solution to the parametrized problem

∂β
[t,τ)ρ − Δρ = ζdiv(b(x, t)m) in Qτ , ρ(x, τ) = ζρτ , in T

d .

We note that G[m; 0] = 0 by standard results for the time-fractional
heat equation. To show that the map is well-defined, one can argue as in
the previous procedure by testing the equation against ρ itself (see also
Remark 5.4). Furthermore, if ρ ∈ W and ζ ∈ [0, 1] satisfy ρ = G[ρ; ζ],
then the a priori estimates carry through uniformly in ζ, giving ‖ρ‖W ≤
C.
The compactness of the map G follows by using the compactness criteria in [35].
More precisely, let mn ∈ W be a bounded sequence such that ρn = G[mn; ζ].
Using the strategy outlined above, we obtain that ρn is bounded in W and the
nonlocal control

sup
t∈(0,τ)

1
Γ(β)

t∫
0

(t − s)1−β(‖ρn(s)‖2
H1(Td)) ds ≤ C .

By [35, Theorem 4.1] (with M = H1(Td), B = L2(Td) and Y = H−1(Td)) we
conclude the strong convergence of ρn to ρ in L2(Qτ ). Thus, without relabeling
the index, we call ρn the (sub)sequence which converges strongly to ρ in L2(Qτ )
and such that Dρn converges weakly to Dρ in L2(Qτ ). We take ϕ = ρn − ρ
as a test function in the weak formulation of the equation satisfied by ρn to
get

τ∫
0

∫
Td

ρn∂β
(0,t](ρn − ρ) + Dρ · Dϕ − b · D(ρn − ρ)mn dxdt

=

τ∫
0

∫
Td

ρτ∂β
(0,t](ρn − ρ) dxdt .

and then, using (18), we get
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τ∫
0

∫
Td

∂β
(0,t]

1
2
‖(ρn − ρ)(t)‖2

L2(Td) dxdt +

τ∫
0

∫
Td

|D(ρn − ρ)|2 dxdt

≤ −
τ∫

0

∫
Td

ρ∂β
(0,t](ρn − ρ) dxdt

−
τ∫

0

∫
Td

Dρ · D(ρn − ρ) dxdt +

τ∫
0

∫
Td

ρτ (x)∂β
(0,t](ρn − ρ) dxdt

+

τ∫
0

∫
Td

b · D(ρn − ρ)mn dxdt

= (I) + (II) + (III) + (IV )

Note that (II)–(IV) converge to 0 using the strong convergence of ρn to ρ in
L2(Qτ ) and the weak convergence of Dρn to Dρ in L2(Qτ ). Moreover, (I)–(III)
converge to 0 integrating in time ∂β

(0,t](ρn − ρ), exploiting the strong conver-
gence of ρn to ρ in L2(Qτ ) and the fact that ρτ ∈ L2(Td). Using again [35,
Lemma 2.3], we observe that

1
Γ(β)

t∫
0

(t − s)1−β(‖D(ρn − ρ)(s)‖2
L2(Td)) ds → 0

as n → ∞, giving the strong convergence of Dρn to Dρ in L2(Qτ ). The con-
vergence of the fractional time derivative follows by duality.

The uniqueness of solutions can be obtained, for instance, using the exis-
tence for the dual equation, which holds true due to the boundedness of the
drift vector field (see e.g. [58]). �

Remark 5.4. In particular, it can be proved by similar arguments to those used
in [14] that ρ enjoys better regularity properties, e.g. in the space of functions

{ρ ∈ Lp(0, τ ;W 1,p(Td)) , ∂β
[t,τ)ρ ∈ Lp(0, τ ;W−1,p(Td))}

for p > 1. We sketch the proof here for reader’s convenience. By the definition
of weak solution, we have∣∣∣∣∣∣

∫∫
Qτ

ρ(∂β
(0,t]ϕ − Δϕ) dxdt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫∫
Qτ

ρτ∂β
(0,t]ϕdxdt

∣∣∣∣∣∣
+

∫∫
Qτ

ρ|b||Dϕ| dxdt ≤
∣∣∣∣∣∣
∫∫
Qτ

ρτ∂β
(0,t]ϕdxdt

∣∣∣∣∣∣
+‖b‖L∞(Qτ )‖Dϕ‖Lp′ (Qτ )‖ρ‖Lp(Qτ ). (20)
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For i = 1, ..., d consider the strong solution to the following inhomogeneous
time-fractional heat equation{

∂β
(0,t]ψ − Δψ = |∂xi

ρ|p−2∂xi
ρ in Qτ := T

d × (0, τ) ,

ψ(x, 0) = 0 in T
d .

(21)

By maximal Lp-regularity for abstract evolution equations (cf Theorem 3.3)
we get

‖ψ‖
βV

2
p′ (Qτ ) ≤ C̃‖|∂xi

ρ|p−2∂xi
ρ‖Lp′ (Qτ ) = C̃‖∂xi

ρ‖p−1
Lp(Qτ ) .

A straightforward application of the Hölder’s inequality yields∣∣∣∣∣∣
∫∫
Qτ

∂xi
ρτ∂β

(0,t]ψ dxdt

∣∣∣∣∣∣ ≤ τ
1
p ‖∂xi

ρτ‖Lp(Td)‖∂β
(0,t]ψ‖Lp′ (Qτ )

≤ τ
1
p ‖∂xi

ρτ‖Lp(Td)‖ψ‖
βV

2
p′ (Qτ ).

We take ϕ = ∂xi
ψ in (20) and, after integrating by parts, we have∣∣∣∣∣∣

∫∫
Qτ

∂xi
ρ(∂β

(0,t]ψ − Δψ) dxdt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫∫
Qτ

∂xi
ρτ∂β

(0,t]ψ dxdt

∣∣∣∣∣∣ + ‖b‖L∞(Qτ )‖D(∂xi
ψ)‖Lp′ (Qτ )‖ρ‖Lp(Qτ )

≤ τ
1
p ‖Dρτ‖Lp(Td)‖ψ‖

βV
2
p′ (Qτ ) + ‖b‖L∞(Qτ )‖ψ‖

βV
2
p′ (Qτ )‖ρ‖Lp(Qτ )

≤ C‖ψ‖
βV

2
p′ (Qτ ).

Using the equation satisfied by ψ we find∫∫
Qτ

|∂xi
ρ|p dxdt =

∫∫
Qτ

∂xi
ρ|∂xi

ρ|p−2∂xi
ρ dxdt

=

∣∣∣∣∣∣
∫∫
Qτ

∂xi
ρ(∂β

(0,t]ψ − Δψ) dxdt

∣∣∣∣∣∣
≤ C‖ψ‖

βV
2
p′ (Qτ ) ≤ CC̃‖∂xi

ρ‖p−1
Lp(Qτ )

giving thus the estimate on Dρ ∈ Lp(Qτ ). As a byproduct, we conclude by
Poincarè inequality

‖ρ‖Lp(Qτ ) ≤ ‖ρ − 1‖Lp(Qτ
+ τ ≤ C1‖Dρ‖Lp(Qτ ) + τ

which can be bounded in terms of the data by the above estimates. The bound
on the Caputo derivative follows by duality and using the equation.
We remark in passing that such strategy can be implemented even when low
regularity information on the drift against the density ρ are available, namely
when b ∈ Lk(ρ) for some k > 1, see e.g. [12,14,41].
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Finally, when the drift b is smooth and ρ ∈ Lp(W 1,p) for every p > 1, one
achieves classical regularity by using maximal regularity results and imple-
menting bootstrapping procedures.

5.2. Gradient bound

We consider the time-fractional Hamilton–Jacobi equation{
∂β
(0,t]u(x, t) − σΔu + H(x,Du(x, t)) = V (x, t) in QT ,

u(x, 0) = u0(x) in T
d,

(22)

where σ is a positive constant. In this section, we prove gradient bound for
classical solution to (22). The method implemented here is based on the so-
called nonlinear adjoint method (see [12,24] and [13, Proposition 3.6]), that
is on testing the Hamilton–Jacobi equation against the (classical) solution to
(17) with optimal drift b(x, t) := −DpH(x,Du(x, t), i.e.{

∂β
[t,τ)ρ − σΔρ − div(DpH(x,Du)ρ) = 0 in Qτ := T

d × (0, τ) ,

ρ(x, τ) = ρτ (x) in T
d,

(23)

where τ < T . Here, we assume ρτ ∈ C∞(Td) with ρτ ≥ 0 and
∫
Td ρτ (s)ds = 1.

Under these assumptions, the terminal data ρτ should be thought as an item
of a sequence approximating a singular terminal data (see e.g. [21]). Time-
fractional Fokker–Planck equations has been recently analyzed in [27]. We
first recall an a priori bound on the sup-norm for linear time-fractional PDEs.

Lemma 5.5. Let u be a classical solution to{
∂β
(0,t]u − σΔu + b(x, t) · Du = F (x, t) in QT ,

u(x, 0) = u0(x) in T
d,

(24)

with b ∈ C(QT ; Rd), F ∈ C(QT ) and u0 ∈ C(Td). Then, it holds

‖u‖∞;QT
≤ ‖u0‖∞,Td +

T β

Γ(1 + β)
‖F‖∞;QT

Proof. The idea is to use the same procedure as in [37, Theorem 4]. Consider
the function

w(x, t) = u(x, t) − M

Γ(1 + β)
tβ

with M := ‖F‖∞;QT
and note that it is a classical solution to

∂β
(0,t]w − σΔw + b · Dw = F1,

where F1(x, t) = F (x, t) − M , since it holds

∂β
(0,t]t

γ =
Γ(1 + γ)

Γ(1 − β + γ)
tγ−β , γ ∈ R , γ > 0 .

(see [52, eq. (A.15)]). In particular, note that F1 ≤ 0 and, by the maximum
principle (see e.g. [37, Theorem 2], where similar arguments can be used for
the case at hand of the drift-diffusion operator ∂β

(0,t] − σΔ + b · D), we have

w(x, t) ≤ ‖u0‖∞,Td ,
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allowing to conclude

u(x, t) ≤ ‖u0‖∞,Td +
T β

Γ(1 + β)
‖F‖∞;QT

.

The lower bound follows by applying a minimum principle to the function
w(x, t) = u(x, t) + M

Γ(1+β) t
β . �

Lemma 5.6. Let u be a classical solution to (22). Then, there exists a (non-
negative) classical solution ρ to (17). Moreover, we have the estimate

τ∫
0

∫
Td

|Du|γρ dxdt ≤ C,

where C depends on K and not on ρτ nor τ .

Proof. By multiplying the time-fractional Hamilton–Jacobi equation

∂β
(0,t]u − σΔu + H(x,Du) = V

by −ρ and the adjoint equation by u, using Lemma 5.1 and summing both
expressions one easily obtains the following formula∫

Td

(I1−β
(0,τ ]u)(x, τ)ρ(x, τ)dx =

∫
Td

u(x, 0)(I1−β
[0,τ)ρ)(x, 0)dx +

∫∫
Qτ

V ρ dxdt

+
∫∫
Qτ

(DpH(x,Du) · Du − H(x,Du))ρ dxdt.

(25)

Then, by (H1), we get∫
Td

(I1−β
(0,τ ]u)(x, τ)ρ(x, τ)dx

≥
τ∫

0

∫
Td

V ρ dxdt + CH

τ∫
0

∫
Td

|Du|γρ dxdt

−cH

τ∫
0

∫
Td

ρ dxdt +
∫
Td

u(x, 0)(I1−β
[0,τ)ρ)(x, 0)dx . (26)

Since u is a classical solution to (22), a standard linearization argument and
the application of the Comparison Principle for time-fractional viscous PDE
(see Lemma 5.5) yield

‖u‖∞;QT
≤ ‖u0‖∞;Td +

T β

Γ(1 + β)
( ‖V ‖∞;QT

+ ‖H(·, 0)‖∞;Td

)
. (27)

Finally, using the facts that
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‖(I1−β
(0,τ ]u)(x, τ)‖L∞(Td) ≤ C‖u(x, τ)‖L∞(Td),

‖(I1−β
[0,τ)ρ)(x, 0))‖L1(Td) ≤ C1‖ρ(x, 0)‖L1(Td),

for all t (see e.g. [28]), and plugging (27) in (26) we conclude the desired
estimate. �

Theorem 5.7. Assume that V ∈ C([0, T ];C2+ γ
β (Td)), u0 ∈ C2(Td) and let

K > 0 be such that

‖V ‖C2
x(QT ) + ‖u0‖C2(Td) ≤ K.

Then a classical solution u to (22) satisfies

‖I1−β(D2u(x, t)ξ · ξ)‖L∞(Td) ≤ C1

for ξ ∈ R
d, |ξ| = 1, where C1 depends on K. In particular, it follows that u

enjoys the estimate

‖Du‖Lp(Qτ ) ≤ C2 (28)

for every p ≥ 1 and some C2 depending in particular on K, β and not on σ.
Moreover, C2 remains bounded for bounded values of τ .

Proof. Let u be a classical solution and ξ ∈ R
d, |ξ| = 1. Arguing as in the

next Theorem 1.1 (see also Remark 5.9), one can assume that u has enough
regularity to perform all the computations below. Set v = ∂ξu and w = ∂2

ξξu.
Then w solves

∂β
(0,t]w − σΔw + Dv · D2

ppH(x,Du) · Dv

+DpH(x,Du) · Dw + 2D2
pξH(x,Du) · Dv

+D2
pξH(x,Du) · Dv + D2

ξξH(x,Du) = Vξξ (29)

with initial data w(x, 0) = ∂2
ξξu0(x), which can be equivalently rewritten as

an abstract Volterra equation of the form

w(t) = σ

t∫
0

gβ(t − τ)Δw(t)dt + gβ  F (t)

where

F (t) = Vξξ − (Dv · D2
ppH(x,Du) · Dv + DpH(x,Du) · Dw

+ 2D2
pξH(x,Du) · Dv + D2

pξH(x,Du) · Dv + D2
ξξH(x,Du)).

We test (29) against the adjoint variable ρ solving (23). Using Lemma 5.1
and integrating by parts in space we get∫

Td

(I1−β
(0,τ ]w)(x, τ)ρ(x, τ)dx +

∫∫
Qτ

Dv · D2
ppH(x,Du)Dvρdxdt

=
∫
Td

w(x, 0)(I1−β
[0,τ)ρ)(x, 0) dx
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− 2
∫∫
Qτ

D2
pξH(x,Du) · Dv ρdxdt −

∫∫
Qτ

D2
ξξH(x,Du) ρ dxdt

+
∫∫
Qτ

Vξξ ρ dxdt .

On one hand, by (H5) we have∫∫
Qτ

Dv · D2
ppH(x,Du)Dv ρdxdt

≥ C1

∫∫
Qτ

|Du|γ−2|Dv|2 ρ dxdt − C̃1

∫∫
Qτ

ρ dxdt

and hence, using also (H3)–(H4), we conclude∫
Td

(I1−β
(0,τ ]w)(x, τ)ρ(x, τ)dx + C1

∫∫
Qτ

|Du|γ−2|Dv|2 ρ dxdt − C̃1

∫∫
Qτ

ρ dxdt

≤
∫
Td

w(x, 0)(I1−β
(0,τ ]ρ)(x, 0) dx + C2

∫∫
Qτ

|Du|γ−1|Dv| ρdxdt

+C3

∫∫
Qτ

|Du|γ ρ dxdt

+ (C̃2 + C̃3)
∫∫
Qτ

ρ dxdt +
∫∫
Qτ

Vξξρ dxdt.

Now, we apply Young’s inequality to the second term on the right-hand side
of the above inequality to get∫∫
Qτ

|Du|γ−1|Dv| ρ dxdt ≤ ε2

2

∫∫
Qτ

|Du|γ−2|Dv|2 ρdxdt +
1
ε2

∫∫
Qτ

|Du|γ ρdxdt.

Taking ε so that C1 = ε2

2 we finally obtain the estimate∫
Td

(I1−β
(0,τ ]w)(x, τ)ρ(x, τ)dx ≤

∫
Td

w(x, 0)(I1−β
(0,τ ]ρ)(x, 0) dx

+
(

1
2C1

+ C3

)∫∫
Qτ

|Du|γ ρ dxdt

+
∫∫
Qτ

Vξξ ρ dxdt + C̃4 .

During the above computations Ci = Ci(CH). After passing to the supremum
over ρτ one gets the estimate on

‖I1−β
(0,τ ]w(x, τ)‖L∞(Td) ≤ C1
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which in turn yields a control on the quantity

I1−β
(0,τ ](‖Du‖L∞(Td)) ≤ C2. (30)

Indeed, due to the fact that u is Z
d-periodic one has

‖Du(·, ω)‖L∞(Td) ≤ C sup
x∈Td,|ξ|=1

∂2
ξξu(·, ω)

for ω ∈ [0, τ ] and then (30) follows by the definition of I1−β . In particular,
estimate (30) assures the control on ‖Du‖Lp(Qτ ) for every p since∫∫

Qτ

|Du(x, ω)|pdxdω ≤ τβ

∫∫
Qτ

(τ − ω)−β |Du(x, ω)|pdxdω

= τβΓ(1 − β)I1−β
(0,τ ](‖Du‖p

Lp(Td)
) ≤ C1τ

βI1−β
(0,t] (‖Du‖p

L∞(Td)
) ≤ C2τ

β .

Remark 5.8. We point out that a similar gradient bound can be achieved again
by duality simply by considering the equation satisfied by v = ∂ξu and assum-
ing the right-hand side V ∈ C([0, T ];C1+ γ

β (Td)). Indeed, v solves

∂β
(0,t]v − σΔv + DpH(x,Du) · Dv + DξH(x,Du) = Vξ

By testing against ρ solving (17) and integrating by parts one obtains∫
Td

(I1−β
(0,τ ]v)(x, τ)ρ(x, τ) +

∫∫
Qτ

DξH(x,Du)ρ dxdt

=
∫
Td

v(x, 0)(I1−β
(0,τ ]ρ)(x, 0) dx +

∫∫
Qτ

Vξρ dxdt

and then one concludes using the bound in Lemma 5.6 as above to get the
nonlocal-in-time control

I1−β
(0,τ ](‖Du‖L∞(Td)) ≤ C

However, in order to tackle problems for first-order Mean Field Games with
nonlocal coupling and fractional time-derivative, where typically C2 regularity
on the right-hand side V is assumed [8], we prefer to keep the estimate for
w = ∂ξξu since this would yield a further information for the drift of the
Fokker–Planck equation. �

5.3. Existence and uniqueness for the time-fractional Hamilton–Jacobi equa-
tion

This section is devoted to the proof of Theorem 1.1 concerning existence and
uniqueness of classical solutions to (1) with regular right-hand side V . The
crucial step in the proof is the gradient bound of the previous section which
allows to extend the solution from a local to a global time interval.

Proof of Theorem 1.1. Step 1: Local existence on Qτ := T
d ×(0, τ) . Let τ ≤ 1

and

Sa :=
{

u ∈ βV
2
p (Qτ ) : u(0) = u0 , ‖u‖

βV2
p (Qτ ) ≤ a , p > d +

2
β

}
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be the space on which we apply the contraction mapping principle. The param-
eter a will be chosen large enough. Fix z ∈ βV

2
p (Qτ ), p > d+ 2

β and let w = Jz

be the solution of the problem{
∂β
(0,t]w − Δw = V (x, t) − H(x,Dz) in Qτ ,

w(x, 0) = u0(x) in T
d.

(31)

We remark that in view of Proposition 2.7 and the properties of H the right-
hand side of (31) belong to Lp(Qτ ), p > 1 and then Theorem 3.3 implies that
(31) admits a unique solution w ∈ βV

2
p (Qτ ) satisfying the following estimate

‖w‖
βV2

p (Qτ ) ≤ C

(
‖V ‖Lp(Qτ ) + ‖H(x,Dz)‖Lp(Qτ ) + ‖u0‖

W
2− 2

pβ
,p

(Td)

)
.

Notice that since p > d + 2/β we have 1/p < β/(d + 2) < β for all β ∈ (0, 1),
so that the initial trace is well-defined. We show that we can choose τ ∈ (0, T ]
sufficiently small so that ‖w‖

βV2
p (Qτ ) ≤ a. By [11, Lemma 2.4]

‖H(x,Dz)‖Lp(Qτ ) ≤ C1τ
1
2p ‖H(x,Dz)‖L2p(Qτ ) ≤ C2τ

1
2p ‖Dz‖γ

∞;Qτ
.

Moreover, by the parabolic embeddings in Proposition 2.7, we have

‖Dz‖∞;Qτ
≤ C3

(
‖z‖

βV2
p (Qτ ) + ‖u0‖

W
2− 2

pβ
,p

(Td)

)
,

which both give

‖H(x,Dz)‖Lp(Qτ ) ≤ C4τ
1
2p

(
‖z‖γ

βV2
p (Qτ ) + ‖u0‖γ

W
2− 2

pβ
,p

(Td)

)
.

Then we are in position to show that J maps Sa into itself. Indeed

‖w‖
βV2

p (Qτ ) ≤ C
{

‖V ‖Lp(Qτ ) + C4τ
1/2p

(
‖z‖γ

βV2
p (Qτ ) + ‖u0‖γ

W 2−2/pβ,p(Td)

)
+ ‖u0‖W 2−2/pβ,p(Td)

}
≤ C(‖V ‖Lp(Qτ ) + τ1/2p‖z‖γ

βV2
p (Qτ )

+ max{‖u0‖γ
W 2−2/pβ,p(Td)

, ‖u0‖W 2−2/pβ,p(Td)}).

We take

a ≥ C(max{‖u0‖γ
W 2−2/pβ,p(Td)

, ‖u0‖W 2−2/pβ,p(Td)} + ‖V ‖Lp(Qτ )) + 1.

Then, it follows that

‖w‖
βV2

p (Qτ ) ≤ Cτ1/2p‖z‖γ

βV2
p (Qτ ) + a − 1.

By taking τ sufficiently small we finally get ‖w‖
βV2

p (Qτ ) ≤ a.
To prove that J is a contraction, one has to argue as above, exploiting also
the fact that for bounded z ∈ βV

2
p , p > d+ 2

β , then Dz is bounded in L∞(Qτ ).
Using [20, Lemma A.6] and using that (z1 − z2)(0) = 0 we have

‖z1 − z2‖Lp(Qτ ) ≤ Cτβ‖∂β
(0,t]z‖Lp(Qτ )

for some positive C depending merely on β and p and hence
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‖H(x,Dz1) − H(x,Dz2)‖Lp(Qτ ) ≤ C1 ‖Dz1 − Dz2‖Lp(Qτ )

≤ C2

(
ε‖D2(z1 − z2)‖Lp(Qτ ) + ε−1‖z1 − z2‖Lp(Qτ )

)
≤ C2ε‖D2(z1 − z2)‖Lp(Qτ ) + C3ε

−1τβ
∥∥∥∂β

(0,t](z1 − z2)
∥∥∥

Lp(Qτ )
,

for some positive constants C1, C2, C3, where the second inequality is achieved
via interpolation.

Then, by first taking ε small enough so that

C1ε‖D2(z1 − z2)‖Lp(Qτ ) ≤ C1ε‖z1 − z2‖βV2
p (Qτ ) ≤ 1

4
‖z1 − z2‖βV2

p (Qτ )

and then choosing τ sufficiently small so that

C2ε
−1τβ−1/p

∥∥∥∂β
(0,t](z1 − z2)

∥∥∥
Lp(Qτ )

≤ C2ε
−1τβ‖z1 − z2‖βV2

p (Qτ )

≤ 1
4
‖z1 − z2‖βV2

p (Qτ ) ,

we conclude that

‖z1 − z2‖βV2
p (Qτ ) ≤ 1

2
‖z1 − z2‖βV2

p (Qτ ),

ensuring the existence and uniqueness of a fixed point Jz = z and hence
a solution in the interval [0, τ ]. Moreover, by Proposition 2.7 we have z ∈
C([0, τ ];W 2− 2

pβ ,p(Td)) and hence |Dz| ∈ C([0, τ ];C
γ
β (Td)). In view of the

results in Sect. 4 (specifically Theorem 4.4 or Theorem 4.1) applied to the
equation

∂β
(0,t]u − Δu = f(x, t)

with f(x, t) = V (x, t) − H(x,Dz) ∈ C([0, τ ];C
γ
β (Td)), we have u ∈

C([0, τ ];C2+ γ
β (Td)). Then, a bootstrap argument allows to conclude that

u ∈ C([0, τ ];C4+ γ
β (Td)) using the regularity of V .

Step 2. Continuation of the solution on a larger interval [0, τ +ω]. Let w :
T

d×[0, τ ] → R be the local classical solution to the fractional Hamilton–Jacobi
equation with initial data u0 in the interval [0, τ ] obtained in the previous step.
Define the set

S̃a :=

{
u ∈ βV

2
p (Qτ+ω) : u(t) = w(t) , t ∈ [0, τ ] , ‖u‖

βV2
p (Qτ+ω) ≤ a , p > d +

2

β

}
.

Fix z ∈ S̃a and let v = Jz be the solution to{
∂β
(0,t]v − Δv = V − H(x,Dz) in Qτ+ω ,

v(x, 0) = u0(x) in T
d.

Then, as above, for ω sufficiently small one proves that ‖Jz‖
βV2

p (Qτ+ω) ≤ a.

Indeed, if z ∈ S̃a, then for all t ∈ [0, τ ] we have v(t) = Jz = w(t). For
t ∈ [τ, τ + ω] using Lp maximal regularity as in Step 1 one obtains that
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‖v‖
βV2

p (Qτ+ω) ≤ a. To prove that J is a contraction, one can argue exactly in
the same manner as in Step 1 to find

‖Jz1 − Jz2‖βV2
p (Qτ+ω) ≤ 1

2
‖z1 − z2‖βV2

p (Qτ+ω)

for every z1, z2 ∈ S̃a. Then, by the contraction mapping principle, one
finds a unique fixed point v̄ ∈ S̃a which, by bootstrapping belongs to
C([0, τ ];C4+ γ

β (Td)). Repeating the same argument, one finds a maximal inter-
val of existence [0, T̄ ), where

T̄ := sup{τ ∈ (0, T ) : (1) has a unique solution in βV
2
p (Qτ )} .

Step 3. Global existence. In this step, we restrict to β ∈ (1
2 , 1) and we use the

a priori gradient bounds coming from Theorem 5.7 to show that ‖u‖
βV2

p (Qτ )

remains bounded as τ approaches to T̄ .
Let τ ∈ (0, T̄ ) and u ∈ βV

2
p (Qτ ) be the unique solution to (1), which, by

bootstrapping, is a posteriori a classical solution. By Theorem 5.7 with σ = 1,
we have

‖Du‖Lp(Qτ ) ≤ C,

for every p ≥ 1, for some C independently of τ . Then, the Hamilton–Jacobi
equation can be written as

∂β
(0,t]u − Δu = V (x, t) − H(x,Du)

with initial data u(x, 0) = u0. Consider then the solution to the linear problem{
∂β
(0,t]v − Δv = V (x, t) in Qτ ,

v(x, 0) = u0(x) in T
d.

By Theorem 3.3, the previous problem admits a unique solution v ∈ βV
2
p (Qτ ).

In particular, one has

‖u − v‖
βV2

p (Qτ ) ≤ C1‖H(x,Du)‖Lp(Qτ ) ≤ C2(‖Du‖γ
Lpγ(Qτ ) + 1) ≤ C3

for some C3 independent of τ by exploiting the gradient bound in Theorem 5.7.
Since ‖v‖

βV2
p (Qτ ) stays bounded for τ ↗ T̄ , the same is true for ‖v‖

βV2
p (Qτ ),

yielding thus the global existence. �

Some final comments on the results are in order

Remark 5.9. Note that a space-time Hölder regularity result for the time-
fractional Hamilton–Jacobi equation (1) can be obtained using Theorem 4.1
instead of Theorem 4.4. More precisely, one first show, as in the above Step
1, that z ∈ βV

2
p (Q). First, since ∂i, i = 1, ..., d, is a bounded linear operator

from βV
2
p (Q) to H

β/2
p (0, τ ;Lp(Td)) ∩ Lp(0, τ ;W 1,p(Td)) (see e.g. [9, Propo-

sition 2.4] for the whole space case, the periodic case can be treated using
transference arguments from R

d to T
d as in [13]), it follows that |Dz| ∈

H
β/2
p (0, τ ;Lp(Td))∩Lp(0, τ ;W 1,p(Td)). This immediately implies by the Mixed

Derivative Theorem that

|Dz| ∈ H
β
2

p (0, τ ;Lp(Td)) ∩ Lp(0, τ ;W 1,p(Td)) ↪→ H
βζ
2

p (0, τ ;H1−ζ
p (Td))
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for all ζ ∈ [0, 1], whereas, owing to Remark 2.11, it is possible to conclude that
|Dz| belong to Cγ1(Cγ2) for suitable γ1, γ2 ∈ (0, 1) whenever p > d+2/β. This
finally gives that H(x,Du) ∈ Cγ1(Cγ2) and Theorem 4.1 eventually yields the
space-time Hölder regularity result.
The latter Sobolev embedding is reminiscent of those for the parabolic class
βH

1
p : we refer e.g. to [19, Theorem A.7], where similar embeddings are proved

in the time-fractional setting, but not in the periodic case (see also [14, Propo-
sition 2.2] for its local counterpart on the torus and [41, Appendix A] on the
whole space).
Furthermore, note that the restriction β ∈ (1/2, 1) is necessary and a conse-
quence of Theorem 4.4. Heuristically, this is due to the fact that under the
regime β ∈ (1/2, 1) the time-fractional parabolic operator behaves like the
heat operator and this allows to use standard decay estimates of the heat
semigroup.

Remark 5.10. The restriction on p > d + 2/β in Theorem 1.1, when apply-
ing the contraction mapping procedure, is consistent with Lipschitz regularity
results for time-fractional heat equations with Lp right-hand side. In particu-
lar, let us consider the problem{

∂β
(0,t]v − Δv = f(x, t) in QT ,

v(x, 0) = v0(x) in T
d.

with v0 ∈ W 2− 2
pβ ,p(Td) and f ∈ Lp(QT ). Maximal Lp-regularity results and

Sobolev embedding theorems yield v ∈ βV
2
p (QT ) and

βV
2
p (QT ) ↪→ C(0, T ;W 2− 2

pβ ,p(Td)) .

Then, one observes that if v ∈ C(0, T ;W 2− 2
pβ ,p(Td)), then |Dv| ∈

C(0, T ;W 1− 2
pβ ,p(Td)), and one finally concludes using that W 1− 2

pβ ,p(Td) is
embedded at least in C(QT ) whenever (1 − 2

pβ )p > d by Lemma 2.2(ii), i.e.
p > d + 2/β.
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la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM). The second-named author wishes to thank R.
Schnaubelt and R. Zacher for useful discussions and references, the Department
SBAI, Sapienza University of Rome and the Department of Mathematics of the
University of Padova for the hospitality during the preparation of the paper.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.



NoDEA Results for viscous Hamilton–Jacobi equations Page 33 of 37 22

References

[1] Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional Laplacian.
In: Dipierro, S. (ed.) Contemporary Research in Elliptic PDEs and Related
Topics. Springer INdAM Series, vol. 3, pp. 1–105. Springer, Cham (2019)

[2] Allen, M., Caffarelli, L., Vasseur, A.: A parabolic problem with a fractional time
derivative. Arch. Ration. Mech. Anal. 221(2), 603–630 (2016)

[3] Bagby, R.J.: Lebesgue spaces of parabolic potentials. Ill. J. Math. 15, 610–634
(1971)
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Università di Roma “La Sapienza”
Via A. Scarpa 14
00161 Roma
Italy
e-mail: camilli@sbai.uniroma1.it

http://mtaylor.web.unc.edu/files/2018/04/fdif.pdf


NoDEA Results for viscous Hamilton–Jacobi equations Page 37 of 37 22

Alessandro Goffi
Gran Sasso Science Institute
Viale Francesco Crispi 7
67100 L’Aquila
Italy
e-mail: alessandro.goffi@gssi.it

Received: 4 June 2019.

Accepted: 24 February 2020.


	Existence and regularity results for viscous Hamilton–Jacobi equations with Caputo time-fractional derivative
	Abstract
	1. Introduction
	2. Notations and preliminaries
	2.1. Hölder spaces
	2.2. Fractional Sobolev and Bessel potential spaces
	2.3. Parabolic Sobolev spaces
	2.4. Embedding results for parabolic Sobolev spaces

	3. On time-fractional heat equations: Lp-maximal regularity results and representation of solutions
	4. Schauder estimates for the time-fractional heat equation
	5. On time-fractional Hamilton–Jacobi equation
	5.1. Well-posedness and regularity results for the time-fractional Fokker–Planck equation
	5.2. Gradient bound
	5.3. Existence and uniqueness for the time-fractional Hamilton–Jacobi equation

	Acknowledgements
	References




