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Abstract: Mental workload (MW) represents the amount of brain resources required to perform
concurrent tasks. The evaluation of MW is of paramount importance for Advanced Driver-Assistance
Systems, given its correlation with traffic accidents risk. In the present research, two cognitive
tests (Digit Span Test—DST and Ray Auditory Verbal Learning Test—RAVLT) were administered
to participants while driving in a simulated environment. The tests were chosen to investigate the
drivers’ response to predefined levels of cognitive load to categorize the classes of MW. Infrared (IR)
thermal imaging concurrently with heart rate variability (HRV) were used to obtain features related to
the psychophysiology of the subjects, in order to feed machine learning (ML) classifiers. Six categories
of models have been compared basing on unimodal IR/unimodal HRV/multimodal IR + HRV
features. The best classifier performances were reached by the multimodal IR + HRV features-based
classifiers (DST: accuracy = 73.1%, sensitivity = 0.71, specificity = 0.69; RAVLT: accuracy = 75.0%,
average sensitivity = 0.75, average specificity = 0.87). The unimodal IR features based classifiers
revealed high performances as well (DST: accuracy = 73.1%, sensitivity = 0.73, specificity = 0.73;
RAVLT: accuracy = 71.1%, average sensitivity = 0.71, average specificity = 0.85). These results
demonstrated the possibility to assess drivers’ MW levels with high accuracy, also using a completely
non-contact and non-invasive technique alone, representing a key advancement with respect to the
state of the art in traffic accident prevention.

Keywords: mental workload; driver monitoring; ADAS; infrared imaging; automotive ergonomics

1. Introduction

Road accidents, indicated as one of the main causes of injury and death, are frequently
related to the underestimation of drivers’ mental workload (MW) and fatigue [1]. The world
of research is consistent in assuming that crash risks are strongly related to driver mental
workload [2,3]. Hence, predicting cognitive states, such as mental overload, could be funda-
mental to prevent traffic accidents. The quantitative assessment of MW can be performed
by means of neuroimaging and neurophysiological techniques and methods [4,5]. Indeed,
several studies reported the use of behavioral measurement, such as eye blinking [6,7], and
physiological measurement, such as Electrocardiogram (ECG) [8], Electroencephalogram
(EEG) [9–11], and functional Near Infrared Spectroscopy (fNIRS) [6,12] to estimate MW.
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In a very recent review on the assessment of MW relying on physiological parameters,
Tao et al. stated that cardiovascular, eye movement and EEG measures were the most
frequently used across various research fields, reporting 76%, 66%, and 71% of the times a
significant association with MW, respectively [13]. Relative to the ECG signal, among all
the other physiological parameters, it can be considered one of the most suitable signals
in the automotive research domain, since its detection ensures comfort and not excessive
invasiveness for the driver if compared, for instance, with EEG measurements. Further-
more, ECG-derived parameters can also be established through cutting-edge technologies,
which are now available to a large part of the population (i.e., smart devices) with a good
level of reliability [14]. In a recent study, Tjolleng et al., developed a three-level classifier
based on artificial neural networks relying on six ECG-derived features extracted in time
and frequency domains [15]. In this study, drivers were asked to perform N-back tasks
while driving on a static simulator. The developed model reached an accuracy of 82%.
However, in general, there is a wide scientific literature about the relationship between
physiological parameters (especially HRV) and MW. We recommend a very exhaustive
review by Dias et al. [16].

However, the limitations in the assessment of behavioral/physiological parameters in
real life driving through the above-mentioned techniques (contact probes, high sensitivity
to driver’s motion, specific lighting conditions) prevent their large application in Advanced
Driver Assistance Systems (ADAS), in which the use of non-contact sensors would be
specifically desirable, and the main aim of the current study is to overtake these limitations
due to contact and invasive measurement techniques by the use of a non-invasive and
contactless methodology, the thermal infrared (IR) imaging, that has been proposed as
a suitable alternative tool to estimate MW, just because of its contactless modality. IR
imaging is a non-invasive technology that is able to infer the autonomic modulation of the
superficial skin temperature [17]. Importantly, compared with visible cameras used to infer
behavioral parameters, IR is not affected by illumination and can work in a completely dark
environment. The use of IR imaging permits the estimation of the peripheral autonomic
activity relying on the modulation of the skin temperature, which is a known expression of
the psycho-physiological state of the subject [18–20]. Accordingly, experienced emotions,
including stress or fatigue, can produce measurable changes in skin temperature [21,22].

2. Related Work

There is great attention in the research field on MW monitoring using thermal IR
imaging. Kang et al. assessed affective training times by monitoring the cognitive load
relying on facial temperature changes. Significant correlations (i.e., r ∈ R[0.88, 0.96]) were
found between the nose tip temperature and response time, accuracy, and the Modified
Cooper Harper Scale ratings [23]. Stemberger et al. proposed a system for the evaluation of
MW levels of aviators relying on the assessment of facial skin temperature. The method also
relied on head pose estimation, measurement of the temperature variation over different
facial regions, and an artificial neural network classifier. The system classified with good
accuracy the MW into high, medium, and low levels 81% of the time [24].

Given the advantages of the use of IR imaging in psycho-physiological state monitor-
ing, a relevant number of scientific works on the automotive research field are available.
Most of these publications concern driver drowsiness/fatigue monitoring and emotional
state detection [25–30]. Relative to drivers’ MW monitoring using thermal IR imaging, the
literature is instead scarce. Or and Duffy used thermography to assess the relationship
between MW and thermal patterns of facial regions of interest (ROIs). They found a signifi-
cant correlation between the nose skin temperature change and the subjective workload
score in both simulated and real-vehicle driving [31]. Pavlidis et al. [32], investigated the
effects of cognitive, sensorimotor, emotional, and mixed stressors on driver arousal and
performance during a driving simulator experiment. Perinasal perspiration, inferred by
IR imaging, together with the measurement of steering angle and the lane departures on
the left and right side of the road, revealed a more dangerous driving condition for both
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sensorimotor and mixed stressors compared to the baseline situation [32]. In a more recent
work by Wang et al. [33], the correlation of facial skin temperature and its variation with
the EEG-measured MW was examined in three different thermal environments (slightly
cool, neutral, and slightly warm). They found that the absolute facial temperature had
stronger correlations with MW than facial temperature variation and that the correlations
were higher in the neutral thermal environment if compared with the other two thermal
conditions [33]. Finally, Perpetuini et al. [12], developed a two-levels Support Vector Ma-
chine (SVM) classifier to predict the level of MW from IR imaging features. The Sample
Entropy of the fNIRS signal was assumed to indicate MW and was used as output data for
the model. The classifier showed a sensitivity of 77% and specificity of 69% [12].

Table 1 summarizes the approaches used in the related work cited above, reporting
information for each one about the employed methodology and performance.

Table 1. Summary of the most related work with research field, measured variables, methodological
approach and performances reported.

Authors Research Field Measured Variables Methodological Approach Performance

Kang et al. [23] Military training
monitoring

• thermal IR imaging
• Modified Cooper

Harper Scale ratings
• Reaction Time

• Repeated measure
ANOVA

• Correlation

• Nose temperature differs among
experimental phases;

• Significant correlation among all the
measured variables

r ∈ R[0.88, 0.96]

Stemberger et al. [24] Aviator training
monitoring

• thermal IR imaging
• cognitive stress test

• Repeated measure
ANOVA

• Correlation
• Artificial Neural

Network

• Significant change in reaction time as
a function of workload level
(F(2) = 25.659, p < 0.001)

• Negative relationship between task
difficulty andpercentage of correct
responses (r(33) = −0.64, p < 0.001)

• 81% correct classification rate

Wang et al. [33] Thermal comfort and
workload indoor

• thermal IR imaging
• EEG
• environmental

thermostat

• Repeated measure
ANOVA

• Correlation
• Random Forest

classifier

• Average prediction accuracy for all
subjects under the slightly cool,
neutral, and slightly warm
environment is 45% ± 9%, 57% ± 9%,
and 44% ± 9%, respectively
(prediction of IR features on
EEG features)

• Stronger correlations between
absolute facial skin temperature and
mental workload are found in the
neutral environment, compared to
the slightly cool and slightly
warm environments.

Or and Duffy [34] Car driver monitoring

• thermal IR imaging
• Modified

Cooper-Harper
scale rating

• Repeated measure
ANOVA

• Correlation

• The workload tasks had no
significant effect on
forehead temperature

• Nose temperature showed a
significant change after completing
tasks for all conditions

• Significant correlation between the
nose skin temperature change and
the subjective workload score
(r = 0.32, p = 0.009)

Pavlidis et al. [32] Car driver monitoring

• thermal IR imaging
(perinasal signal
to evaluate
sympathetic activity)

• NASA Task Load
Index (TLX)

• steering angle and
maximum
right-side/left-side
lane departure

paired t-tests

Mean sympathetic arousal and mean
steering performance during cognitive
workload had significant deterioration with
respect to no-stressor driving (p << 0.01)

Perpetuini et al. [12] Car driver monitoring
• thermal IR imaging
• fNIRS SVM classifier Sensitivity of 77% and specificity of 69%
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In the present work, the driver MW was established by means of IR imaging and su-
pervised machine learning (ML) methods. Supervised ML approaches are part of Artificial
Intelligence (AI) algorithms, able to automatically learn functions that map an input to an
output based on known input–output pairs (training dataset). The function is inferred from
labeled training data and can be used for mapping new datasets (test data), thus permitting
to evaluate the accuracy of the learned function and estimate the level of generalization of
the applied model [35].

Based on key features of thermal signals extracted from peculiar ROIs indicative
of the psycho-physiological state and ECG derived parameters, ML-based classification
models of MW were performed with the aim to distinguish among different levels of
MW. Two cognitive tests, with their own subcategories, were chosen to investigate the
drivers’ response to different and predefined levels of cognitive load in order to categorize
the classes of MW. To develop an accurate and automated MW classification system, ML
multimodal (based on both IR imaging and ECG derived features) and unimodal (IR
imaging or ECG derived features) models were developed and compared. The principal
innovation of the present study consists in the capability of distinguishing different MW
levels based on the only monitoring of IR signals and/or ECG derived features. Of note,
this work describes a novel approach for a contactless methodology dedicated to driver
MW classification, constituting a significant improvement to actual ADAS technology and,
in general, to road security level. Furthermore, the developed systems can be completely
inherited from any other field of application in which it is desirable to accurately define the
level of human MW, thus opening new opportunities and perspectives in the domains of
ergonomics and human-machine interaction.

3. Materials and Methods
3.1. Participants

The experimental session involved 26 adults (17 males, age range 18–42, mean 30.89,
standard deviation 6.08). Prior to the experimental sessions, the participants were ade-
quately informed about the purpose and protocol of the study, and they signed an informed
consent form resuming the methods and the purposes of the experimentation in accordance
with the Declaration of Helsinki [36].

Participants were selected according to the following inclusion criteria:

- possession of a driver’s license;
- aged 18 years old or over;

Participants were excluded if they did not fall under the inclusion conditions and if
they were diagnosed with mental/cognitive impairment.

A survey conducted through the administration of questionnaires revealed that, on
average, participants had an experience of driving for (16.54 ± 5.84) years, they were used
to driving (53.64 ± 18.45) hours per day and (6.29 ± 1.13) days per week. Furthermore,
72.73% declared that they drive only in an urban context, and 9.09% mainly on highways,
whereas the 18.18% declared mixed context driving.

3.2. Experimental Protocol

Prior to testing, each subject was left in the experimental room for fifteen minutes to
allow their baseline skin temperature to stabilize. The environmental conditions of the
experimental room were set at a standardized temperature (23 ◦C) and humidity (50–60%)
by the use of a thermostat.

The experimental sessions were performed using a static driver simulator (Figure 1a).
Three 27 inch monitors were used to display the scenario, with a total video resolution
of 5760 × 1080 pixels. The distance between the driver and monitors was 1.5 m. Drivers’
horizontal view angle was 150 degrees. Participants sat comfortably on the driver’ seat
during both acclimatization and experimental periods.
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Figure 1. Experimental setting: (a) static driver simulator; (b) screenshot of the driving simulation
software (i.e., City Car Driving, Home Edition software-version 1.5, Forward Development, Ltd.,
Verona (WI), USA [37]).

The software used for the driving simulation was City Car Driving, Home Edition
software-version 1.5 [37] (Figure 1b). The experimental protocol consisted in performing
a 45 min driving simulation in an urban context. The experimental conditions were set
a priori to ensure adverse driving conditions and deliver a reproducible experimental
protocol to all study participants (i.e., Traffic density: 60%; Traffic behavior: Intense traffic;
Pedestrian crossing the road in a wrong place: Often; Dangerous change of traffic: Often;
Emergency braking of the car ahead: Often).

These conditions represented the baseline (BL) situation for the drivers and were
selected to guarantee a non-monotonous environment. In particular, the settings associated
to emergency situations and traffic guaranteed uncomfortable driving, since the participants
were often driving in non-monotonous situations. After a BL period of fifteen minutes, two
cognitive tests (i.e., Digit Span and Rey Auditory Verbal Learning tests) were administered
to drivers. The administration of cognitive tasks allowed to manipulate the MW with
respect to the baseline driving.

In detail, the Digit Span test (DST) is a cognitive test composed of two different tasks
able to assess the abilities of short-term memory and working memory, the latter referring
to the skill to retain information for a short time to manipulate them mentally [38]. For this
test, the participant was asked to repeat sequences of digits verbally presented with a pace
of one digit per second. The test started with a two-digit series and each time the sequence
was repeated correctly a new set was presented with one more digit. If the participant could
not remember a series, another one of the same length was proposed. If the participant was
not able to repeat two sequences of the same length, the test ended. The digit span score
consisted in the length of the longest correctly recalled sequence. For the purposes of the
present study, the DST was composed of two parts:

1. Forward DST (repetition of digits in the same order to their presentation)
2. Backward DST (repetition of digits in the reverse order to their presentation)

The Rey Auditory Verbal Learning test (RAVLT) is a cognitive task able to evaluate ver-
bal learning and long-term memory [39,40]. It was administered by reading the participant
a list of 15 words at the pace of one word per second. At the end of the reading, the subject
was asked to immediately repeat as many words as possible, in any order. This procedure
was repeated with the same word list five consecutive times, recording different elements
each time. This was the first part of the test and consisted in the Immediate Recall (ImmR).

After a 15-min time interval, during which the subject continued to drive, he/she was
asked to remember (without the list being re-proposed by the examiner) as many words as
possible from the list. This was the second part of the RAVLT and consisted in the Delayed
Recall (DelR).
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Subsequently, the last part of the test consisted in the Recognition (Rec) of the 15 words
among the other words not present in the original list. The total amount of items was
46. This test allows for a qualitative evaluation of the memory performance in terms of
facilitated recovery.

At the end of the test, the subject drove for 10 min without further test administration.
The whole pipeline of the experimental procedure is summarized in Figure 2:
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3.3. Data Acquisition and Analysis

During the execution of the experimental protocol, ECG signals and visible and
thermal IR videos were concurrently acquired.

The ECG signals were recorded by means of Encephalan Mini (Medicom MTD system,
Taganrog, Russia) using the lead configuration determined by the Standard Limb Leads
(i.e., electrodes positioned at the right arm (RA), left arm (LA), and left leg (LL)) [41]. The
ECG signals were acquired at a frequency rate of 256 Hz and band-pass filtered in the
frequency band of [0.05–150] Hz. Furthermore a notch filter was used to eliminate the
artifact due to the mains power supply (fnotch = 50 Hz).

An Intel RealSense D415 depth camera (Intel Corporation©, Santa Clara, California,
USA) and a FLIR Boson 320LW IR thermal camera (FLIR corporation©, Wilsonville, Oregon,
USA) were used to acquire visible and thermal IR videos, respectively. In detail, the visible
camera is Full HD 1080p (1920 × 1080 pixel), whereas the spatial resolution of the thermal
camera is 320 × 256 pixels. Relative to the thermal camera, FLIR Boson 320 relies on
uncooled VOx microbolometer technology and it is featured with a thermal sensitivity
of 50 mK. Of note, the output of FLIR Boson 320 is a 16 bit signal, linear with input flux
(i.e., target irradiance) and independent from the camera’s temperature. This means that
the output is not translated to absolute temperature (i.e., K/◦C), and it ranges from 0 to 216.

For the purposes of this study, the two imaging devices were held together and aligned
horizontally by means of a specifically designed frame made by Next2U® (Figure 3a,b).

Both visible and IR videos were recorded at a frequency rate of 10 Hz. The distance
between the participant and the imaging system was 0.6 m (Figure 1a).

Concerning IR imaging data analysis, visible imagery were used to track facial land-
marks (i.e., 68 points) through the software OpenFace [42], and, successively, they were
co-registered to the thermal imagery by the estimation of the geometrical transformation
between the visible and the IR optics, following the same procedure described in [43]
(Figure 4a). Two ROIs were automatically determined on facial areas of physiological
importance (i.e., nose tip and glabella) (Figure 4b). For each ROI, the average value of
the pixels was extracted over time and representative features were computed over each
experimental phase. To remove possible artifacts from thermal signals, the Hampel function
(MATLAB 2021b©, Mathworks Natick, MA, USA) was employed [44]. The Hampel filter is
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a robust outlier detector relying on Median Absolute Deviation. For each sample of the
signal, median and standard deviation are calculated using all neighboring values within
a window of size SampWin. If the point of interest lies nSD standard deviations from the
median it is identified as an outlier and is replaced by the median value. In this work, we
chose SampWin = 15 s and nSD = 2. To take into account the initial values of the thermal
signals, the average values of baseline (evaluated across a period of one minute before the
DST phase) were subtracted from the raw thermal signals for each experimental phase
(Figure 4c).
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Figure 4. Processing of thermal and visible videos. (a) Software interface for the acquisition and
processing of visible and thermal IR videos. (b) Thermal image with ROI drawn in red colors (Nosetip
and Glabella); (c) thermal signal extracted from the two ROIs during the experimental phases. The
values are obtained subtracting the mean value of the signals during the baseline phase.
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Subsequently, the following features were extracted from the thermal signals:

1. Mean value (MeanTemp);
2. Standard deviation (STD);
3. Kurtosis (K);
4. Skewness (S);
5. 90th percentile (90th P);
6. Sample Entropy (SampEn);
7. Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz)

and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF);
8. Mean value of the power spectral density evaluated in the low-frequency band

(LF = [0.04–0.15] Hz);
9. Mean value of the power spectral density evaluated in the high-frequency band

(HF = [0.15–0.4] Hz).

For the ECG data analysis, the elapsed time periods between the two successive
R-peaks of the ECGs (RR signals) were extracted by means of a home-made MATLAB
2016b© script. The script was based on a peak detection procedure, in which parts of the
signal exceeding two standard deviations were considered as R peaks. On the obtained
RR signals (i.e., Heart Rate Variability (HRV) signal), six features were computed over the
experimental phases:

1. Mean value (RRmean);
2. Standard deviation (SDNN);
3. Root mean square of successive differences (RMSSD);
4. Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz)

and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF);
5. Mean value of the power spectral density evaluated in the low-frequency band

(LF = [0.04–0.15] Hz);
6. Mean value of the power spectral density evaluated in the high-frequency band

(HF = [0.15–0.4] Hz).

To take into account the initial values of the HRV signals, each one of the features was
normalized with respect to their baseline value. In particular, the ratio between each HRV
feature during the experimental phases and the same feature evaluated during the baseline
was computed and considered as input for the models.

Each one of the IR and ECG features were extracted relatively to the specific subcat-
egory of test, which were used to define the label classes for the ML based models. For
each one of these classes, features have been computed working on the IR or ECG signal
acquired during the specific subtest. This aspect guarantees a balanced class numerosity
because all the features for all the subjects were considered relative to each of the classes. A
detailed description of the features computation is reported in the Appendix A Section.

3.4. Application of Supervised Machine Learning for Classification

Supervised ML is the process of learning a set of rules from instances with the aim of
automatically find functions that map an input to an output. The function is inferred from
labeled training data and can be used for mapping new dataset (test data) thus allowing
to evaluate the accuracy of the learned function and estimate the level of generalization
of the applied model [45]. In the present study the performances of six categories of
classifiers were compared: Decision Trees (DT) [46], Discriminant Analysis (DA) [47],
Logistic Regression (LR) [48], Support Vector Machines (SVM) [49], Nearest Neighbor
(kNN) [50], and Ensemble Classifiers [51].

Linear, quadratic and cubic SVM classification models were considered in the
present work.

Coarse, medium and fine kNN classification models were considered in the
present work.
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Relatively to the Ensemble classifiers, bagged trees, subspace discriminant, subspace
kNN, and Random Under-Sampling (RUS) boosted trees were considered in the present
work [52].

A k-fold cross validation (with k = 5) was used to protect against overfitting [53]. The
procedure relies on partitioning the dataset into folds, each one with a training and valida-
tion dataset, and estimating the accuracy on each fold, guaranteeing the generalization of
the model. To ensure that the samples of the same subject would have not been considered
in both training and validation procedures, the folds were created so as to ensure that each
subject was seen by the model only in the training or in the validation phases, and not in
both of them. For the sake of clarity, for each set of features and each classifier model, since
the subjects were 26, a set of 21 subjects were employed for training and a set of five drivers
were used for testing. The procedure was iteratively repeated, randomizing the subjects
involved as training and validation sets.

The machine learning-based analysis of data were performed by means of the Clas-
sification Learner App, MATLAB 2021b© [54]. For the purpose of this work, all the
classification models available were considered.

4. Results
4.1. Drivers’ Performances on Cognitive Tasks

The DST score was calculated as the length of the longest correctly recalled sequence
in both Forward and Backward phases. The RAVLT scores were calculated counting the
total number of words repeated in the five repetitions over the ImmR phase, counting the
total number of words recalled by the participants during the DelR phase and the total
amount of correctly recognized world during the Rec phase.

Since the label classes of the developed models (Figure 12) were based on the specific
subcategories of the DST and RAVLT, it was necessary to objectively assess if the effect on
the performances of the test on the cohort of subjects was adherent with the one reported
in the literature. Indeed, paired t-test analyses were performed on the scores obtained by
the participants during the execution of the two cognitive tests. Significant differences
were observed between Forward and Backward DST (t = 2.69, p < 0.01, degrees of freedom
(dof) = 25), between ImmR and DelR (t = 21.90, p << 0.01, dof = 25), and between DelR and
Rec scores (t = −44.82, p << 0.01, dof = 25). No significance was found in the comparison
between ImmR and Rec. Participants’ scores are reported in Figure 5 (i.e., whiskers plot).
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The mean values and standard deviations of the participants’ scores are reported in
Table 2.
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Table 2. Participants’ scores statistics.

DST RAVLT

Forward DST Backward DST ImmR DelR Rec

Mean 7.19 6.15 41.69 8.92 43.08
Standard Deviation 2.00 2.13 9.71 3.03 3.74

4.2. IR-Visible Video Processing

The method for combined visible and IR video processing has been validated in [43].
For the present study, on average 95.20% of the video frames were correctly processed.
This percentage value referred to the number of frames with correctly identified facial
landmarks with reference to the total number of frames.

Regarding the computational load, the average execution time of the developed
algorithm was 0.09 s/frames with MATLAB 2016b© (64-bitWindows 7 Pro, Service Pack 1;
Intel (R) Core (TM) i5 CPU; 8.00 GB RAM).

4.3. Performances of Supervised Machine Learning Approaches

Thermal and HRV features were first investigated and statistical analysis were per-
formed to assess the most informative features among them. Student’s t-tests were per-
formed among all the features over the experimental phases. The results are reported in
Figures 6–8 for DST and Figures 9–11 for RAVLT.
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Relative to DST, the skewness and the 90th percentile were the most informative IR
features for the nosetip, whereas the LF/HF feature gave an important contribution for
both nosetip and glabella (Figures 6 and 7). No significant difference was revealed by HRV
derived features between the two experimental phases (Figure 8).

Referring to RAVLT, the skewness, the 90th percentile and LF/HF were the most infor-
mative IR features relative to nosetip, showing significant differences in the comparison of
ImmR—DelR (Figure 9). Instead, standard deviation and LF/HF were the most informative
features relative to glabella for every comparison among the experimental phases, sampEn
for ImmR vs. DelR comparison and LF and HF features for the comparison ImmR vs. Rec
(Figure 10). For HRV derived features, HF and LF features were the most informative, both
showing significant differences in the comparison DelR vs. Rec (Figure 11). HF features
also showed a significant difference in the comparison ImmR vs. Rec (Figure 11).
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In the present work, unimodal and multimodal ML-based approaches were developed,
each one of them relying on six categories of classifiers: Decision Trees (DT), Discriminant
Analysis (DA), Logistic Regression (LR), Support Vector Machines (SVM), Nearest Neighbor
(kNN), and Ensemble Classifiers. In the unimodal approach, features extracted from IR
signals or HRV signals were separately used as input signals. In the multimodal approach,
instead, features extracted from both IR and HRV signals were used together as input data
for the classification models. Two-level and three-level classification models were adopted
for DST and RAVLT data, respectively. The scheme of the classification model is reported
in Figure 12.
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cation model for DST; (b) scheme of the three-level classification model for RAVLT.

Notably, not all the features were used as input to the classifier models, but they were
selected through a wrapper method [55,56]. This feature selection approach allows to
consider only the minimal set of features that are relevant for the classification purpose.
In particular, the random subset of features are evaluated as input features of the specific
model and the subset of features that reach the best performance are chosen as input data.
In this study, a number of 50 random combinations of features was chosen. After this
procedure, for DST and RAVLT, the best feature sets were available and constituted the
effective input data for the classifiers. The set of features after the wrapper procedure are
summarized in Table 3.

Table 3. Selected features after wrapping method for each of the developed models.

Unimodal IR Features Unimodal HRV
Features

Multimodal IR + HRV
Features

DST

Nosetip:
STD; S; SampEn
Glabella:
K; S; LF; HF

RRmean
SDNN
HF

Nosetip:
STD; S; SampEn
Glabella:
K; S; LF; HF
HRV:
RRmean; SDNN; HF

RAVLT

Nosetip:
STD; K; S; 90thP; SampEn;
LF/HF; LF; HF;
Glabella:
MeanTemp; K; S; SampEn;
LF/HF; LF; HF;

RRmean; RMSSD;
LF/HF

Nosetip:
STD; K; S; 90thP; SampEn;
LF/HF; LF; HF;
Glabella:
MeanTemp; K; S; SampEn;
LF/HF; LF; HF;
HRV:
RRmean; RMSSD; LF/HF

The results of the classifications, in terms of accuracy, are reported in Table 4.
Relative to the classifiers with the best performances (highlighted in bold in Table 4),

the Receiver Operating Characteristics (ROC) curves and confusion matrices are reported
in Figure 13 for DST and Figures 14 and 15 for RAVLT. ROC curves represent sensitivity
(i.e., true positive rate) versus specificity (i.e., 1-false positive rate) across a range of values
to evaluate the ability of the classifier to predict an outcome. An important parameter is the
Area Under Curve (AUC), which summarizes the classifier performances. A model whose
predictions are 100% wrong has an AUC of 0, whereas a model whose predictions are 100%
correct has an AUC of 1.
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Table 4. Accuracy of the ML classifier for unimodal IR, unimodal HRV and multimodal IR + HRV
features-based models. The models with the best accuracy are highlighted in bold.

Unimodal
IR Features

Unimodal
HRV Features

Multimodal
IR + HRV Features

DST RAVLT DST RAVLT DST RAVLT

Decision Tree

Simple 46.2 59.2 46.2 44.7 48.1 56.6
Medium 50.0 59.2 50.0 39.5 48.1 53.9
Complex 50.0 59.2 50. 39.5 48.1 53.9

Discriminant Analysis

Linear 69.2 56.6 59.6 32.9 63.5 55.3
Quadratic 63.5 53.9 44.2 28.9 59.6 57.9

Logistic Regression 69.2 - 50.0 - 73.1 -

Support Vector Machine

Linear 73.1 65.8 50.0 28.9 73.1 63.2
Quadratic 65.4 53.9 42.3 26.3 61.5 51.3

Cubic 51.9 56.6 51.9 35.5 61.5 51.3

K Nearest Neighbor

Coarse 48.1 34.2 48.1 34.2 41.8 34.2
Medium 55.8 47.4 50.0 31.6 57.7 44.7

Fine 59.6 55.3 50.0 44.7 55.8 50.0

Ensemble

Bagged trees 53.8 71.1 53.8 44.7 59.6 75.0
Subspace discriminant 63.5 56.6 50 32.9 59.6 56.6

Subspace kNN 55.8 56.6 48.1 44.7 57.7 56.6
RUSboosted trees 55.8 47.4 48.1 47.4 46.2 35.5
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IR + HRV features-based classifier; (d) confusion matrix multimodal IR + HRV features-based classifier.
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Figure 14. Performances of the Ensemble bagged trees for unimodal IR features-based classifiers for
RAVLT: (a) ROC curve for the classifier of class ImmR (i.e., class 0) vs. cumulative class (DelR + Rec)
(i.e., class 1 + 2); (b) ROC curve for the classifier of class DelR (i.e., class 1) vs. cumulative class
(ImmR + Rec) (i.e., class 0 + 2); (c) ROC curve for the classifier of class Rec (i.e., class 2) vs. cumulative
class (ImmR + DelR) (i.e., class 0 + 1); (d) confusion matrix for the unimodal IR features-based classifier.
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Figure 15. Performances of the Ensemble bagged trees for multimodal IR + hrv features-based classifiers
for RAVLT: (a) ROC curve for the classifier of class ImmR (i.e., class 0) vs. cumulative class (DelR + Rec)
(i.e., class 1 + 2); (b) ROC curve for the classifier of class DelR (i.e., class 1) vs. cumulative class
(ImmR + Rec) (i.e., class 0 + 2); (c) ROC curve for the classifier of class Rec (i.e., class 2) vs. cumulative
class (ImmR + DelR) (i.e., class 0 + 1); (d) confusion matrix for the multimodal IR features-based classifier.

In Figure 13, the performances of the linear SVM classifiers for both unimodal IR
features-based models and the multimodal IR + HRV features-based classifier are reported.
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The unimodal IR features based model showed good performance (accuracy = 73.1%;
AUC = 0.76; sensitivity = 0.73; specificity = 0.73; precision = 0.73; F1-score = 0.73) as well
as the multimodal IR + HRV features based classifier (accuracy = 73.1%; AUC = 0.80;
sensitivity = 0.69; specificity = 0.71; precision = 0.69; F1-score = 0.72).

Figure 14 shows the performances of the three-level unimodal IR features based
classifier relying on the ensemble bagged tree model. Dealing with a three-level classifier,
three ROC curve are presented, each one of them representing the comparison of one class
with the cumulative class of the other two. The average performances are (AUC = 0.85;
sensitivity = 0.71; specificity = 0.85; precision = 0.71; F1-score = 0.70).

Figure 15 shows the performances of the three-level multimodal IR + HRV features
based classifier relying on the ensemble bagged tree model. The average performances are
(AUC = 0.85; sensitivity = 0.75; specificity = 0.87; precision = 0.75; F1-score = 0.74).

5. Discussion

Monitoring the MW during driving situations is of paramount importance given
its close relationship with the risk of road accidents. The main aim of the present study
was to develop models, based on drivers’ psychophysiological features, that are able
to discriminate the level of drivers’ MW. To this specific aim, two different cognitive
tests (DST and RAVLT) were administered to twenty-six participants while driving in
a simulated environment under non-monotonous situations. The statistical analyses on
cognitive tests scores reveled significant differences between Forward and Backward DST
and between ImmR and DelR and between ImmR and Rec in RAVLT, thus revealing
different performances of subjects over the experimental phases.

DST and RAVLT were specifically chosen to study two different types of cognitive
load, the former related to short-term memory and the latter related to long-term memory
and verbal learning. DST and RAVLT are indicative also of the working memory capacity
(WMC) of the subjects [57]. In particular, the Backward DST and the DelR-RAVLT have been
reported as the most demanding in terms of WMC [57]. Estimating the WMC is of crucial
importance in the research domain of the automotive sector since it has been demonstrated
as a predictor of distracted driving [58]. In this study, the authors demonstrated that the
levels of WMC affect the driving performances of individuals while engaged in cognitive
distraction. Furthermore, they reported a mediation of WMC on the effect of distraction on
braking response time.

In the current study, the possibility of recognizing different levels of MW through
non-invasive techniques was investigated, and ML-based models relying on drivers’ psy-
chophysiological features were developed and compared. HRV and IR thermal features
were extracted over the experimental phases. In this context, it has to be underlined that
the novelty of the present study consists in validating models able to classify different
kinds of MW relying on the IR imaging technique, which is a completely non-invasive
and contactless methodology. Relative to DST, the most informative IR features were the
skewness and the 90th percentile for the nosetip and LF/HF for both nosetip and glabella
(Figures 6 and 7). HRV derived features revealed no significant difference (Figure 8). Re-
garding RAVLT, the most informative IR features relative to nosetip were the skewness,
the 90th percentile, and LF/HF, which globally showed significant differences in the com-
parison of ImmR vs DelR (Figure 9). Instead, the most informative features relative to
the glabella were the standard deviation and LF/HF for every comparison among the
experimental phases, sampEn for ImmR vs. DelR comparison and LF and HF features for
the comparison of ImmR vs. Rec (Figure 10). For HRV derived features, HF and LF features
were the most informative, both showing significant differences in the comparison of DelR
vs. Rec (Figure 11). HF features also showed a significant difference in the comparison of
ImmR vs. Rec (Figure 11).

The relevance of IR features in discriminating different levels of MW is appreciable
from the results mentioned above. Specifically, significant features relative to nosetip
are commonly involved in both DST and RAVLT, whereas the features related to the
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glabella region are mostly involved during RAVLT. This result can be due to the major
cognitive involvement in RAVLT since it has been demonstrated that thermal signals from
the glabella/forehead are directly linked with cognitive load [59–61]. An important role
is also played by the nosetip thermal features, and this result is in accordance with the
literature [1,59,61]. Generally, the nosetip region has been reported as the most responsive
during cognitive tasks, reflected by a drop in the nosetip temperature during cognitive task
executions with respect to baseline conditions [62]. Of note, LF/HF for both the nosetip
and glabella regions was demonstrated to be relevant for assessing the MW level. In fact,
this feature accounts for the balance between the sympathetic nervous system (SNS) and
the parasympathetic nervous system (PNS) activity. It has been inherited by HRV metrics
and it is based on the assumption that LF power is generated by the SNS, while HF power
is produced by the PNS [63]. The LF/HF feature has already been used for thermal imaging
data analysis, showing good contribution in the psychophysiological state assessment of
individuals [25,61].

Regarding the HRV derived features, it has been observed that they revealed statis-
tical significance only in RAVLT, and, in particular, LF and HF features were the most
informative. As mentioned above, they are relevant for the activation of SNS and PNS,
respectively. Between them, the most informative was the LF feature, especially in the
comparison between DelR and Rec. A recent review from Forte et al. reported HF and
LF features from HRV as significant features indicative of cognitive performances [64].
However, the scientific community is not commonly in accordance on the fact that HRV
can be a reliable indicator of MW, especially in the field of automotive. In fact, Paxion et al.,
in a review on mental workload and driving, highlighted some limits of HRV indicators [4].
Specifically, they argued that HRV is not exclusively sensitive to changes in MW, but is also
related to energetic, thermoregulatory, respiratory, and emotional processes and physical
activity. Furthermore, they reported that HRV is not always able to discriminate the level
of difficulty, thus being an insufficient indicator to assess the MW.

This kind of finding is indeed reflected from the results of the present study, with
reference not only to the most informative features but also in regard to the developed ML
models. In this study, several models based on ML approaches have been compared based
on unimodal IR/unimodal HRV/multimodal IR + HRV features. As shown in Table 4, the
best classifier performances were reached by the unimodal IR features-based classifier and
also from multimodal IR + HRV features-based models. Unimodal HRV- based models
showed the worst performances with respect to the other approaches (i.e., the overall best
accuracies reached were 59.6% and 47.4% for DST and RAVLT, respectively). Of note
and with reference to the state of the art in ML and deep learning, in this work a specific
typology of multimodal approach has been used. Indeed, referring to the recent work of
Guarino et al., together with the unimodal approach defined by the authors also single-
view learning, a single typology of multimodal procedure was adopted in the present study,
referred to by the authors as the intermediate integration multi-view approach [65]. This
particular multi-view approach has been chosen since there was the necessity of having
a feature selection step (i.e., wrapper method) in the analysis pipeline, prior to the con-
catenation of IR and HRV features. Hence, the early integration multi-view approach was
not considered, since the number of input features was similar to the number of partici-
pants. Further studies, instead, could be done to implement the late integration multi-view
approach. In this regard, it is necessary to enlarge the sample size to benefit from more
reliable single classifiers. For DST, the best performing models were based on two-classes of
SVM classifier with linear kernel with unimodal IR features (accuracy = 73.1%; AUC = 0.76;
sensitivity = 0.73; specificity = 0.73) and multimodal IR + HRV features (accuracy = 73.1%;
AUC = 0.80; sensitivity = 0.69; specificity = 0.71) (Figure 13). For RAVLT, the best per-
forming models were based on three-classes: ensemble bagged trees classifier with uni-
modal IR features (accuracy = 71.1%; average AUC = 0.85; average sensitivity = 0.71;
average specificity = 0.85) and multimodal IR + HRV features (accuracy = 75.0%; average
AUC = 0.85; average sensitivity = 0.75; average specificity = 0.87) (Figure 14). Of note, for
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RAVLT, three-class SVM classifiers with linear kernels also reported good performances
with accuracies of 65.8% and 63.2% for unimodal IR and multimodal IR + HRV features
based models (Table 4).

The high performances obtained from unimodal IR features-based classifiers are of
paramount importance given the possibility of determining the level of drivers’ MW based
on features collected by a non-contact device, i.e., the thermal camera. Thermal IR imaging
outperformed the HRV measurements as well, constituting a reliable mean for assessing
the level of MW in a ubiquitous and non-contact manner. This is an important result,
given that in the automotive domain, especially in ADAS, one of the most important
aims is to determine the psychophysiological state of the driver without interfering with
him/her to avoid/prevent traffic accidents. The impact of such a result is interesting
also in terms on ergonomics applied in the automotive field. In fact, the developed ML
model could communicate the cognitive state of the driver and alert him/her in case of
moderate/high MW. Furthermore, the results are obtained relying on a small-sized thermal
camera (i.e., FLIR Boson 320), highly suitable for applications in a restricted environment,
such as the cockpit of a vehicle.

However, some limitations have to be mentioned. First, further studies should be
performed to increase the sample numerosity. The ML approaches used in this study
relied on supervised learning, which is inherently a data-driven analysis; data-driven
analyses are highly affected by the sample numerosity, and the performance of the model
could indeed improve, reducing a possible overfitting effect driven by the limited sample
size. Moreover, increasing the sample size could open the way to more sophisticated and
powerful approaches based on deep learning modeling, which is the state of the art in data
analysis in several areas of research.

Second, the current study focused on drivers with a limited age range (i.e., 18–42 years
old), involving only young and middle-aged adults. The most important improvement of
the method could be obtained, including in the study sample individuals with a wider age
range. Furthermore, beyond increasing the sample size and age range, other factors, such
as thermal comfort, gender and weather conditions during simulated driving sessions will
be considered [66–69]. In fact, accounting for these factors could be of primary valence in
automotive research, leading to a broad overview of all aspects concerning the object of
the study.

Moreover, the present results refer to simulated driving conditions in which deter-
minant variables for IR measurements, such as sunlight or forced ventilation, were not
considered. Therefore, it would be desirable to also apply the developed methodology on
real-driving situations in order to generalize the applicability of the technique.

As for being state-of-the-art, this is an original and novel study concerning drivers’
MW evaluation by means of thermal imaging, employing supervised ML algorithms.
The present study, although addressed to limited and specific experimental conditions,
underlines the feasibility of the method to be verified under wider operating situations.
The present work represents a step forward in the perspective of the prevention of road
accidents and, above all, it can constitute a turning point in the identification of various
levels of mental workload, with benefits in several research domains, from ergonomics to
human machine interaction.

6. Conclusions

In the present work, a novel method for drivers’ MW evaluation is presented. In
particular, MW levels of the subjects while driving in a simulated environment were
estimated with a high level of accuracy through ML algorithms applied to IR and HRV data.
The presented work constitutes a step towards the establishment of a reliable detection of
the MW levels in a non-invasive and contactless manner, ensuring the maintenance of an
ecologic condition of driving, possibly contributing to the prevention of traffic accidents.
Further directions for development will include the validation of the developed method
directly on-board, with live evaluation of the cognitive workload level of the drivers. This
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will be particularly useful for all of the categories of long-time drivers, such as truck drivers
and bus drivers, in order to prevent traffic accidents due to an excessive cognitive workload
during driving activity.
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Appendix A

This section describes the features used as input data for the ML models developed
for the purpose of the study. IR and HRV features are illustrated.

Appendix A.1. IR Features

IR features have been directly extracted from the thermal signal relative to two ROIs:
nosetip and glabella. An example of the thermal signals extracted over the experimental
phases is reported in Figure A1.
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experimental phases.

For each one of the experimental phases the following features have been computed
for each ROI:
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1. Mean value (MeanTemp)—average value of the thermal signal T over time (i.e., N
samples) defined as:

MeanTemp =
1
N

N

∑
i=1

Ti

2. Standard deviation (STD)—standard deviation of the thermal signal T overtime
(i.e., N samples) defined as:

STD =

√√√√ 1
N − 1

N

∑
i=1

(Ti −MeanTemp)2

3. Kurtosis (K): fourth standardized moment, and it is the ratio between the fourth cental
moment and the standard deviation. It is evaluated as follows:

K =
1
N

√
∑N

i=1 (Ti −MeanTemp)4

STD4

4. Skewness (S)—third standardized moment, and it is the ratio between the third cental
moment and the standard deviation. It is evaluated as follows:

S =
1
N

√
∑N

i=1 (Ti −MeanTemp)3

STD3

5. 90th percentile (90th P): is the temperature value below which the 90% of all tempera-
ture frequency distribution falls;

6. Sample Entropy (SampEn): is defined as the negative natural logarithm of the con-
ditional probability that signals that the subseries of length m (pattern length) that
match pointwise within a tolerance r (similarity factor) also match at the m + 1 point.
SampEn of a time series {t1,...,tN} of length N is computed employing the following
set of equations:

SampEn(m, r, N) = − ln
[

Um+1(r)
Um(r)

]
Um(r) = [N −mτ]−1 N−mτ

∑
i=1

Cm
i (r)

Cm
i (r) = Bi

N−(m+1)τ
Bi = number o f j where d

∣∣Ti, Tj
∣∣ ≤ r

Ti =
(

ti, ti+τ , . . . , ti+(m−1)τ

)
Tj =

(
tj, tj+τ , . . . , tj+(m−1)τ

)
i ≤ j ≤ N −mτ, j 6= i

In this study, it has been considered that m = 2 and r = 0.2 · SD of the signal. These
parameters are commonly employed for complexity analysis of biological signals and they
were chosen in accordance with [70].

7. Mean value of the power spectral density evaluated in the low-frequency band
(LF = [0.04–0.15] Hz)

8. Mean value of the power spectral density evaluated in the high-frequency band
(HF = [0.15–0.4] Hz)

9. Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz)
and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF).
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For features 7, 8, and 9, we report here the power spectral density of the thermal signal
T(i) evaluated over a time window Tc:

PSD( f ) =
|T( f )|2

Tc

where T(f) is the Fourier transform of the signal T(i). For each one of the features 7 and 8,
the average of the PSD has been evaluated in the reported frequency band.

Appendix A.2. HRV Features

Heart rate variability (HRV) refers to the fluctuations between consecutive heartbeat-
cycles. It is usually represented by the variation in the heart rate’s beat-to-beat temporal
changes (RR intervals). Figure A2 represents an exemplificative ECG signal, in which some
R peaks and RR intervals are highlighted.
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Figure A2. Exemplificative ECG signal. Example of R peaks and RR intervals are highlighted.

For each one of the experimental phases, the following features have been computed:

1. Mean value (RRmean)—average value of the RR intervals (RRi), evaluated as follows:

RRmean =
1
N

N

∑
i=1

RRi

2. Standard deviation (SDNN)—Standard deviation of normal-to-normal interval, calcu-
lated as follows:

SDNN =

√√√√ 1
N − 1

N

∑
i=1

(RRi − RRmean)2

3. Root mean square of successive differences (RMSSD): root-mean-square of successive
RR interval differences, evaluated as follows:

RMSSD =

√√√√ 1
N − 1

N−1

∑
i=1

(RRi+1 − RRi)
2

4. Mean value of the power spectral density evaluated in the low-frequency band
(LF = [0.04–0.15] Hz);



Sensors 2022, 22, 7300 22 of 24

5. Mean value of the power spectral density evaluated in the high-frequency band
(HF = [0.15–0.4] Hz).

6. Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz)
and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF).

For HRV features 4, 5, 6 refer to the computation described for IR features 7, 8, and 9.
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