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Abstract.

While since mid-seventies it has been clearly shown that relativistic effects play
a crucial role for the complete understanding of the chemistry of molecules espe-
cially when heavy elements are involved, still nowadays in most of the case the
relativistic effects are introduced via approximate methods. The main motivation
behind the introduction of such approximation, respect to the natural and most rig-
orous component (4c) formalism derived from the Dirac equation, is the computa-
tional burden. In the present paper we are proposing a review of the BERTHA code
that, together with the recently introduced Python bindings, represents the state of
the art for full 4c calculations both in term of performances as well as in terms of
code usability.
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1. Introduction

Relativistic effects, arising by the fast moving of the core electrons and propagating into
the valence region, it has been largely shown to become very important for the proper
understanding of the chemical properties of molecules [1,2]. Indeed, expecially when
heavy or Super-Heavy atom are involved the inclusion of relativistic effects is fudamental
also in the deep understanding of the chemical bond [3,4]

More recently the developments of new Free Electron Lasers (FEL) provide a range
of opportunities to achieve significant advances that extend the boundaries of our knowl-
edge in the field of atomic and molecular science and promise to obtain direct informa-
tion on the basis processes of energy relaxation/ transfer in molecules (how charge, spin,
orbital and eventually nuclear degrees of freedom interact to redistribute the energy). The
development of accurate theoretical and computational methods, based on first princi-
ples, for the accurate characterization of electronic dynamics including spin-orbit cou-
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pling in molecular systems containing heavy atoms is now one of the most important
challenges of theoretical chemistry and computational science [5].

Because of the computational cost of the rigorous way to include relativity (includ-
ing spin-orbit effect) in the modelling of molecular systems, a disparate set of approxi-
mate methods have been derived from the strictly relativistic 4-component (4c) formal-
ism derived from the Dirac equation by Bertha Swirles [6]. Among these the so called 2-
components approximation, deriving from the decoupling the ”large” and ”small” com-
ponents of the Dirac spinors [7], is the most used. Maybe the Douglas-Kroll-Hess [8]
and Zero Order Regular Approximation hamiltonians [9] are, amoung others, the most
popular two-component schemes. Both of them have found a wide range of applications
with implementations in several modern commercial codes.

Clearly the introduction of the cited approximation scheme is motivated by the in-
trisic computational difficulty realted to a proper full 4c approach. The BERTHA code,
we will describe here, is basically built around a smart and efficient algorithm for the
analytical evaluation of relativistic electronic repulsion integrals, developed by Quiney
and Grant in Oxford more than a decade ago [10], representing the relativistic general-
ization of the well-known McMurchie-Davidson algorithm [11]. As we will show in the
following we have extended the applicability range of all-electron DKS calculations, ex-
ploiting density fitting techniques and parallelization strategies, to large clusters of heavy
metals [12].

Aside what previously stated more recently we introduced a maior improvement in
the BERTHA code usability introducing a set of Python bindings [13]. In the present
paper, after a review of the parallelization strategies adopted, we will describe in details
the PyBERTHA charecteristics and implementation. Finally we will conclude with a test
case of the code involving the interection of a flerovium atom [14] with some gold atoms
cluster.

The achievements, we will describe in the following, represent the state of the art
for full 4c calculations and give us the ideal starting point for the necessary further de-
velopment of methods of relativistic theory.

2. Computational details

In the following subsections we will give all the details about the fundamental features
of the BERTHA code. Specifically we will summarizing the basic strategy behind the
parallelization of the code, and ,maybe more importantly, we will give all the details
about the newly developed Python interface of BERTHA.

2.1. Parallelization strategy

Historically the main motivation for the use of approximate methods to include relativity
(e.g. including spin-orbit effect) in the modelling of molecular systems is the assumption
that full 4c approach is computationally too demanding [15,16]. While this is in principle
an obvious assumption, we have shown that one can drastically reduce the computational
cost of a Dirac-Kohn-Sham (DKS) calculation, by implementing various parallelization
and memory distribution [17,18,12] schemes and by introducing new algorithms, such as
those based on the method ”density fitting” [19]. We already shown that is now possible
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to carry out DFT calculations at full relativistic 4c level in an efficient way, and thus
exploit the full power behind the DKS equations, in a wide range of molecular systems [4,
20,3].

The main goal we prosecuted has been to almost nullify any serial portion of the
code, being inspired by the basic idea behind Amdahl’s law [21]. On the other hand, con-
sidering the amount of memory required to perform a DFT calculations at full relativistic
4c level, we designed an ad-hoc method to simulate shared memory for distributed mem-
ory computers following a path already designed by other quantum chemistry softwares
(e.g., ADF [22] uses GlobalArray [23], GAMESS-US [24] uses the Distributed Data In-
terface [25] library). The ad-hoc method we designed as been specifically shaped on the
data distribution induced by the problem, more specifically dictated by the grouping of
G-spinor basis functions in sets characterized by common origin and angular momentum.

In order to recall the main aspects of the implemented parallelization strategy, it is
important to point out the fundamental steps of each BERTHA run. Once the molecular
system geometry has been specified, together with the basis and fitting set to be used,
provided an initial guess density (i.e. cast as a superposition of atomic densities), the den-

sity fitting is carried out. Soon after the software builds the Coulomb plus exchange-

correlation matrix, and at this stage, only during the first iteration, also the one-electron

and overlap matrices are computed and stored in memory as they do not vary from cycle
to cycle. Finally the DKS matrix is assembled and the eigenvalue problem is solved.

While the full description of the implemented parallelization strategy has been re-
ported in our previous works[17,18,12], for the sake of completeness here we are report-
ing only a quick overview starting from the results presented in Figure 1. As the reported
results indicate we are able to achieve good results both in term of speed-up as well in
terms of memory distribution.
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Figure 1. On the left panel we are reporting the speed-up obtained for the Au20−Fl complex with the current
implementation of BERTHA. On the right panel we are instead reporting the memory allocated per process,
for the same molecular system, when running the code using an increasing number of processes P. The results
are obtained compiling the code with Intel Parallel Studio XE 2019 and Intel Math Kernel Library , and
running on a two nodes cluster quipped with Intel(R) Xeon(R) CPU E5-2650 v2 at 2.60GHz and InfiniBand
interconnection.

Whenever a linear algebra operation is needed we took advantage of the widely
available ScaLAPACK [26] library. We recall here that the P processes of a generic
parallel execution are, in ScaLAPACK, mapped onto a PrxPc two-dimensional process
grid of Pr process rows and Pc process columns. Almost consequently any dense matrix
is then decomposed into blocks of suitable size, which are uniformly distributed along
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each dimension of the process grid according to a specific the so-called Block Cyclic
Distribution (BCD) pattern.

We implemented some utility functions (see [17,18,12] for details) that are used
to efficiently map the main matrices as they are computed into the BCD distribution
schema. It is indeed important to underline as the memory consumption per process,
thanks to the cited approach, is always well under control as well reported in the right
panel of Figure 1. We even observe cases of superlinear performance when the small
size of the local arrays permits improved cache reuse to prevail over other factors. Also
considering that the PZHEGVX function we are using to carry out the complex DKS
matrix diagonalization is able to converge on a given subset of eigenvectors. That is,
in our case, we are converging only in the occupied spinors subset and this gives us an
evident advantage respect to the serial code, where instead we are always converging on
the full set of spinors.

The grid shape affects appreciably the performance of the linear algebra routines and
different routines may be differently influenced depending on the block size, number of
processes, and size of molecular systems. We already reported a spread in performance
of up to 50% when rectangular processes grids are used, this appear to be unfavorable
mainly for the diagonalization step compared to square grids [18]. Clearly this explain
the decrease on performances observed when 30 process are used. Indeed we are using a
rectangular processes grid, that is a 5x6 or equivalently 6x5 one, thus a rectangular one.

2.2. PyBERTHA: a Python API for the BERTHA code

Undoubtedly the Python programming language is emerging as one of the most impor-
tant and used HLL [27,13] also in the field of scientific computing. Python HLL, besides
providing an extensive range of modules to be used to solve comprehensive set of com-
putational problems, enables for a quick prototyping, being so a natural choice in the
BERTHA project.

The very first step toward a Python binding started reworking the original ”mono-
lithic” FORTRAN [28] BERTHA code so that it becomes a set of SO libraries: libbertha

containing all the basic kernel functions, libberthaserial to perform the serial run, and
libberthaparalleshm to execute the parallel computation. Once this very first step has
been completed the computational kernel of the DKS calculation it is driven by a FOR-
TRAN module named bertha wrapper. The FORTRAN module contains a set of meth-
ods to access to all the basic quantities, such as energy, density and DKS matrices and
more. That same FORTRAN module is used to access all the basic functionality such as:
bertha init to perform all the memory allocations, bertha main to run the main SCF
iterations, clearly bertha finalize to basically free all the memory, and more.

Finally the main PyBERTHA module, named berthamod, has been developed us-
ing the ctypes Python module. The cited module provides C compatible data types,
and allows calling functions in shared libraries. In order to simplify the direct interlan-
guage communication between Python and FORTRAN, we developed a C layer called
c wrapper, as well summarized in Figure 2.

In the actual version of the code the input geometry, basis and fitting set are specified
via a file and the related set fnameinput and set fittfname methods. Additionally the
pybertha class is populated with all the basic functionality need to easily implements
basic procedure as a single-point energy calculation (i.e. using the run and get etotal
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libertha.so libberthaserial.so libberthaparalleshm.so

bertha_wrapper module

C_WRAPPER

BERTHAMOD

C

PYTHON

FORTRAN

Figure 2. An overview of the software and HLL layers.

methods), or geometry optimization and also much more complex procedures as for ex-
ample a real-time TDDFT [5] (i.e. using realtime init, get realtime dipolematrix and
get realtime fock to obtain the DKS matrix given as an input a density matrix).

All data produced at the FORTRAN layer and retrieved at the Python level can
be easily handled in case of scalars. Instead when we need to transfer matrices, and
in our case matrices of complex numbers, we used the FORTRANC interoperability
iso c binding module and two Python functions: doublevct to complexmat to convert
array of double into Python complex numpy.array[29], and complexmat to doublevct

to perform the opposite operation. For the sake of completeness we are reporting in the
following the code of the two cited functions:

d e f c o m p l e x m a t t o d o u b l e v c t ( inm ) :

i f l e n ( inm . shape ) != 2 :
r e t u r n None

i f inm . shape [ 0 ] != inm . shape [ 1 ] :
r e t u r n None

dim = inm . shape [ 0 ]

c b u f f e r = numpy . z e r o s ( (2∗ dim∗dim ) , d t y p e =numpy . d o u b l e )
c b u f f e r = numpy . a s c o n t i g u o u s a r r a y ( c b u f f e r , d t y p e =numpy . d o u b l e )

c b u f f e r [ 0 : : 2 ] = inm . f l a t t e n ( ) . r e a l
c b u f f e r [ 1 : : 2 ] = inm . f l a t t e n ( ) . imag

r e t u r n c b u f f e r

d e f d o u b l e v c t t o c o m p l e x m a t ( i n v e c t o r , dim ) :

i f ( i n v e c t o r . s i z e != (2∗dim∗dim ) ) :
r e t u r n None

outm = numpy . z e r o s ( ( dim , dim ) , d t y p e =numpy . complex128 )

i n m t x r e a l = numpy . r e s h a p e ( i n v e c t o r [ 0 : : 2 ] , ( dim , dim ) )
inmtximag = numpy . r e s h a p e ( i n v e c t o r [ 1 : : 2 ] , ( dim , dim ) )
outm [ : , : ] = i n m t x r e a l [ : , : ] + 1 j ∗ inmtximag [ : , : ]

r e t u r n outm

The approach to move data from the FORTRAN layer up to the Python one we just
described it is not necessarily the most efficient, indeed one can maybe use a direct mem-
ory mapping between the FORTRAN array and the numpy ones. Nevertheless, given
the results of the Python overhead we will shortly illustrate, we believe that the way we
used it is the less error-prone and the best compromise in term of code portability and
efficiency.

Indeed adopting the described technique we performed some test to exactly estimate
the overhead related to the Python binding. All the results, reported in Table 1, have
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been obtained compiling the code with the Intel(R) FORTRAN and Python compilers
(version: 2018.3.222), but similar results, in term of percentage of the Python binding
overhead, have been obtained using the GNU compilers.

Table 1. We are reporting the impact of the Python binding in the total execution time using 10 SCF iterations.
The code has been executed on a Intel(R) Xeon(R) CPU E3-1220 compiling the code with the Intel(R) compiler
version: 2018.3.222

System
Matrix
Dimension

Wall-time 10 SCF
iterations
with Python (s)

Wall-time 10 SCF
iterations
without Python (s)

Python overhead
10 SCF iterations

H2O 140 3.910 3.906 0.09 %
Au2 1560 104.458 104.354 0.99 %
Au4 3152 613.912 613.483 0.07 %
Au8 6304 3965.911 3964.078 0.05 %

Looking at Table 1 it is evident that the impact of the Python binding is almost
always lower then 0.1 % and thus it is clearly negligible. The only system where the
overhead is higher then 0.1 % is the Au2 gold cluster. We may only speculate that in such
a case there is some effect related to the cache memory size, indeed the most demanding
part of the Python binding is essentially related to a memory-to-memory copy.

As we already pointed-out the Python binding overhead is almost solely related to
the arrays copying process that, in the case of a single point ENERGY calculation, is
executed just once at the end. Thus clearly, in the case of a standard single point energy
calculation, the Python binding has no impact on the serial execution time of BERTHA
at all.

3. Bond Analysis of Au20−Fl complex with NOCV/CD method

In the last decade, experiments were carried out to compare the chemical behaviour of
SHEs (Super Heavy Elements) with that of their lighter homologues of the 6th period.
For example by gas-phase thermochromatography studies of volatility through adsorp-
tion on gold surfaces [30].

Here we will try shed some light on the Au20−Fl interaction using the NOCV/CD
analysis scheme [4]. In a previous work we presented the formalism used to decompose
the CD function in terms of NOCVs in the context of the relativistic four-component
framework where spin-orbit coupling is included variationally [4].

The core idea of the approach is the decomposition, via natural orbitals for chem-
ical valence (NOCV), of the so-called charge-displacement (CD) function into additive
chemically meaningful components.

Firstly we start recalling the CD function that is defined as a partial integration along
a suitable z axis of the difference Δρ(x,y,z′) between the electron density of the adduct
and that of its non-interacting fragments (that is the Au20 gold cluster and Fl atom in our
specific case) placed at the same equilibrium position they occupy in the adduct:

Δq(z) =
∫ z

−∞
dz′

∫ ∞

−∞

∫ ∞

−∞
Δρ(x,y,z′)dxdy (1)
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In the previous equation the integration axis is obviously chosen following some
physical criteria, for instance the bond axis between the fragments appears to be the
most convenient choice in our case. Any CD function features positive values along z
when, upon formation of the bond, charge is transferred from right to left across a plane
perpendicular to the bond axis through z. On the contrary negative values of the CD
function identify charge flow in the opposite direction.

Finally, it is worth noting that the electron density difference can be further parti-
tioned when both the adduct and its constituting fragments belong to the same symmetry
group, Δρ can be expressed in terms of additive symmetry components. More generally,
a different scheme can been applied to provide the decomposition of the Δρ in terms of
contributions arising from the molecular spinors most involved in the bonding. Natural
orbitals for chemical valence (NOCV) were introduced by Mitoraj and Michalak [31] as
descriptors of chemical bond. The cited formalism allows a very compact description of
the bonding phenomenon, indeed the electron density difference Δρ can be brought into
diagonal contributions in terms of NOCVs (i.e. additive chemically meaningful compo-
nents).

The cited NOVC/CD analysis has been applied to the Au20−Fl complex, as reported
in Figure 3, using a molecular geometry as reported in a previous work [20]. It is some-
how important to underline the fact that, while the geometry optimization of the gold
cluster has been performed using the zero-order regular approximation (ZORA)[32],
both the Flerovium gold cluster distance and clearly all the calculation needed to produce
the final NOCV/CD results, have been performed using BERTHA.

����

�����

��

�����

����

�����

����

�����

��� ��� ��� �� �� �� ��� ���

	


��

�
�

����

	�
	���
	���
	���
	���

Figure 3. On the left panel we are reporting Au20−Fl complex. On the right panel instead the CD analysis
for the Au20 −Fl bond is reported, where the dots on the axis mark the z coordinate of the atoms. We are
reporting the contribution to deformation density, Δρ , of the four most significant NOCV-pairs (Δρ ′1, Δρ ′2, Δρ ′3
and Δρ ′4,).

In Figure 3 we are reporting the complex geometry, on the left panel, and the CD
curves on the right. The fundamental feature of the Δρ CD curve is that Δq(z) is appre-
ciably positive everywhere in the cluster region. This means that there is a shift of charge
from the Fl atom towards the gold cluster. More interestingly, the shift of charge does
not stop at the nearest Au layer but extends appreciably down to the fourth layer. Another
interesting feature of the Δρ CD curve is showing are the two peaks, one corresponding
to the zone between the first and second Au layers, and the other corresponding to the
gold-Fl binding region.

Finally looking at Figure 3, it is undoubtedly interesting to see how we are able
to split the total CD curve into several additive chemically meaningful components. In
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the figure we are reporting only the first four NOCVs, that are quantitatively the most
relevant. It is clear how the total curve, that it is highlighting an shift of charge from the
Fl atom towards the gold cluster, is instead made of two different contributions. The first,
Δρ ′1, is indeed representing a shift of charge from the Flerovium toward the gold cluster,
but the other three curves are instead displaying and an opposite charge flow, from the
Au20 cluster toward the Fl atom.

The reported results give a clear view of the power the NOVC/CD analysis, that it
is able to give clear insights on the nature of a chemical bond in a simple and visual
way. It is somehow important here to remark the fact that these results have been made
possible only by the previously reported effort in terms of code optimization and code
parallelization.

4. Conclusions and perspectives

As already stated mainly because of the computational cost of the rigorous way to include
relativity in the modelling of molecular systems, a disparate set of approximate methods
have been derived from the strictly relativistic 4-component (4c) formalism derived from
the Dirac equation by Bertha Swirles [6].

In the present work we described the BERTHA code, that as a result of our effort,
can be considered the state of the art for full 4c calculations. Indeed, thanks to the the
parallelization strategies and density fitting techniques adopted, we have been able to ex-
tend the applicability range of all-electron DKS calculations to extremely big molecular
systems.

In addition, we introduced also a set of Python bindings (so called PyBERTHA),
that we demonstrated to have almost a negligible impact in terms of time consumption.
Instead the introduction of such software layer improved enormously the code usability,
especially respect to the original FORTRAN version.

Specifically, due to the actual enormous diffusion of the Python programming lan-
guage, we hope to spread the use of full 4c calculations to a larger scientific popula-
tion. Indeed, thanks to the introduced Python API, it is now simple and quick to imple-
ment and test new approaches based on the basic building blocks provided by the current
version of PyBETHA.

Clearly, given the described abstraction layer it is now easy to extend the API as
needed. In a future coming version we are planning to add all the fundamental functions
to specify the input geometry and basis set in a more user-friendly (i.e. pythonic) way.
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