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Abstract: Spinal muscular atrophy (SMA) linked to 5q is a recessive motor neuron disease char-
acterized by progressive and diffuse weakness and muscular atrophy. SMA is the most common
neurodegenerative disease in childhood with an incidence of approximately 1 in 6000–10,000 live
births, being long considered a leading cause of hereditary mortality in infancy, worldwide. The
classification of SMA is based on the natural history of the disease, with a wide clinical spectrum
of onset and severity. We are currently in a new therapeutic era, that, thanks to the widespread use
of the newly approved disease-modifying therapies and the possibility of an early administration,
should lead to a deep change in the clinical scenario and, thus, in the history of SMA. With the aim
to achieve a new view of SMA, in this review we consider different aspects of this neuromuscular
disease: the historical perspective, the clinical features, the diagnostic process, the psychological
outcome, innovation in treatments and therapies, the possibility of an early identification of affected
infants in the pre-symptomatic phase through newborn screening programs.

Keywords: spinal muscular atrophy; gene therapy; newborn screening; disease-modifying therapies;
diagnosis; psychological adjustment

1. Introduction

Spinal muscular atrophy (SMA) linked to 5q is an autosomal recessive neuromuscular
disease characterized by degeneration of alpha motor neurons in the anterior horns of the
spinal cord, resulting in progressive and symmetrical proximal muscle weakness [1–5]. In
particular, the main clinical manifestation of SMA includes hypotonia, muscle weakness by
denervation, followed by respiratory failure and atrophy of variable severity depending on
the genotype [6]. SMA has long been considered the leading cause of hereditary death in
infancy worldwide [5,7], being second for incidence only to cystic fibrosis. The widespread
use of the newly approved disease-modifying therapies (DMTs) and the possibility of an
early administration should radically change the history of SMA [6]. The incidence of SMA
is estimated at 1 in 6000–10,000, with a carrier frequency of 1/40–1/60 [8,9]. Nowadays,
we know that most cases of SMA have mutations in the motor neuron type 1 (SMN1)
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gene located at 5q13.12. This gene covers 20 kb and is located in the telomeric portion of
DNA that is subject to reorganization and deletion. The centromeric duplicated element,
known as the SMN2 gene, is highly homologous to SMN1 with more than 99% nucleotide
identity. SMN1 and SMN2 differ in eight nucleotides, specifically, the c.840C > T nucleotide
change in SMN2 is in a coding region and interrupts an exonic splicing enhancer in exon 7.
Consequently, most SMN2 transcripts lack exon 7, making a non-functional protein. Only
approximately 10 percent of the proteins produced by each SMN2 copy are estimated to be
functional. SMN is an RNA-binding protein that contributes to many cellular processes and
pathways and plays a critical role in snRNP complex assembly in the cytoplasm. Ninety-five
percent of SMA patients have a homozygous deletion of exon 7 of SMN1 or gene conversion
from SMN1 to SMN2 (5q-SMA patients) [10], while the remaining 5% are compound
heterozygotes for a deletion of exon 7 in SMN1 and a point mutation. In order to obtain a
new view and future perspectives of SMA, in this review we discuss different aspects of
this severe neuromuscular disorder: the historical perspective, from the early description
and manifestations to the molecular genetic characterization, the clinical features and its
classification into five types, the diagnostic process, the psychological outcome, recent
innovation in treatments and therapies, the possibility of an early identification of affected
infants in the pre-symptomatic phase through newborn screening programs.

2. History of Spinal Muscular Atrophy

SMA, an inherited, progressive neuromuscular disease that can cause muscle atrophy,
was first discovered in infants in the early 1890s by physicians Guido Werdnig and Johann
Hoffman. Werdnig meticulously described the disease in two newborn siblings in 1891 and
Hoffmann characterized what he used to term “infantile progressive muscular atrophy”
and detailed the clinical presentation in seven patients from 1893 to 1900 [11]. In their
papers, Werding and Hoffman were able to provide a rather complete picture of the clinical
and pathologic aspects of infantile SMA [11]. Although the etymon of Werdnig–Hoffmann
disease was later attributed to the severe childhood form of SMA, their cases were of
moderate severity. The first descriptions of severe childhood SMA were reported by
Sylvestre in 1899 and by Beevor in 1903 [12]. It was only in the 1950s that Wohlfart, Fez, and
Eliasson described a milder form of SMA in which patients could maintain the ability to stay
upright and to ambulate [12]. All cases described throughout the years showed an anterior
horn cell degeneration and symmetrical, proximal predominant extremity weakness that
also affects axial, intercostal, and bulbar musculature [12]. At the International Consortium
on Spinal Muscular Atrophy, the different phenotypes described were classified into three
types of SMA based on motor function and age of disease onset [13]. Later, a fourth category
was added for adult-onset cases and a zero category for patients with pre-natal onset and
death within the first few weeks of life. However, 25% of patients still elude a well-defined
classification of the disease. The classification of SMA presented a mystery regarding the
severity of the disease, namely how a genetic defect could cause a wide range of more
or less severe phenotypes. That enigma was finally solved in 1995 in Melki’s laboratory,
where it was discovered that 95% of SMA cases are caused by a homozygous deletion in
exon 7 of the SMN1 gene, on chromosome 5q13.3 [14]. Figure 1 represents in a timeline the
highlights in the history of SMA from the first reports and descriptions to the classification
of different forms.

Figure 1. SMA timeline. SMA was first reported by Werdnig in 1891 and then by Hoffmann in 1893 [10].
In 1899 and 1903, Sylvestre and Beevor recognized variability of muscle weakness severity [11]. In the
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1950s, Wolhfart, Fez, and Eliasson described a milder form of SMA [11] and in 1995 Melki discovered
that 95% of SMA cases are caused by a homozygous deletion in SMN1 [13].

In addition, in humans, there are two forms of the SMN gene: the telomeric form (SMN1)
and the centromeric form (SMN2). The SMN1 gene produces the encoding SMN protein and
the SMN2 gene is identical to SMN1 except for a nucleotic substitution at position 840 of a
cytosine to a thymine that excludes exon 7 from transcription. In particular, the exclusion of
exon 7 from the transcription process is not complete, and only a small portion of the total
mRNA transcripts (10–15%) of the SMN2 gene contain exon 7 encoding a normal SMN protein.
SMA patients have a non-functional SMN1 gene, and therefore the SMN2 gene plays a crucial
role in the production of SMN protein. Therefore, SMA is a condition caused by a deficit in
the SMN protein which causes selective motor neuron loss. Disease severity is explained by
SMN2 copy variability but it is not the only phenotypic modifier [15,16]. Studies conducted in
animal models have significantly contributed to the development of therapies for SMA. For
example, Monani et al. conducted studies in mouse models. Mice lacked the SMN2 gene and
consequently the deletion of the SMN gene was lethal. Monani et al. found that insertion of
two copies of human SMN2 into mice caused the development of a severe SMA-like phenotype
with motor neuron loss. In contrast, mice with eight copies of SMN2 were normal [17]. These
models played a crucial role as they allowed molecular and biochemical studies and initiation
of the development of therapies aimed at increasing SMN protein expression and preventing
motor neuron loss [17].

3. Clinical Features of SMA

SMA is a monogenic, autosomal recessive neuromuscular disorder, characterized
by muscle weakness and atrophy caused by degeneration of alpha motor neurons of the
anterior horns of the spinal cord.

The weakness usually affects the lower limbs with diffuse areflexia. The onset of weakness
ranges from birth to adulthood and is symmetric, proximal to distal, and progressive. Facial and
ocular muscles are usually unaffected. SMA has been classified into five types based on severity
of symptoms, age at onset, highest motor milestone achieved, and genotype (Table 1) [18].
Usually, the severity of clinical manifestations is inversely proportional to SMN2 copy number.
SMN2 can only partially compensate for the loss of SMN1, resulting in a deficiency but not a
complete depletion of SMN protein [19]. Literature data have shown that patients with SMA
have normal or above-average cognitive abilities [20,21].

Table 1. Classification of SMA into five types based on symptom severity, age at onset, highest motor
milestone achieved, and genotype [2,19,21–26].

SMA
Type

Age of
Onset Motor Milestones Other Characteristics Life

Expectancy

SMN2
Copy

Number

SMA 0 Pre-natal None reached

• Reduced movement in utero
• Severe neonatal weakness and hypotonia
• Areflexia
• Respiratory failure at birth
• Joint contractures
• Facial diplegia
• Atrial septal defects

<6 months 1

SMA 1 0–6 months Some head control,
sits with support

• Poor head control
• Paradoxical breathing
• Muscle weakness and hypotonia
• Areflexia or hyporeflexia
• Variable suck and swallow difficulties

<2 years 2
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Table 1. Cont.

SMA
Type

Age of
Onset Motor Milestones Other Characteristics Life

Expectancy

SMN2
Copy

Number

SMA 2 6–18 months Sits, never stands
independently

• Developmental delay with loss of motor skills
• Hyporeflexia
• Proximal muscle weakness
• Postural tremor or fingers

>2 years 2–3

SMA 3 >18 months Walks

• Proximal muscle weakness
• Loss of motor skills
• Fatigue
• Postural tremor or fingers
• Loss of patellar reflexes

Adult 3–4

SMA 4 Adulthood All motor functions
• Very mild but progressive muscle weakness
• Fatigue Adult ≥4

SMA type 0 (SMA 0) is congenital, and presents at birth as severe weakness, hypotonia,
and respiratory distress. There may be a history of restricted movements in utero, joint
contractures, areflexia, and atrial septal defect. Patients with SMA 0 have severe respiratory
diseases and die within the first six months of life [16]. SMA 0 patients have a single copy
of SMN2.

SMA type 1 (SMA 1) is the most common form of SMA (50–60% of cases) and manifests
early in the first six months of life, with severe weakness and generalized hypotonia,
poor motor abilities, areflexia, and feeding, swallowing, and breathing difficulties with
premature death within 24 months [24]. The mean age at onset of symptoms is 2.5 months.
Affected children may acquire head control and ability to roll, but then lose these abilities
before the age of six months. They have a characteristic “bell-shaped” chest and abdominal
breathing due to the weakness of the intercostal respiratory muscles with preservation of
diaphragmatic muscles. There may also be fasciculation of the tongue [16]. SMA 1 patients
typically have one to two copies of SMN2 [25].

SMA type 2 (SMA 2) patients usually manifest motor symptoms after the first 6 months
of life. Children with SMA 2 may reach motor milestones slowly and, with supportive
care only, they can achieve the ability to sit independently. Moreover, they may stand
with support, but they are never able to walk without any help [22]. Common clinical
manifestations include progressive proximal muscle weakness, lack of muscular tone, hand
tremor, reduced or absent deep tendon reflexes, scoliosis, and progressive respiratory
muscle weakness that results in a restrictive lung disease, potentially leading to death.
These patients represent approximately 30% of cases and they usually have three copies of
SMN2 [2].

SMA type 3 (SMA 3) symptoms begin after 18 months of age and are heterogeneous.
Patients present a progressive proximal muscle weakness, and the legs are more severely
affected than the arms [25]. SMA 3 can be subdivided into type 3a (clinical symptoms
before the age of three) and type 3b (clinical symptoms after the age of three). The children
generally reach the major milestones, including independent walking, but their motor
performance levels vary widely. Some children are barely able to get up from a sitting
position and walk a few steps without help, while others walk well and can climb stairs [27].
SMA 3 accounts for about 10% of the patient population and most of these have three or
four copies of SMN2 [2].

SMA type 4 (SMA 4) is the least common form of SMA (<5% of cases), and the life
expectancy is normal [16]. SMA 4 was added to this classification to describe patients with
onset in adulthood (>18 years) and mild course. This group includes patients who can
walk in adulthood and have no problems with breathing and feeding [26]. SMN2 copies
are usually between three and five [25].
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4. SMA Diagnosis with Molecular Genetic Testing

Since 1995, when Lefebvre identified the SMA-determining gene [14], several diag-
nostic genetic tests have become commercially available to identify individuals with SMA.
Many DNA tests are available to detect the absence of exon 7 of the SMN1 gene, used as a
diagnostic test for SMA patients. According to a recent study [28], determining the exact
copy number of the SMN2 gene is crucial to assess eligibility for treatment, so advanced
techniques are needed to discriminate SMN1 from SMN2 [29]. Many techniques are used to
detect copy number variations, but most cannot detect single-exon deletions or duplications.
Current molecular methodologies for the detection and diagnosis of SMA by revealing
SMN1 deletion and by SMN1 and SMN2 gene quantitation, respectively, include single-
strand conformation polymorphism, restriction fragment length polymorphism, real-time
polymerase chain reaction (RT-PCR), denaturing high-performance liquid chromatography,
multiplex ligation probe amplification (MLPA), quantitative PCR (qPCR) and competitive
PCR, high-resolution melting analysis, and liquid microbead assay [8]. More recently,
digital PCR has shown a growing range of applications, being used not only to identify
SMA individuals but also to determine SMN1 and SMN2 copy number [8]. As Mercuri
et al. reported, the gold standard of SMA genetic testing is a quantitative assay of SMN1
and SMN2 using MLPA or quantitative polymerase chain reaction (qPCR) [30]. The qPCR
is an assay that accurately quantifies SMN1 and SMN2 exon 7 copy number and SMN1
gene duplication. There are commercial kits that are engineered to detect certain gene
conversions from SMN1 to SMN2 and SMN2 to SMN1 by checking the sequence identity of
exon 7 and intron 7. These kits also can determine the presence of certain alleles associated
with gene duplication [29] and enhanced splicing of SMN2 [31]. The disadvantages of
multiplex qPCR include: (1) the use of genomic DNA (gDNA) isolated from whole blood
collected in EDTA tubes or buccal swab with a concentration of 10–40 ng/µL, processed
within 14 days after isolation; (2) the inability of detecting nonsense, frameshift, or mis-
sense mutations; (3) the distinction between samples with two copies of SMN1 on one
chromosome and zero copies on the other (2 + 0 or healthy carriers) and samples with one
genomic copy of SMN1 on each chromosome (1 + 1) can be carried out only by analyzing
the genotype of gene duplication variants in certain populations [29]; (4) determining the
gene copy number for all SMN exons, useful for rare cases of SMA with complicated gene
structures, is not possible; (5) furthermore, the primers used in this technique have binding
sites not containing polymorphic sites with minor allele frequencies (MAFs) greater than
0.005 (according to the Single Nucleotide Polymorphism Database (dbSNP) build 152).
However, very rare polymorphisms located within the primer-binding sites may potentially
impact the accurate quantification of the number of SMN1 and SMN2 copies [23]. Despite
these disadvantages, the multiplex qPCR assay has the lowest cost and shortest duration
(<4 h). Thus, results have demonstrated that the multiplex qPCR assay is rapid, accurate,
and cost-effective and represents a high-throughput strategy. Considering the low cost, the
high-throughput approach, and the high accuracy of the multiplex qPCR assay, it can be
considered a routine tool for clinical diagnosis and for screening of SMA carriers. MLPA,
on the other hand, is a multiplex PCR-based method using a single primer pair to amplify
and quantify specific and multiple genomic loci (20 independent control loci for SMN1/2),
in a single tube reaction from only 20 ng of a patient’s genomic DNA. MLPA technology
allows the simultaneous detection of SMN1 and SMN2 copy numbers, thus facilitating
diagnosis. The MLPA technique is more sensitive and allows a high degree of precision for
the quantitative detection of three SMN1 copies or fewer. Commercial kits of probe sets are
available and provide different SMA assays, fitting the genetic testing needs [32,33].

MLPA technology has several important limitations, including: (1) DNA sequence
variants located in probe-binding sites of SMN1 alleles may interfere with probe hybridiza-
tion and result in a false-positive carrier (one copy) or false-positive diagnostic (zero copies)
result; (2) reactions are sensitive to contaminants but generate uninterpretable results;
(3) MLPA cannot yet be used to investigate single cells, important for pre-implantation
genetic diagnosis testing; (4) MLPA is not a suitable method to detect unknown point
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mutations; (5) MLPA probes are sensitive to small deletions, insertions, and mismatches;
(6) MLPA requires a CE analyzer, which is a higher-cost option compared with slab gel
electrophoresis for RFLP [23]. Advantages and disadvantages of multiplex qPCR and
MLPA as molecular genetic tests for SMA diagnosis are summarized in Table 2.

Table 2. Advantages and limitations of multiplex qPCR and MLPA as molecular genetic tests for
SMA diagnosis [22–25].

Technique Advantages Limitations

multiplex
qPCR

(1) Detection of the presence of c.859G > C polymorphism in SMN2
gene

(2) Low cost
(3) Short work time (<4 h)
(4) High throughput
(5) High accuracy

(1) DNA sample from whole blood collected in EDTA tubes or
buccal swab (ranges from 10–40 ng/microL)

(2) No detection of nonsense, frameshift, or missense mutations
(3) Discovery of silent carriers only from the genotype of gene

duplication variants in certain populations
(4) No determination of copy numbers for all SMN exons
(5) Polymorphisms located within the primer-binding sites may

potentially impact the accurate quantification of the number of
SMN1 and SMN2 copies

MLPA

(1) Detection of copy number for all SMN exons
(2) DNA sample from whole blood, pre-natal samples, and dried

blood spot cards
(3) High precision for the quantitative detection of three SMN1

copies or fewer

(1) DNA sequence variants located in probe-binding sites of SMN1
alleles may interfere with probe hybridization

(2) Reactions are sensitive to contaminants
(3) Cannot yet be used to investigate single cells, which is important

for pre-implantation genetic diagnosis testing
(4) No detection of point mutations
(5) Sensitive to small deletions, insertions, and mismatches
(6) MLPA requires a CE analyzer which is a higher-cost option

compared with slab gel electrophoresis for RFLP
(7) Cannot distinguish silent carrier conditions
(8) Cannot detect the presence of c.859G > A polymorphism in

SMN2 gene
(9) Long work time (48 h)

5. Psychological Adjustment of Individuals with SMA

The psychological adjustment of individuals with SMA is challenging to discern due
to limited quantitative research employing standardized instruments that focus on the
subjective well-being of individuals with SMA. This situation arises from the difficulties
inherent in conducting research within this specific context [34]. Nevertheless, previous
research has explored various aspects of SMA individuals’ lives, including their quality
of life, acceptance of the disease, self-esteem, emotions, and social roles across different
age groups including adults, adolescents, and children. These studies investigated mostly
the experience of individuals with SMA 3 and SMA 4, due to the difficulty of individuals
with SMA 1 and SMA 2 in reaching adult age. In the last two cases, research analyzed the
families’ experiences and psychological burden [35].

Regarding adult and adolescents, Wan et al. [36] conducted a qualitative research
study on psychological well-being of individuals with SMA and the impact of the disease,
identifying four recurring themes in their experiences: distress in response to changes in
physical function, the influence of stigma on participants’ social expectations, resilience, and
grit in the face of challenges posed by the illness. Another study showed that, despite the
physical limitations imposed by their disease, participants generally reported satisfaction
with their overall life [35]. Furthermore, it was noted that sociodemographic characteristics
and clinical variables, such as motor function, were unrelated to psychological well-being,
except in the case of females, who exhibited a higher susceptibility to negative emotions [34].
In terms of self-esteem, participants in this study displayed high self-esteem scores [34].

A recent study among adults highlighted that individuals with SMA perceived their
health-related quality of life to be very similar to reference values of the general population
except for the domain of physical functioning [37]. Conversely, a comprehensive American
study suggested that perceived quality of life of respondents with SMA was lower in all
domains compared to healthy subjects [38]. As a result, studies investigating the impact
of illness severity on quality of life in individuals with SMA have reported contradictory
findings. Other variables appear to play a significant role in psychological adjustment of
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individuals with SMA. It has been observed that disease acceptance is a correlate or predic-
tor of subjective well-being among individuals with chronic physical disabilities [39,40]. A
study among adults with various physical disabilities underscored that acceptance of the
illness was positively associated with self-acceptance, well-being, positive relations, family
satisfaction, and the presence of meaning, defined as the extent to which individuals grasp,
make sense of, and find significance in their lives [41,42]. Indeed, Zhang et al. [43] noticed
that the acceptance of one’s disease denotes the degree to which individuals integrate their
lifestyle into the experience of dealing with the disability.

Regarding social relations, a study involving young individuals highlighted that social
support from family, but not from friends, was significantly associated with better psycho-
logical adjustment [44]. The authors found significant associations between family support
and age, as well as between friend support and motor functioning, in predicting functional
ability [44]. Another study emphasized the importance of social relationships [36]. Wan
and colleagues [36] reported that individuals with SMA often received informal support
from family, friends, and peers to fill gaps in formal care. However, practical support
provided by family and friends was seen as unsustainable over time. In general, social
support from family and friends was reported as a facilitator for coping with the challenges
of illness [45,46]. Furthermore, Fischer et al. [34] reported that adults with SMA were
highly satisfied with their participation in social activities. Their research showed that
societal participation explained 30–50% of the variance in psychological well-being [34].
Considering all these aspects, it can be argued that the acceptance of disability and social
relationships can improve autonomy, perceived competence, and overall quality of life.
Additionally, it could be hypothesized that these factors create a positive cycle, wherein
individuals with a higher sense of well-being are more motivated to be active and to engage
in social activities, and vice versa [34]. As Post et al. [47] suggested, well-being and mental
health are closely related to an individual’s level of participation. Conversely, individuals
with SMA typically rely on assistance from others, such as caregivers, to engage in various
activities. This condition also prompts reflection on the caregivers who take care of individ-
uals with SMA. A recent review on this topic highlighted that most studies have reported
decreased quality of life, as well as moderate to high levels of burden and distress among
caregivers of individuals with SMA. Another review conducted on parents of children with
SMA 1 and 2 showed that parents feel sad, helpless, hopeless, and frustrated about their
child’s future, due to the fact that they might lose their children at any time [35].

To alleviate the burden on families and facilitate the participation of individuals with
SMA in social activities, healthcare policies should address the needs of families and
provide support for caregiving, decision making, and activity organization [48], as has also
been shown for other categories of chronic disease patients [49].

Regarding emotional states, some studies found an association between less severe
physical limitations, such as ambulation, physical decline following long periods of stability,
and increased emotional distress [37,50,51]. Subjective feelings of depression and anxiety
were generally low in adults with SMA [52]. However, for school-aged individuals with
SMA, there was a high prevalence of anxiety and depression [53]. In a research study
involving children and adolescents aged 8–18, high levels of anxiety and depression were
reported, and these were associated with factors such as respiratory system dysfunction,
digestive system dysfunction, skeletal deformity, rehabilitation exercises, academic delay,
specialized support from schools, household income levels, caregivers’ subjective anxiety,
and caregivers’ expectations [53].

6. SMA Treatments and Therapies

As SMA is a systemic disease, interdisciplinary management of respiratory, nutritional,
gastroenterological, orthopedic, and psychosocial problems is required to care for patients
with SMA. In 2007, general treatment recommendations were addressed and published
in the first consensus statement pointing out the standards of care for SMA. However,
the implementation of these standards of care can vary significantly depending on differ-
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ent factors such as cultural perspectives, socioeconomic aspects, and the availability of
resources [54,55].

In the past decade, the introduction of new therapies has led to a significant change in
the SMA treatment landscape. Today, multiple types of treatments are available for SMA,
including SMN2 splicing modifiers and gene replacement therapy. Clinical studies have
demonstrated the potential of both these therapy approaches to positively alter the course
of SMA in humans [30,56].

6.1. FDA-Approved SMN-Based Therapies for SMA

In the absence of therapeutic intervention, the SMN2 gene produces mostly truncated
SMN protein and only a small fraction of full-length SMN protein, due to poor inclusion
of exon 7 in mature mRNA transcripts. However, FDA-approved therapies are aimed at
increasing the inclusion of exon 7 in mature mRNA transcripts to enhance the production
of full-length SMN protein [57].

FDA-approved therapies for SMA, including nusinersen, onasemnogene abeparvovec,
and risdiplam, have improved motor function and lifespan for many patients. However,
not all patients respond optimally, particularly those with one copy of SMN2 or those
who receive post-symptomatic treatment. Furthermore, cost, availability, access, and
the patient’s condition may limit the effectiveness of SMN-based therapy. Thus, SMN-
independent strategies to improve motor function and quality of life are needed [58,59].

The first FDA-approved therapy for SMA was nusinersen (trade name Spinraza). The
arrival of nusinersen in 2016 marked the first drug capable of altering the natural history of
SMA in the United States, which followed in Europe the year after: the drug was approved
in 2016 by the FDA and in 2017 by the EMA for all subtypes of 5q-SMA patients [60,61].
Nusinersen is an oligonucleotide based on antisense technology and an SMN2 splicing
modifier able to alter the splicing process of SMN2 messenger RNA. This alteration leads to
the production of a functional protein in the central nervous system (Figure 2a). However, it
must be administered intrathecally, meaning it is directly injected into the fluid surrounding
the central nervous system [60,61]. This invasive practice can only be performed in a
hospital setting. Despite the inconvenience of the method of administration, nusinersen
has been shown to increase survival without permanent respiratory support in SMA 1 and
has increased motor function development in types 1–3 [62]. However, improvements in
SMA 2 and 3 were less evident [63,64]. Studies have shown that, if administered before the
onset of symptoms, nusinersen may result in near-normal motor development in children
with SMA [65,66].
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in comparison to the absence of therapeutic intervention). Both SMN2-targeted therapies promote
the inclusion of exon 7 in mature mRNA transcripts. (b) The mechanism of SMN1-targeted therapy,
by non-replicating self-complementing AAV-9, compared to the homozygous loss of functional
SMN1 gene. The onasemnogene abeparvovec gene therapy carries full-length human SMN cDNA to
guarantee the production of SMN functional protein.

Nusinersen has been associated with several adverse events, with the majority being
pyrexia, upper respiratory tract infections, nasopharyngitis, vomiting, headache, and
constipation. Serious adverse events were also reported, which were in line with the
typical nature and frequency of events observed in the context of SMA or during lumbar
puncture procedures [22,68]. In the past, a variety of side effects have been identified
for different antisense oligonucleotides (ASOs). Thus, it is important to mention that,
compared to other ASOs, nusinersen is safe and there is no evidence of clinically relevant
problems [69]. However, nephrotoxicities as side effects on the kidney, including renal
tubular degeneration, glomerulonephritis, and increased urinary protein levels, are a
potential risk in nusinersen-treated patients [70]. Screening for SMA may lead to early
detection and facilitate prompt treatment using nusinersen [71,72].

In March 2021, Italy received a new gene therapy drug called onasemnogene abepar-
vovec (Zolgensma). This drug was approved by the FDA in July 2019 and by the EMA
in May 2020. It is intended for patients with symptomatic 5q-SMA type 1 SMA under
six months of age and for pre-symptomatic 5q-SMA patients with 2–3 copies of SMN2.
While it is reimbursable up to 21 kg in Europe, in Italy, it is only compensated up to 13.5 kg
and up to two copies of SMN2. However, individuals with three copies of SMN2 who are
symptomatic are still eligible [73,74].

Onasemnogene abeparvovec is a non-replicating self-complementing adeno-associated
serotype 9 (AAV-9) viral vector that carries full-length human SMN cDNA controlled by the
hybrid CMV enhancer/chicken β-actin promoter. The single intravenous administration
over a 60 min period allows the vector to cross the blood–brain barrier into the central
nervous system where it is endocytosed by cells, including motor neurons, and transduces
host cells to transcribe its double-stranded DNA unit [57] (Figure 2b). Prior to and after in-
fusion of onasemnogene abeparvovec, it is recommended to initiate an immunomodulatory
regimen with corticosteroid administration to reduce the risk of side effects [75]. Serotype
AAV9 targets cells efficiently and important improvements have been shown in motor
function for SMA-affected individuals treated pre-symptomatically. Of interest, research
studies in porcine and macaque models highlighted that post-symptomatic administration
may have limited benefit because of inability to recover motor neurons [19,74]. Moreover,
clinical trials demonstrated that affected individuals with three copies of SMN2 were able
to reach motor abilities according to age and that the loss of previously gained motor
skills are prevented by post-symptomatic treatment. However, less than half of SMA-
affected patients treated post-symptomatically reach advanced motor skills such as walking
or standing [76,77]. Furthermore, it has been shown that onasemnogene abeparvovec
significantly improved airway function, crucial for SMA-affected individuals requiring per-
manent ventilation therapy [78]. However, the risk of neutralizing antibodies of maternal
origin, serious liver complications, as well as the cost of the single-dose gene therapy are
all potential drawbacks of this treatment [19].

Before infusing onasemnogen abeparvovec, it is recommended to test patients for the
presence of anti-AAV9 antibodies. The half-life of IgG antibodies acquired passively is
about 35 to 40 days. In general, in children, the level of antibodies may reflect maternal
placental transfer, especially in infancy [79]. Therefore, a follow-up test for antibodies
is strongly suggested, mainly in the case of positivity in the initial assay, within f two
weeks to enable the decrease in moderately elevated titers to an acceptable level before
treatment. It is important to specify that infants with an antibody titer above 1.5 cannot
receive treatment, although only approximately 6% of infants present this titer [75,80].
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As already described in clinical trials, the most common adverse reactions associated
with onasemnogene abeparvovec were elevated aminotransferases and vomiting [81].
Moreover, warnings as indicated in the prescribing information are acute serious liver
injury, elevated aminotransferases, elevated troponin-I, and thrombocytopenia. Following
the rare occurrence of acute liver injury, serial monitoring of liver function, platelets, and
troponin-I concentrations is recommended [81]. Following onasemnogene abeparvovec
therapy, it is also important to mention the rare occurrence of severe adverse events, like
thrombotic microangiopathy and atypical hemolytic uremia syndrome [81,82].

On 1 April, the European Commission gave the green light to a new drug, risdiplam
(commercial name Evrysdi), which can modify diseases. It is the second splicing modifier
approved by the FDA in July 2020 and designed for patients with SMA types 1, 2, or 3
with 5q-SMA and of two months of age and older. Being the only orally administered
drug, families showed a lot of interest [83]. Unlike Spinraza, risdiplam is effective on the
entire body, not only on the central nervous system [84] (Figure 2a). Research studies
comparing Evrysdi with Spinraza showed that Evrysdi is indeed a valid alternative for
SMA 1, as it can improve survival rates and motor function. However, it is important
to note that, while Evrysdi can be used to treat patients as young as two months old, it
is not necessarily the preferred choice of clinicians for patients diagnosed by a neonatal
screening program and possibly treated before the age of two months [85,86]. Details of
each disease-modifying therapy (DMT), as described above, are summarized in Table 3.
Moreover, Figure 2 illustrates the mechanism of action of the FDA-approved SMN-based
therapies for SMA.

Table 3. FDA-approved SMN-based DMTs for SMA [4,18,20,46–49].

Therapy Mechanism
of Action

Times and Method of
Administration Adverse Reactions Age

of Administration Patients for Which It Is Intended

Evrysdi
(Risdiplam)

Small molecule,
splicing modifier
of the SMN2 gene

Orally, once a day
(always at the
same time) after eating

• Pyrexia
• Skin rash
• Diarrhea

≥2 months

Patients with SMA 5q (mutations
in the SMN1 gene), 1 to 4 copies of
the SMN2 gene
SMA 0 and SMA 4 patients
excluded
Not compatible with patients
being treated with nusinersen or
onasemnogene abeparvovec

Spinraza
(Nusinersen)

Antisense
oligonucleotide,
splicing modifier
of the SMN2 gene

Intrathecal injection, on
days 0, 14, 28, and 63;
followed by a
maintenance dose
once every 4 months

• Backache
• Heachache
• Nausea and

vomiting
At birth

Patients with a genetically
confirmed diagnosis of SMA 5q
(mutations in the SMN1 gene)

Zolgensma
(Onasemnogene

abeparvovec)

Non-replicating
recombinant
adeno-associated
virus serotype 9
(AAV9)-based vector
containing the cDNA
of the human SMN
gene

Intravenous injection by
slow infusion over
about an hour, once
in a lifetime

• Hepatotoxicity
mainly. It often
manifests as
abnormal liver
function,
increased amino-
transferases
(AST, ALT), or
rarely results in
severe acute
liver injury or
acute liver
failure, even
with a fatal
outcome

At birth

SMA 5q patients up to 13.5 kg:

• SMA 5q patients with a
biallelic mutation in the
SMN1 gene with genetic or
clinical diagnosis of SMA 1

• Pre-symptomatic SMA 5q
patients with a biallelic
mutation in the SMN1 gene
and up to 3 copies of the
SMN2 gene

6.2. Neuroprotective Drugs

Neuroprotective strategies aimed at preventing dysfunction in motor neurons and
associated circuits, but independently of survival motor neuron (SMN), have been at-
tempted for SMA with limited success [19]. Although neuroprotective treatments have
been used in other neurodegenerative diseases, such as Alzheimer’s and Parkinson’s dis-
ease, the complexity of the process of neurodegeneration suggests that targeting single-cell
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pathways may not be enough to halt or improve disease progression. Therefore, neuropro-
tective strategies would likely require SMN-targeted treatments to be effective. Combining
neuroprotective strategies with SMN-dependent approaches could maximize therapeutic
benefits [87].

6.3. Neuromuscular Junction Drugs

Targeting calcium homeostasis in developing motor nerve terminals can improve
neuromuscular dysfunction and motor capacity. Neuromuscular activity drives mus-
cle strength, endurance, and motor skills, which are crucial for daily activities such as
wheelchair mobility, food preparation, hygiene, and computer use. Complementary treat-
ments targeting neuromuscular junction function can improve motor skills and quality of
life [19].

In conclusion, improving motor skills is essential for SMA patients to perform daily
activities independently, enhancing their quality of life and reducing caregiver burden.
It is worth emphasizing that the combination of neuroprotective strategies with SMN-
dependent approaches and complementary treatments targeting neuromuscular junction
function could maximize therapeutic benefits for SMA patients [19].

Most importantly, multidisciplinary management involving physiatrists, orthopedists,
and physiotherapists is necessary to prescribe the aids to maintain the patient’s motor
autonomy. Periodic and continuous monitoring by a nutritionist, pulmonologist, and
neurologist are also important.

7. Newborn Screening for SMA
7.1. New Perspectives on SMA through Newborn Screening

SMA is a severe and progressive neuromuscular disease, the most common genetic
cause of infant mortality, characterized by loss of motor neurons causing muscle weak-
ness and atrophy [1–5]. Historically, diagnostic delay has always been a challenge for
this rare and devastating disease, but, following improvement in supportive therapies
and the availability of DMTs, a new scenario for SMA has been emerging, leading to a
breakthrough in the natural history of affected children [88,89]. In fact, as detailed above,
three DMTs have been approved by the U.S. Food and Drug Administration (FDA) since
2016: nusinersen in December 2016, onasemnogene abeparvovec in May 2019, and ris-
diplam in August 2020 [88]. Both pre-clinical trials in mouse models and clinical data
demonstrated the importance of early and pre-symptomatic treatment in modulating the
rapid and progressive degeneration associated with SMA [88,90–92]. Considering that the
best outcomes have been described when treatments start as early as possible, hopefully
before significant motor weakness or loss occur, time of diagnosis and treatment is crucial
for SMA [8,90]. Of note, it has already been reported that motor neuron loss in SMA 1
patients is an irreversible process and begins in the peri-natal period, leading to a severe
denervation in the first three months and loss of over 90% of motor units at 6 months [91].
With these recent advances in treatment aiming to increase the expression levels of SMN
protein, the possibility to identify SMA-affected infants early in the pre-symptomatic phase
through newborn screening (NBS) programs represents an imminent need and is essential
for the achievement of maximal therapeutic benefit [2]. It is also important to consider
that NBS for SMA gives the unprecedented opportunity to obtain the maximal benefit
from these therapies without increasing the cost of treatment since most affected patients
still need treatment once diagnosed [2]. As different authors already discussed, SMA can
be recognized as “one of the golden candidates” for inclusion in NBS panels [89,93,94].
The idea to include SMA in NBS programs is strongly supported by the fulfilment of the
Wilson and Jungner criteria and by experts that agree to establish NBS for SMA [95,96].
The ten principles for population-based screening decisions, outlined in a seminal WHO
publication entitled “Principles and Practice of Screening for Disease” in 1968 [97], include
considerations on the disease itself (prevalence, severity, natural history), the availabil-
ity of an effective treatment and of a reliable screening test, and societal considerations
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(cost/effectiveness, false-positive results) [93]. Therefore, in recent years, thanks to na-
tional or regional pilot projects, several NBS programs have been implemented including a
screening test for SMA in many countries. As detailed by Dangouloff et al. [98], SMA NBS
was implemented in different countries. Australia [99,100], Belgium [101], Canada [93,94],
Germany [102,103], Italy [89], Japan [104,105], Taiwan [106], and the United States [107]
screen for SMA, in part of the country or in the whole country. In fact, the Advisory
Committee on Heritable Disorders in Newborns and Children (ACHDNC) added NBS
for SMA to the Recommended Uniform Screening Panel (RUSP) in July 2018 [98,103]. Of
interest, as specified by Abiusi et al., the first Italian SMA NBS project showed the highest
incidence reported so far (1:6059) [89].

7.2. Molecular Analysis as Newborn Blood Screening Test for SMA

As already discussed above, NBS for SMA started in many countries and regions as a
pilot project. For this reason, ethical committee approval was required before implementing
SMA NBS [98]. However, no biochemical marker has been identified to be used as a
clinically meaningful biomarker in NBS [8,108] and the NBS assay is based on a very
sensitive, accurate molecular testing with a high predictive power. The assay consists of a
real-time PCR analysis able to detect the presence of the SMN1 gene from a dried blood
spot (DBS) sample, more precisely by identifying homozygous deletions of exon 7 in the
SMN1 gene in affected infants. As for routine pre-existing metabolic NBS workflow, DBS
samples for SMA NBS are collected by pricking the newborn’s heel within 48–72 h of birth
and by letting the drops of whole blood dry on a special filter paper card, better known as
a Guthrie card. Having started as a pilot project and not being mandatory by law in many
regions or countries, details on the SMA NBS pilot via informative sheets and consent forms
are provided to all parents before sample collection. More precisely, local health personnel
provide all the necessary information about SMA NBS to families. Then, neonatal DBS
samples are sent to the NBS reference laboratory within 24–48 h from their collection. Most
NBS laboratories perform testing on the day of DBS sample receipt or within 48 h of their
arrival. The molecular screening test is usually performed on a 3.2 mm disk (approximately
3–3.2 µL whole blood) punched out from the DBS specimen, followed by DNA extraction.

The protocol designed for NBS is very quick and provides results in a very short
time. It consists of two main steps consisting of DNA extraction and amplification analysis
by real-time PCR. In particular, the SMA primary screening test allows the qualitative
detection of exon 7 in the SMN1 gene.

A valid negative result for SMA is determined by amplification of the SMN1 gene
(Figure 3a) while a valid positive result is determined by the absence of amplification of the
SMN1 gene (Figure 3b).
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In case of a negative SMA NBS result, no further action is needed, and no information
is provided to families, as already agreed in NBS policy [89]. To confirm the positive result,
the sample analysis must be briefly repeated. For a confirmed positive SMA NBS test, it is
necessary to proceed with the recall of the newborn and confirmatory testing analysis. Most
importantly, to provide information regarding SMA, on the significance of the positive
test result, and to conduct a careful clinical evaluation of the infant, multidisciplinary
counselling with medical geneticists, pediatric neurologists, and also a psychologist is
essential for the family [89]. Figure 4 represents the SMA NBS workflow.
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The molecular test for SMA NBS is inexpensive and, as has already occurred for
other NBS analyses, it can be multiplex [2,109]. Bearing in mind the paramount need for
a screening test for SMA, commercial real-time PCR assay kits have been developed by
different companies. These include: Eonis™ SCID-SMA kit (PerkinElmer, Turku, Finland),
SPOT-it™ TREC & SMN1 Screening Kit (ImmunoIVD, Nacka Strand, Sweden), NeoNat
SCID-SMA REAL-TIME PCR KIT (Labsystems Diagnostics Oy, Vantaa, Finland), Targeted
qPCR SMA and Targeted qPCR SMA FLEX (Zentech, Liège, Belgium), SALSA MC002 SMA
Newborn Screen (MRC Holland, Amsterdam, the Netherlands), TaqMan™ SCID/SMA
Assay (Applied Biosystems™, Thermo Fisher Scientific, Waltham, MA, USA). Some of the
SMA assay kits are certified for use in diagnostic procedures (in vitro diagnostic, IVD),
while some are for research use only (RUO). Anyway, most of the commercial kits available
for SMA are all multiplex and intended for simultaneous screening of SMA and severe
combined immunodeficiency (SCID) in newborns.

8. Discussion

In recent years, advances in treatment and care for SMA-affected patients significantly
changed. As well known, SMA has historically been recognized as the leading cause of
hereditary death in infancy, worldwide. However, thanks to three newly FDA-approved
DMTs, implementation of NBS programs, and consequently the possibility of an early
intervention, there is a reasonable opportunity to greatly and rapidly change the natural
history of the disease [2,10]. In recent years, SMA NBS pilot projects not only pointed out a
higher incidence of the disease than expected, but also demonstrated that the possibility
to identify infants with SMA in the neonatal period leads to improved outcomes when
SMA-specific DMTs are promptly provided. As Vill et al. assessed, pre-symptomatic
therapy prevents the death of motor neurons, considering that in their study all pre-
symptomatically treated affected individuals, even with two SMN2 copies, achieved normal
motor development [103]. It should be recognized that determining the copy number of
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SMN2 in the diagnostic confirmation process is certainly a key step in defining the most
suitable therapeutic option. At the same time, it is also a very delicate phase. Moreover,
recommendations for the treatment of SMA patients soon after their identification by an
NBS program are complicated by different barriers including administrative, institutional,
and insurance-related ones. This aspect is very important when remembering that SMA
infants identified by NBS tests should be potentially treated within 14 days of life [10]. In
this review, the basic criteria for the inclusion of a rare disease in NBS programs have been
reported, and the benefits of SMA NBS have also been discussed. As is well known, cost
factors for SMA NBS represent a critical issue but, at the same time, a decisive factor [103],
and only very preliminary health economic data or cost-effectiveness data for SMA NBS
are available [98]. In this context, it is worth mentioning the Italian situation: in the last five
years, many regions in Italy implemented NBS for SMA, particularly thanks to effective
DMTs available and reimbursed by the National Health Service (SSN). For this reason,
Ghetti G et al. started an evaluation study of the cost-effectiveness of SMA NBS in Italy,
demonstrating that NBS, when followed by pre-symptomatic treatment for SMA, results in
good value for money and is cost-effective for the Italian SSN [110].

Importantly, as rightly argued by Abiusi et al., the spread of SMA NBS will point
out the need to define accurate and univocal guidelines as well as standard analytical
procedures for SMA molecular testing, both for primary screening tests and diagnostic
confirmation analysis [89]. It is noteworthy that in the coming years the identification
of SMA patients will be fulfilled by molecular testing rather than by a clinical picture,
leading to the impellent demand for rewriting the natural history of this severe genetic
neuromuscular disease as well as the standards of care [89].

Following this line, even the psychological support in the NBS context will change,
and it should be addressed to parents. In most cases, parents tend to be dissatisfied with
the quality and depth of the information received and prefer in-person visits, finding them
clearer, more welcoming, and reassuring [111]. In particular, they need a caring, empathic,
and safe setting of communication [111]. It will also be important for health professionals
to improve communication resources to mitigate the impact of positive screening results
and to offer psychosocial interventions to support families in the future [112].

In conclusion, the new scenario for SMA, following implementation of NBS programs
and the availability of recently approved DMTs, which together ensure an early intervention,
reveals an urgent need: the identification of clinically meaningful biomarkers, as a follow-
up tool, essential to measure and evaluate the disease across time. Therefore, many efforts
are being made to define SMA biomarkers of importance to highlight the underlying
mechanisms of the disease but also to detect the disease progression, allowing for more
appropriate and personalized timing and dosing of therapy for affected patients [108].
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