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Abstract

Modularity for multilayer networks, also called multislice modularity,
is parametric to a resolution factor and an inter-layer coupling factor. The
former is useful to express layer-specific relevance and the latter quantifies
the strength of node linkage across the layers of a network. However, such
parameters can be set arbitrarily, thus discarding any structure informa-
tion at graph or community level. Other issues are related to the inability
of properly modeling order relations over the layers, which is required for
dynamic networks.

In this paper we propose a new definition of modularity for multilayer
networks that aims to overcome major issues of existing multislice mod-
ularity. We revise the role and semantics of the layer-specific resolution
and inter-layer coupling terms, and define parameter-free unsupervised ap-
proaches for their computation, by using information from the within-layer
and inter-layer structures of the communities. Moreover, our formulation
of multilayer modularity is general enough to account for an available
ordering of the layers and relating constraints on layer coupling. Experi-
mental evaluation was conducted using three state-of-the-art methods for
multilayer community detection and nine real-world multilayer networks.
Results have shown the significance of our modularity, disclosing the ef-
fects of different combinations of the resolution and inter-layer coupling
functions. This work can pave the way for the development of new op-
timization methods for discovering community structures in multilayer
networks.

1 Introduction

The concept of modularity originally introduced by Newman and Girvan in [1]
is a well-known quality criterion for graph clustering problems. It has been
widely used in optimization methods for discovering community structure in
networks [2, 3, 4], through greedy agglomeration [5, 6], spectral division [7,
8], simulated annealing [9], or extremal optimization [10], just to mention a
few prominent, follow-up studies. Since then, there has been a continuously
growing interest in this measure, which has prompted a variety of computational
frameworks (see, e.g., [11] for a comprehensive book on this matter).
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The key assumption behind modularity is that a network can be organized
into modules, a.k.a. communities or clusters, such that there are fewer edges
than expected (rather than few edges between communities as determined by
cut-ratio). Therefore, modularity quantifies the difference between the expected
and the actual number of edges linking nodes inside a community. This ex-
pectancy is expressed through a configuration graph model, having a certain
degree distribution and randomized edges. Since this graph ignores any com-
munity structure, a large difference between actual connectivity and expected
connectivity would indicate community structure.

Modularity has been also extended to the general case of multilayer networks.
Multilayer networks are increasingly used as a powerful model to represent the
organization and relationships of complex data in a wide range of scenarios [12,
13]. In particular, a great deal of attention has recently been devoted to the
problem of community detection in a multilayer network [14, 15]. Solving this
problem is important in order to unveil meaningful patterns of node groupings
into communities, by taking into account the different interaction types that
involve all the entity nodes in a complex network. Mucha et al. [14] presented
a general framework to study the community structure of arbitrary multilayer
networks (also called multislice in that work), by extending the modularity
function to those networks.

Mucha et al.’s modularity involves two additional parameters w.r.t. classic
modularity: a resolution parameter and an inter-layer coupling factor. The
former, by modeling a notion of layer-specific relevance, allows for controlling
the effect on the size distribution of community due to the resolution limit known
in modularity [16]. The latter factor, instead, quantifies the strength of linking
of nodes across different layers. However, there are a few limitations and issues
in this measure. In particular, the resolution parameter can be arbitrarily set
for each layer, regardless of any structure information at graph or community
level. Moreover, the inter-layer coupling term weights the involved layers in
a uniform way. Yet, all pairs of layers can in principle be considered for the
coupling parameter, which makes no sense in certain scenarios such as modeling
of time-evolving networks.

Motivated by the above remarks, in this work we propose a new modularity
measure for multilayer networks, which aims to overcome all of the aforemen-
tioned issues of the earlier measure. By using information from the within-layer
and inter-layer structures of the communities, we define the resolution factor in
function of each community and layer, and different inter-layer coupling schemes
that account for properties of a community projection over any two comparable
layers. More specifically, our proposed resolution term exploits the notion of
redundancy to account for the strength of the contribution that a layer takes in
determining the internal connectivity for each community. We define different
approaches for measuring the inter-layer coupling term, which is based on the
relevance of the projection of a community w.r.t. two coupled layers. Our for-
mulation of multilayer modularity is general enough to account for an available
ordering of the layers, and relating constraints on their coupling validity.

Experimental evaluation was conducted mainly to understand how the pro-
posed multilayer modularity behaves w.r.t. different settings regarding the res-
olution and the inter-layer coupling terms. Using state-of-the-art methods for
multilayer community detection (GL, PMM, and LART) and 9 real-world mul-
tilayer networks, interesting remarks have arisen from results, highlighting the
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significance of our formulation and the different expressiveness against the pre-
viously existing multislice modularity.

2 Background

2.1 Modularity

Given an undirected graph G = (V, E), with n = |V| nodes and m = |E| edges,
let C be a community structure over G. For any v ∈ V, we use d(v) to denote the
degree of v, and for any community C ∈ C, symbol d(C) to denote the degree
of C, i.e., d(C) =

∑
v∈C d(v); also, the total degree of nodes over the entire

graph, d(V), is defined as d(V) =
∑

v∈V d(v) =
∑

C∈C d(C) = 2m. Moreover,
we denote with dint(C) the internal degree of C, i.e., the portion of d(C) that
corresponds to the number of edges linking nodes in C to other nodes in C.
Newman and Girvan’s modularity is defined as follows [1]:

QNG(C) =
∑
C∈C

dint(C)

d(V)
−
(
d(C)

d(V)

)2

(1)

In the above equation, the first term is maximized when many edges are
contained in clusters, whereas the second term is minimized by partitioning the
graph into many clusters with small total degrees. The value of QNG ranges
within -0.5 and 1.0 [2] — it is minimum when all edges link nodes in different
communities, and maximum when all edges link nodes in the same community.

2.2 Multilayer network model

Let GL = (VL, EL,V,L) be a multilayer network graph, where V is a set of
entities and L = {L1, . . . , L`} is a set of layers. Each layer represents a specific
type of relation between entity nodes. Let VL ⊆ V × L be the set containing
the entity-layer combinations, i.e., the occurrences of each entity in the layers.
EL ⊆ VL×VL is the set of undirected links connecting the entity-layer elements.
For every Li ∈ L, we define Vi = {v ∈ V | (v, Li) ∈ VL} ⊆ V as the set of nodes
in the graph of Li, and Ei ⊆ Vi× Vi as the set of edges in Li. Each entity must
be present in at least one layer, i.e.,

⋃
i=1..` Vi = V, but each layer is not required

to contain all elements of V. We assume that the inter-layer links only connect
the same entity in different layers, however each entity in one layer could be
linked to the same entity in a few or all other layers.

2.3 Multislice Modularity

Given a community structure C identified over a multilayer network GL, the
multislice modularity [14] of C is defined as:

Qms(C) =
1

d(VL)

∑
u,v,
Li,Lj

[(
AuvLi

− γi
dLi

(u)dLi
(v)

2Ei

)
δLi,Lj

+

+ δu,vCv,Li,Lj

]
δ(gu,Li , gv,Lj ) (2)

where d(VL) is the total degree of the multilayer network graph, dLi
(u) denotes

the degree of node u in layer Li, AuvLi
denotes a link between u and v in Li,
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2Ei is the total degree of the graph of layer Li, γi is the resolution parameter for
layer Li, Cv,Li,Lj

quantifies the links of node v across layers Li, Lj . Moreover,
the Dirichlet terms have the following meanings: δLi,Lj

is equal to 1 if Li = Lj

and 0 otherwise, δu,v is equal to 1 if u = v and 0 otherwise (i.e., the inter-
layer coupling is allowed only for nodes corresponding to the same entity), and
δ(gu,Li

, gv,Lj
) is equal to 1 if the community assignments of node u in Li and

node v in Lj are the same and 0 otherwise.

Limitations of Qms. As mentioned in the Introduction, a different resolution
parameter γ can be associated with each layer to express the weight of its
relevance; however, the authors do not clearly specify any principled way to
set a layer-weighting scheme. More critically, neither the inter-layer coupling
term (i.e., Cv,Li,Lj ) or any constraint on the layer comparability are clearly
defined; actually, the authors simply choose to set all nonzero inter-layer edges
to a constant value ω, for all unordered pairs of layers. Yet, both γi and ω
parameters can assume any non-negative value, which further increases a clarity
issue in the properties of Qms.

3 Proposed Multilayer Modularity

In this section, we propose a new definition of modularity for multilayer networks
that aims to overcome all of the issues of Qms previously discussed.

Our goal is to reconsider the role and semantics of the two key elements in
multilayer modularity: the layer-specific resolution and the inter-layer coupling.
For both terms, we provide formal definitions, which avoid any user-specified
setting possibly based on a-priori assumptions on the network. By contrast,
we conceive parameter-free unsupervised approaches for their computation, by
using information from the within-layer and inter-layer structures of the com-
munities. More specifically, we define the resolution factor in function of any
given pair of layer and community, and define the inter-layer coupling term to
account for properties of community projection over any two comparable layers.
Moreover, we consider the introduction of a partial order relation ≺L over the
layers in order to properly represent scenarios in which a particular ordering
among layers is required. To distinguish from the conventional case of L as an
unordered set, we might refer to notation G≺L = (GL,≺L), which couples GL
with the order relation ≺L.

Definition 1 (Multilayer Modularity) Let GL = (VL, EL,V,L) be a multi-
layer network graph and, optionally, let ≺L be a partial order relation over the
set of layers L. Given a community structure C = {C1, . . . , Ck} over GL, the
multilayer modularity is defined as:

Q(C) =
1

d(VL)

∑
C∈C

∑
L∈L

dintL (C)− γ(L,C)
(dL(C))2

d(VL)
+ β

∑
L′∈P(L)

IC(C,L,L′)


(3)

where for any C ∈ C and L ∈ L:

• dL(C) and dintL (C) are the degree of C and the internal degree of C, re-
spectively, by considering only edges of layer L;
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• γ(L,C) is the value of the resolution function;

• IC(C,L,L′) is the value of the inter-layer coupling function for any valid
layer pairings with L;

• β ∈ {0, 1} is a parameter to control the exclusion/inclusion of inter-layer
couplings; and

• P(L) is the set of valid pairings with L defined as:

P(L) =

{
{L′ ∈ L | L ≺L L′}, if ≺L is defined

L \ {L}, otherwise

�
It should be noted that Eq. (3) differs substantially from Eq. (2). Our

proposed modularity originally introduces a resolution factor that varies with
each community, and an inter-layer coupling scheme that might also depend
on the layer ordering. Moreover, it utilizes the total degree of the multilayer
network graph d(VL) instead of the layer-specific degree (i.e., term 2ELi , for
each Li ∈ L). The latter point is important because, as we shall later discuss
more in detail, the total degree of the multilayer graph includes the inter-layer
couplings and it might be defined in different ways depending on the scheme of
inter-layer coupling.

In the following, we elaborate on the resolution functional term, γ(·, ·), and
the inter-layer coupling functional term, IC(·, ·, ·).

3.1 Redundancy-based resolution factor

The layer-specific resolution factor intuitively expresses the relevance of a par-
ticular layer to the calculation of the expected community connectivity in that
layer. While this can always reflect some predetermined scheme of relevance
weighting of layers, we propose a more general definition that accounts for the
strength of the contribution that a layer takes in determining the internal con-
nectivity for each community. The key assumption underlying our approach is
that, since a high quality community should envelope high information content
among its elements, the resolution of a layer to control the expected connectivity
of a given community should be lowered as its contribution to the information
content of the community is higher.

In this regard, the redundancy measure proposed in [17] is particularly suited
to quantify the variety of connections, such that it is higher if edges of more
types (layers) connect each pair of nodes in the community.

Let us denote with P1 the set of node pairs connected in at least one layer
in the graph, and with P2 the set of “redundant” pairs, i.e., the pairs of nodes
connected in at least two layers. Given a community C, PC

1 and PC
2 denote the

subset of P1 and the subset of P2, respectively, corresponding to nodes in C.
The redundancy of C, ρ(C), expresses the number of pairs in C with redundant
connections, divided by the number of layers connecting the pairs. Formally:

ρ(C) =
∑

(v,u)∈PC
2

|{L ∈ L | (v, u, L) ∈ EL}|
|L|×|PC

1 |
(4)
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Note that in the above formula, the set defined in the numerator of each
additive term, refers to the layers on which two nodes in a redundant pair are
linked. We can hence define the set of supporting layers SL for each community
C as:

SL(C,L) =
⋃

(v,u)∈PC
2

SL(v, u,L) (5)

with SL(v, u,L) = {L ∈ L | (v, u, L) ∈ EL}.
Using the above defined SL(C,L), we provide the following definition of

redundancy-based resolution factor.

Definition 2 (Redundancy-based resolution factor) Given a layer L and
a community C, the redundancy-based resolution factor in Eq. (3) is defined as:

γ(L,C) =
2

1 + log2(1 + nrp(L,C))
(6)

where nrp(L,C) = |{s = SL(v, u,L) ∈ SL(C,L) | L ∈ s}| expresses the number
of times layer L participates in redundant pairs. �

Note that γ(L,C) ranges in (0, 1] as long as L participates in at least one
redundant pair, and it decreases as nrp(L,C) increases. As special case, it is
equal to 2 when nrp(L,C) = 0.

3.2 Projection-based inter-layer couplings

We propose a general and versatile approach to quantify the strength of coupling
of nodes in one layer with nodes on another layer. Our key idea is to determine
the fraction of nodes belonging to a community onto a layer that appears in the
projection of the community on another layer, and express the relevance of this
projection w.r.t. that pair of layers.

Given a community C ∈ C and layers Li, Lj ∈ L, we will use symbols C(i)

and C(j) to denote the projection of C onto the two layers, i.e., the set of
nodes in C that lay on Li and Lj , respectively. In the following, we define two
approaches for measuring inter-layer couplings based on community projection.

For any two layers Li, Lj and community C, the first approach, we call
symmetric, determines the relevance of inter-layer coupling of nodes belonging
to C as proportional to the fraction of nodes shared between Li and Lj that
belong to C.

Definition 3 Given a community C ∈ C and layers Li, Lj ∈ L, the symmetric
projection-based inter-layer coupling, denoted as ICs(C,Li, Lj) and referring to
term IC in Eq. (3), is defined as the probability that C lays on Li and Lj :

ICs(C,Li, Lj)=Pr[C in Li, C in Lj ] =
|C(i) ∩ C(j)|
|Vi ∩ Vj |

(7)

�
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The above definition assumes that the two events “C in Li” and “C in
Lj” are independent to each other, and it does not consider that the coupling
might have a different meaning depending on the relevance a community has
on a particular layer in which it is located. By relevance of community, we
simply mean here the fraction of nodes in a layer graph that belong to the
community; therefore, the larger the community in a layer, the more relevant
is w.r.t. that layer. However, we observe that more relevant community in a
layer corresponds to less surprising projection from that layer to another. This
would imply that the inter-layer coupling for that community is less interesting
w.r.t. projections of smaller communities, and hence the strength of the coupling
might be lowered. We capture the above intuition by the following definition of
asymmetric projection-based inter-layer coupling.

Definition 4 Given a community C ∈ C and layers Li, Lj ∈ L, the asymmetric
projection-based inter-layer coupling, denoted as ICa(C,Li, Lj) and referring to
term IC in Eq. (3), is defined as the probability that C lays on Lj given that
C lays on Li:

ICa(C,Li, Lj) = Pr[C in Lj |C in Li] =

=
Pr[C in Li, C in Lj ]

Pr[C in Li]
=

=
|C(i) ∩ C(j)|
|Vi ∩ Vj |

× |Vi|
|C(i)|

(8)

�

Dealing with layer ordering. Our formulation of multilayer modularity is
general enough to account for an available ordering of the layers, according to
a given partial order relation.

The previously defined asymmetric inter-layer coupling is well suited to
model situations in which we might want to express the inter-layer coupling
from a “source” layer to a “destination” layer. Given any two layers Li, Lj , it
may be the case that only comparison of Li to Lj , or vice versa, is allowed. This
is clearly motivated when there exist layer-coupling constraints, thus only some
of the layer couplings should be considered in the computation of Q.

In practical cases, we might assume that the layers can be naturally ordered
to reflect a predetermined lexicographic order, which might be set, for instance,
according to a progressive enumeration of layers or to a chronological order of
the time-steps corresponding to the layers. That said, we can consider two
special cases of layer ordering :

• Adjacent layer coupling : Li ≺L Lj iff j = i + 1 according to a predeter-
mined natural order.

• Pair-wise layer coupling : Li ≺L Lj iff j > i according to a predetermined
natural order.

Note that the adjacent layer coupling scheme requires ` − 1 pairs to consider,
while the pair-wise layer coupling scheme involves the comparison between a
layer and its subsequent ones, i.e., (`2 − `)/2 pairs. Figure 1 illustrates an
example of asymmetric inter-layer coupling over a three-layer network.
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+
Pair-wise layer coupling 

Adjacent layer coupling 

layer ordering axis 

C1
 (1) 

C1
 (2) 

C1
 (3) 

L1 

L2 

L3 C3
 (3) 

C3
 (2) 

C3
 (1) 

Figure 1: Example multilayer network with ordered set of layers, according to
lexicographic ascendent ordering. Community C1 is projected onto the three
layers using adjacent layer coupling, while community C3 is projected using
pair-wise layer coupling.

Moreover, it should be noted that the availability of a layer ordering enables
two variants of the asymmetric projection-based inter-coupling given in Eq. (8).
For any two layers Li, Lj ∈ L, such that Li ≺L Lj holds, we refer to as inner
the direct evaluation of ICa(C,Li, Lj), and as outer the case in which Li and
Lj are switched, i.e., ICa(C,Lj , Li). In the inner case, the strength of coupling
is higher as the projection of C on the source layer (i.e., the preceding one in the
order) is less relevant; vice versa, the outer case weights more the coupling as the
projection on the destination layer (i.e., the subsequent one in the order) is less
relevant. For instance, considering again the example of Fig. 1, the asymmetric
coupling for the projection of community C1 from L1 to L2 is stronger in the
outer case, since ICa(C1, L1, L2) = (2/9) × (12/3) = 8/9 which is lower than
ICa(C1, L2, L1) = (2/9) × (9/2) = 1. We hereinafter use symbols ICia and
ICoa to distinguish between the inner asymmetric and the outer asymmetric
evaluation cases.

Time-evolving multilayer networks. So far we have assumed that when com-
paring any two layers Li, Lj , with Li ≺L Lj , it does not matter the number of
layers between Li and Lj . Intuitively, we might want to penalize the strength
of the coupling as more “distant” Lj is from Li. This is often the case in time-
sliced networks, whereby we want to understand how community structures
evolve over time.

In light of the above remarks, we define a refinement of the asymmetric
projection-based inter-layer coupling, by introducing a multiplicative factor that
smoothly decreases the value of the ICa function as the temporal distance be-
tween Li and Lj increases.

Definition 5 Given a community C ∈ C and layers Li, Lj ∈ L, such that Li ≺L
Lj , the time-aware asymmetric projection-based inter-layer coupling, denoted as
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ICt
a(C,Li, Lj), is defined as

ICt
a(C,Li, Lj)=ICa(C,Li, Lj)×

2

1 + log2(1 + j − i)
(9)

�

Note that the second term in the above equation is 1 for the adjacent layer cou-
pling scheme, thus making no penalization effect when only (time-)consecutive
layers are considered.

4 Evaluation Methodology

4.1 Datasets

We used 9 real-world multilayer network datasets. AUCS [15] describes relation-
ships among university employees: work together, lunch together, off-line friend-
ship, friendship on Facebook, and coauthorship. EU-Air transport network [15]
(EU-Air, for short) represents European airport connections considering differ-
ent airlines. FF-TW-YT (stands for FriendFeed, Twitter, and YouTube) [12]
was built by exploiting the feature of FriendFeed as social media aggregator to
align registered users who were also members of Twitter and YouTube. Flickr
refers to the dataset studied in [18]. We used the corresponding timestamped
interaction network whose links express “who puts a favorite-marking to a photo
of whom”. We extracted the layers on a month-basis and aggregated every six
(or more) months. GH-SO-TW (stands for GitHub, StackOverflow and Twit-
ter) [19] is another cross-platform network where edges express followships on
Twitter and GitHub, and “who answers to whom” relations on StackOverflow.
Higgs-Twitter [15] represents friendship, reply, mention, and retweet relations
among Twitter users. London transport network [20] (London, for short) models
three types of connections of train stations in London: underground lines, over-
ground, and DLR. ObamaInIsrael2013 [21] (Obama, for short) models retweet,
mention, and reply relations of users of Twitter during Obama’s visit to Israel
in 2013. 7thGraders [20] (VC-Graders, for short) represents students involved
in friendship, work together, and affinity relations in the class.

Table 1 reports for each dataset, the size of set V, the number of edges in
all layers, the average coverage of node set (i.e., 1/|L|

∑
Li∈L(|Vi|/|V|)), and the

average coverage of edge set (i.e., 1/|L|
∑

Li∈L(|Ei|/
∑

Li
|Ei|)). The table also

shows basic, monoplex structural statistics (degree, average path length, and
clustering coefficient) for the layer graphs of each dataset.

4.2 Community detection methods

We resorted to state-of-the-art methods for community detection in multilayer
networks, which belong to the two major approaches, namely aggregation and
direct methods. The former detect a community structure separately for each
network layer, after that an aggregation mechanism is used to obtain the final
community structure, while the latter directly work on the multilayer graph by
optimizing a multilayer quality-assessment criterion.
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Table 1: Main characteristics of our evaluation network datasets. Mean and
standard deviation over the layers are reported for degree, average path length,
and clustering coefficient statistics.

#entities #edges #layers node set edge set degree avg. path clustering
(|V|) (`) coverage coverage length coefficient

AUCS 61 620 5 0.73 0.20 10.43 ± 4.91 2.43 ± 0.73 0.43 ± 0.097
EU-Air 417 3 588 37 0.13 0.03 6.26 ± 2.90 2.25 ± 0.34 0.07 ± 0.08
FF-TW-YT 6 407 74 836 3 0.58 0.33 9.97 ± 7.27 4.18 ± 1.27 0.13 ± 0.09
Flickr 789 019 17 071 325 5 0.33 0.20 23.15 ± 5.61 4.50 ± 0.60 0.04 ± 0.01
GH-SO-TW 55 140 2 944 592 3 0.68 0.34 41.29 ± 45.09 3.66 ± 0.62 0.02 ± 0.01
Higgs-Twitter 456 631 16 070 185 4 0.67 0.25 18.28 ± 31.20 9.94 ± 9.30 0.003 ± 0.004
London 369 441 3 0.36 0.33 2.12 ± 0.16 11.89 ± 3.18 0.036 ± 0.032
Obama 2 281 259 4 061 960 3 0.50 0.34 4.27 ± 1.08 13.22 ± 4.49 0.001 ± 0.0005
VC-Graders 29 518 3 1.00 0.33 17.01 ± 6.85 1.66 ± 0.22 0.61 ± 0.89

As an exemplary method of the aggregation approaches, we used Principal
Modularity Maximization (PMM) [22]. PMM aims to find a concise representa-
tion of features from the various layers (dimensions) through structural feature
extraction and cross-dimension integration. Features from each dimension are
first extracted via modularity maximization, then concatenated and subject to
PCA to select the top eigenvectors, which represent possible community parti-
tions. Using these eigenvectors, a low-dimensional embedding is computed to
capture the principal patterns across all the dimensions of the network. The
k-means method is finally applied on this embedding to discover a commu-
nity structure. As for the direct methods, we resorted to Generalized Louvain
(GL) [14] and Locally Adaptive Random Transitions (LART) [23]. GL extends
the classic Louvain method using multislice modularity, so that each node-layer
tuple is assigned separately to a community. Majority voting is adopted to de-
cide the final assignment of an entity node to the community that contains the
majority of its layer-specific instances. LART is a random-walk based method.
It first runs a different random walk for each layer, then a dissimilarity measure
between nodes is obtained leveraging the per-layer transition probabilities. A
hierarchical clustering method is used to produce a hierarchy of communities
which is eventually cut at the level corresponding to the best value of multislice
modularity.

Note that PMM requires the desired number of communities (k) as input.
Due to different size of our evaluation datasets, we devised several configura-
tions of variation of parameter k in PMM, by reasonably adapting each of the
configuration ranges and increment steps to the network size. As concerns GL
and LART, we observed a tendency of LART to discover much more commu-
nities than GL, on each dataset; for instance, 381 vs. 10 on EU-Air, 339 vs.
21 on London, 27 vs. 5 on AUCS. Also, the size distribution of the commu-
nities extracted by GL is highly right-skewed (i.e., tail stretching toward the
right) on the larger datasets, i.e., EU-Air, Flickr, Higgs-Twitter, FF-TW-YT,
GH-SO-TW, and Obama, while it is moderately left-skewed on the remaining
datasets.

4.3 Experimental setting

We carried out GL, PMM and LART methods on each of the network datasets
and measured, for each community structure solution, our proposed multilayer
modularity (Q) as well as the Mucha et al.’s multislice modularity (Qms).
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Table 2: Multilayer modularity Q on GL community structures
γ, ICa γ, ICs γ = 1, ICa γ = 1, ICs

AUCS 0.41 0.37 0.39 0.35
EU-Air 0.04 0.03 0.04 0.03

FF-TW-YT 0.50 0.42 0.42 0.34
Flickr 0.32 0.31 0.28 0.27

GH-SO-TW 0.40 0.40 0.35 0.35
Higgs-Twitter 0.15 0.13 0.14 0.12

London 0.35 0.26 0.34 0.26
Obama 0.43 0.32 0.43 0.32

VC-Graders 0.54 0.53 0.44 0.43

Table 3: Multilayer modularity Q on LART community structures
γ, ICa γ, ICs γ = 1, ICa γ = 1, ICs

AUCS 0.47 0.19 0.43 0.15
EU-Air 1.00 0.02 1.00 0.02
London 1.00 0.01 1.00 0.01

VC-Graders 0.30 0.28 0.22 0.20

We evaluated Q using the redundancy-based resolution factor γ(L,C) with
either the symmetric (ICs) or the asymmetric (ICa) projection-based inter-layer
coupling. We also considered cases corresponding to ordered layers, using either
the adjacent-layer scheme or the pair-wise-layer scheme, and for both schemes
considering inner (ICia) as well as outer (ICoa) asymmetric coupling. We fur-
ther evaluated the case of temporal ordering, using the time-aware asymmetric
projection-based inter-layer coupling. Yet, we considered the particular setting
of uniform resolution (i.e., γ(L,C) = 1, for each layer L and community C).

As for Qms, we devised two settings: the first by varying γ within [0..2]
while fixing ω = 0 (i.e., no inter-layer couplings), the second by varying γ and
ω = 1− γ [14].

5 Results

5.1 Evaluation with unordered layers

Table 2 reports on values of Q with different settings, measured on the commu-
nity structure solutions computed by GL. Several remarks stand out from this
table. With the exception of GH-SO-TW on which effects on Q are equivalent,
using ICa leads to higher Q than ICs. On average over all networks, using ICa

yields an increment of 13.4% and 14.6% (with γ fixed to 1) w.r.t. the value of
Q corresponding to ICs. This higher performance of Q due to ICa supports
our initial hypothesis on the opportunity of asymmetric inter-layer coupling.
It is also interesting to note that, when fixing γ to 1, Q decreases w.r.t. our
defined variable redundancy-based resolution γ(L,C) — decrement of 11% and
12% using ICa and ICs, respectively.

Table 3 shows results from LART solutions. (Due to memory-resource and
efficiency issues shown by the currently available implementation of LART, we
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Figure 2: Multilayer modularity Q on PMM community structure solutions

are able to report results only on some networks.1) We observe that the relative
performance difference between ICs and ICa settings is consistent with results
found in the GL evaluation; this difference is even extreme (0.98 or 0.99) on
EU-Air and London, which is likely due also to the different sizes of community
structures detected by the two methods (cf. Sect. 4.2).

Figure 2 shows how Q varies in function of the number (k) of clusters given
as input to PMM. One major remark is that Q tends to decrease as k increases.
This holds consistently for the configuration of Q with symmetric inter-layer
coupling. Values of Q corresponding to ICa tend to be close to the ones obtained
for ICs on the largest datasets, while on the smaller ones, ICa trends are above
ICs, by diverging for low k in some cases; in particular, in London modularity
for ICa follows a rapidly, roughly linear increasing trend with k. We further
inspected the behavior of Q for higher regimes of k, which revealed that Q
values eventually tend to stabilize below 1. As concerns the Q trends over k
corresponding to the special setting γ = 1 (results not shown), while the trends
of Q for ICa and for ICs, respectively, do not change significantly, the values are
typically lower than those obtained with redundancy-based resolution, which is
again consistent with results observed for GL and LART evaluations.

5.2 Evaluation with ordered layers

In this section we focus on evaluation scenarios that correspond to the specifica-
tion of an ordering of the set of layers. To this purpose, we will present results on

1Experiments were carried out on an Intel Core i7-3960X CPU @3.30GHz, 64GB RAM
machine.
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Table 4: Multilayer modularity Q, with layer ordering, from GL and LART
community structures, on EU-Air

γ(L,C) γ = 1

ICPairs
ia ICPairs

oa ICAdj
ia ICAdj

oa ICPairs
ia ICPairs

oa ICAdj
ia ICAdj

oa

GL 0.786 0.734 0.512 0.511 0.783 0.729 0.504 0.503
LART 0.981 0.972 0.665 0.656 0.981 0.972 0.664 0.656
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Figure 3: Multilayer modularity Q of PMM solutions with layer ordering on (a)
EU-Air and (b) Flickr

EU-Air and Flickr : the former was chosen because of its highest dimensionality
(i.e., number of layers) over all datasets, the latter is a time-evolving multi-
layer network and hence was chosen for evaluating the time-aware asymmetric
inter-layer coupling.

Table 4 summarizes results by GL and LART on EU-Air, corresponding
to adjacent and pair-wise layer coupling. We observe that, in both cases of
fixed and variable resolution factor, values of Q with pair-wise layer coupling
are higher than the corresponding ones for the adjacent layer coupling scheme.
This would suggest that the impact on the inter-layer coupling term is higher
when all ordered pairs of layers are taken into account, than when only adjacent
pairs are considered — recall that the total degree of the multilayer graph,
which normalizes the inter-layer coupling term as well, is properly computed
according to the actual number of inter-layer couplings considered, depending
on whether the adjacent or the pair-wise scheme was selected. This result is
also confirmed by PMM, as shown in Fig. 3(a), where the plots for the pair-wise
scheme superiorly bound those for the adjacent scheme, over the various k.

Note also that, while the above results correspond to a descending natural or-
dering of the layers, by inverting this order we will have clearly a switch between
results corresponding to the inner asymmetric case with results corresponding
to the outer asymmetric case.

Figure 3(b) compares the effect of asymmetric inter-layer coupling on Flickr
with and without time-awareness, for PMM solutions. We observe that both
ICt

ia and ICt
oa plots are above those corresponding to ICia and ICoa. This

indicates that considering a smoothing term for the temporal distance between
layers (Eq. (9)) is beneficial to the increase in modularity. This general result is
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also confirmed by GL and LART (results not shown); for instance, GL achieved
on Flickr modularity 0.462 for ICt

ia, 0.468 for ICt
oa, and 0.460 for ICt

s, which
compared to results shown in Table 2 represent increments in Q of 43%.

5.3 Analysis of Qms and qualitative comparison with Q

We discuss here performance results obtained by the community detection al-
gorithms with Qms as assessment criterion. We will refer to the default setting
of unordered set of layers as stated in [14].

Using GL, Qms tends to decrease as γ increases (while ω decreases, as it was
varied with γ as ω = 1−γ). This occurs monotonically in most datasets, within
positive ranges (e.g., from 0.636 to 0.384 on FF-TW-YT, from 0.525 to 0.391
on GH-SO-TW ) or including negative modularity for higher γ (e.g., from 0.645
to -0.05 on Flickr, from 0.854 to -4 on AUCS ). Remarkably, the simultaneous
effect of γ and ω = 1 − γ on Qms leads on some datasets (Obama, EU-Air,
London) to a drastic degradation of modularity (down to much negative values)
for some γ > 1, followed by a rapid increase to modularity of 1 as γ increases
closely to 2. Analogous considerations hold for LART and PMM. For the latter
method, the plots on the left side of Fig. 4 show results by varying k, from a
selection of datasets. Surprisingly, it appears that Qms is relatively less sensitive
to the variation in the community structure than our Q.

As shown in the plots on the right side of Fig. 4, when varying ω within
[0..2], with γ = 1, Qms tends to monotonically increase as ω increases. This
holds consistently on all datasets and for all methods. Variations are always on
positive intervals (e.g., from 0.248 to 0.621 on Flickr, from 0.305 to 0.541 on
FF-TW-YT, from 0.136 to 0.356 on Higgs-Twitter).

It should be noted that, while we could not directly compare the values of Q
and Qms, a few interesting remarks arise by observing their different behavior
over the same community structure solutions, in function of the resolution and
inter-layer coupling factors. From a qualitative viewpoint, the effect of ω on Qms

turns out to be opposite, in most cases, to the effect of our IC terms on Q: that
is, accounting more for the inter-layer couplings leads to increase Qms, while
this does not necessarily happen in Q. Less straightforward is comparing the
use of a constant resolution for all layers, as done in Qms, and the use of variable
(i.e., for each pair of layer and community) resolutions, as done in Q. In this
regard, we have previously observed that the use of a varying redundancy-based
resolution factor improves Q w.r.t. the setting γ = 1. By coupling this general
remark with the results (not shown) of an inspection of the values of γ(L,C) in
the computation of Q on the various network datasets (which confirmed that
γ(L,C) values span over its range, in practice), we can conclude that a more
appropriate consideration of the term modeling the expected connectivity of
community is realized in our Q w.r.t. keeping the resolution as constant for all
layers in Qms.

6 Conclusion

We proposed a new definition of modularity for multilayer networks. Motivated
by the necessity of a revision of the existing multislice modularity proposed
in [14], we conceive and formally define new notions of layer resolution and
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Figure 4: Performance of Mucha et al.’s modularity (Qms) by varying γ with
ω = 1− γ (left) and by varying ω with γ = 1 (right)

inter-layer coupling, which are essential to a generalization of modularity for
multilayer networks. Using 3 state-of-the-art methods for multilayer community
detection and 9 real-world multilayer networks, we provided empirical evidence
of the significance of our proposed modularity. Our work paves the way for
the development of new optimization methods of community detection in mul-
tilayer networks, which by embedding our multilayer modularity, can discover
community structures having the interesting properties relating to the proposed
per-layer/community redundancy-based resolution factors and projection-based
inter-layer coupling schemes.
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