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SUMMARY

Risk prediction models are a crucial tool in healthcare. Risk prediction models with a binary outcome
(i.e., binary classification models) are often constructed using methodology which assumes the costs of
different classification errors are equal. In many healthcare applications, this assumption is not valid, and
the differences between misclassification costs can be quite large. For instance, in a diagnostic setting,
the cost of misdiagnosing a person with a life-threatening disease as healthy may be larger than the cost
of misdiagnosing a healthy person as a patient. In this article, we present Tailored Bayes (TB), a novel
Bayesian inference framework which “tailors” model fitting to optimize predictive performance with
respect to unbalanced misclassification costs. We use simulation studies to showcase when TB is expected
to outperform standard Bayesian methods in the context of logistic regression. We then apply TB to three
real-world applications, a cardiac surgery, a breast cancer prognostication task, and a breast cancer tumor
classification task and demonstrate the improvement in predictive performance over standard methods.
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1. Introduction

Risk prediction models are widely used in healthcare (Roques and others, 2003; Hippisley-Cox and
others, 2008; Wishart and others, 2012). In both diagnostic and prognostic settings, risk prediction models
are regularly developed, validated, implemented, and updated with the aim of assisting clinicians and
individuals in estimating probabilities of outcomes of interest which may ultimately guide their decision
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making (Down and others, 2014; NICE, 2016; Baumgartner and others, 2017). The most common type
of risk prediction model is based on binary outcomes, with class labels 0 (negative) and 1 (positive).
Models for binary outcomes are often constructed to minimize the expected classification error; that is,
the proportion of incorrect classifications (Zhang, 2004; Steinwart, 2005; Bartlett and others, 2006). We
refer to this paradigm as the standard classification paradigm. The disadvantage of this paradigm is that it
implicitly assumes that all classification errors have equal costs, that is, the cost of misclassification of a
positive label equals the cost of misclassification of a negative label. (Throughout the document, we refer
to the costs of incorrect classifications as misclassification costs). However, equal costs may not always
be appropriate and will depend on the scientific or medical context. For example, in cancer diagnosis, a
false negative (i.e., misdiagnosing a cancer patient as healthy) could have more severe consequences than
a false positive (i.e., misdiagnosing a healthy individual with cancer); the latter may lead to extra medical
costs and unnecessary anxiety for the individual but not result in loss of life.1 For such applications, a
prioritized control of asymmetric misclassification costs is needed.

To meet this need, different methods have been developed. In the machine learning literature, they are
studied under the term cost-sensitive learning (Elkan, 2001). Existing research on cost-sensitive learning
can be grouped into two main categories: direct and indirect approaches. Direct approaches aim to make
particular classification algorithms cost-sensitive by incorporating different misclassification costs into
the training process. This amounts to changing the objective/likelihood function that is optimized when
training the model (e.g., Kukar and others, 1998; Ling and others, 2004; Masnadi-Shirazi andVasconcelos,
2010). A limitation is that these approaches are designed to be problem-specific, requiring considerable
knowledge of the model in conjunction with its theoretical properties, and possibly new computational
tools. Conversely, indirect approaches are more general because they achieve cost-sensitivity without
any, or with minor modification to existing modeling frameworks. In this article, we focus on indirect
approaches.

Indirect methods can be further subdivided into thresholding and sampling/weighting. Thresholding is
the simplest approach of the two, as it changes the classification threshold of an existing risk prediction
model. We can use the threshold to classify datapoints into positive or negative status if the model can
produce probability estimates. This strategy is optimal if the true class probabilities were available. In
other words, if the model is based on the logarithm of the ratio of true class probabilities, the threshold
should be modified by a value equal to the logarithm of the ratio of misclassification costs (Duda and
others, 2012). This is based on decision theoretic arguments as we show in Section 2 (Pauker and Kassirer,
1975; Duda and others, 2012). In practice, however, this strategy may lead to sub-optimal solutions. We
demonstrate this using synthetic (Section 3) and real-life data (Section 4).

Alternatively, sampling methods modify the distribution of the training data according to misclassi-
fication costs (see Elkan (2001) for a theoretical justification). This can be achieved by generating new
datapoints from the class with smaller numbers of datapoints, that is, oversampling from the minority
class, or by removing datapoints from the majority class (undersampling). The simplest form is random
sampling (over- or under-). However, both come with drawbacks. Duplicating samples from the minority
class may cause overfitting (Zadrozny and others, 2003). Similarly, random elimination of samples from
the majority class can result in loss of data which might be useful for the learning process. Weighting (e.g.,
Ting, 1998; Margineantu and Dietterich, 2003) can also be conceptually viewed as a sampling method,
where weights are assigned proportionally to misclassification costs. For example, datapoints of the minor-
ity class, which usually carries a higher misclassification cost, may be assigned higher weights. Datapoints

1 Note this example constitutes a simplification of the problem aimed to introduce the main idea of the article, that is, in some
applications the false positives and negatives have different costs. Hence, we are not considering the negative effects of toxicity of
chemotherapy, overdiagnosis/unnecessary treatment for certain cancers, quality of life issues, etc.
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with high weights can be viewed as sample duplication – thus oversampling. In general, random sam-
pling/weighting determine the datapoints to be duplicated or eliminated based on outcome information
(whether a datapoint belongs to the majority or the minority class). Notably, they do not take into account
critical regions of the covariate space, such as regions that are closer to the target decision boundary.
A decision boundary specifies distinct classification regions on the covariate space based on specified
misclassification costs (see Section 3 for details). This is the goal of the framework presented here.

In this article, we build upon the seminal work of Hand and Vinciotti (2003), and present an umbrella
framework that allows us to incorporate misclassification costs into commonly used models for binary
outcomes. The framework allows us to tailor model development with the aim of improving performance
in the presence of unequal misclassification costs. Although the concepts we discuss are general, and allow
for relatively simple tailoring of a wide range of models (essentially whenever the objective function can be
expressed as a sum over samples), we focus on a Bayesian regression paradigm. Hence, we present Tailored
Bayes (TB), a framework for tailored Bayesian inference when different classification errors incur different
penalties. We use a decision theoretic approach to quantify the benefits and costs of correct and incorrect
classifications (Section 2). The method is based on the principle that the relative harms of false positives
and false negatives can be expressed in terms of a target threshold. We then build a 2-stage model (Section
2.3); first introduced by Hand and Vinciotti (2003). In the first stage, the most informative datapoints are
identified.A datapoint is treated as informative if it is close to the target threshold of interest. Each datapoint
is assigned a weight proportional to its distance from the target threshold. Intuitively, one would expect
improvements in performance to be possible by putting decreasing weights on the class labels of the succes-
sively more distant datapoints. In the second stage, these weights are used to downweight each datapoint’s
likelihood contribution during model training. A key feature is that this changes the estimation output in
a way that goes beyond thresholding and we demonstrate this effect in simple examples (Section 3).

We conduct simulation studies to illustrate the improvement in predictive performance of our proposed
TB modeling framework over the standard Bayesian paradigm (Section 3). We then apply the methodology
to three real-data applications (Section 4). Our two main case studies are a breast cancer and a cardiac
surgery prognostication task where we have information on how clinicians prioritize different classification
errors. We show that incorporating this information into the model through our TB approach leads to
better treatment decisions. We finish with a discussion of our approach, findings and provide some general
remarks in Section 5.

2. Methods

We use a decision theoretic approach to summarize the costs of misclassifications of a binary outcome
into a single number, which we refer to as the target threshold (Section 2.1). We later (Section 2.2) define
the expected utility of risk prediction and use the target threshold and the never treat policy to simplify
the expected utility and derive the Net Benefit of a risk prediction model. We use the Net Benefit as our
model evaluation metric throughout the article. In Section 2.3, we incorporate the target threshold in the
model formulation which results in the tailored likelihood function (Section 2.4) and the tailored posterior
(Section 2.5).

2.1. The target threshold

Let Y ∈ {0, 1} represent a binary outcome of interest. The observed Y is a realization of a binary random
variable following a Bernoulli distribution with π = P[Y = 1]. This is the marginal probability of the
outcome being present, and consequently, the probability the outcome being absent is (1 − π).

We introduce utility functions to take into account the benefits or harms of different classifications. A
utility function assigns a value to each of the four possible classification-outcome combinations stating
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exactly how beneficial/costly each action (treat or no treat) is. We assume that people who are classified
as positive receive treatment and people who are classified as negative do not receive treatment. We use
“treatment” in the generic sense of healthcare intervention which could be a drug, surgery, or further
testing. Each possible combination of classification (negative and positive) and outcome status (0, 1) is
associated with an utility where a positive value indicates a benefit and a negative value indicates a cost
or harm. The four utilities associated with binary classification problems are: (i) UTP, the utility of a true
positive classification, that is administering treatment to a patient who has the outcome (i.e., treat when
necessary), (ii) UFP, the utility of a false positive classification, that is the utility of administering treatment
to a patient who does not have the outcome (i.e., administering unnecessary treatment), (iii) UFN, the utility
of a false negative classification, that is the utility of withholding treatment from a patient that has the
outcome (i.e., withholding beneficial treatment), and (iv) UTN, the utility of a true negative classification,
that is the utility of withholding treatment from a patient who does not have the outcome (i.e., withholding
unnecessary treatment).

The expected utilities of the two fixed courses of action (or policies) of always treat and never treat are
given by

EUtreat = πUTP + (1 − π)UFP, (2.1a)

EUno treat = πUFN + (1 − π)UTN, (2.1b)

where EUtreat and EUno treat are the expected utility of treating and not treating, respectively. In principle, one
should choose the course of action with the highest expected utility. When the expected utilities are equal,
the decision maker is indifferent on the course of action (Pauker and Kassirer, 1975). Based on classical
decision theory, we employ the threshold concept and denote with t the threshold at which the decision
maker is indifferent on the course of action (Pauker and Kassirer, 1980). This is the principle of clinical
equipoise which exists when all of the available evidence about a course of action does not show that it is
more beneficial than an alternative and, equally, does not show that it is less beneficial than the alternative
(Turner, 2013). Clinical equipoise is regarded as an “ethically necessary condition in all cases of clinical
research” (Freedman, 1987). Based on the threshold concept, an individual should be treated (i.e., classified
as positive) if π ≥ t and should not be treated (i.e., classified as negative) otherwise. Having defined t as
the value of π of clinical equipoise where the expected benefit of treatment is equal to the expected benefit
of avoiding treatment implies EUtreat = EUno treat or equivalently, tUTP + (1 − t)UFP = tUFN + (1 − t)UTN.
Solving for t,

t = UTN − UFP

UTN − UFP + UTP − UFN

= H

H + B
= 1

1 + B
H

,
(2.2)

where B = UTP − UFN is the difference between the utility of administering treatment to individuals
who have the outcome and the utility of withholding treatment in those who have the outcome. In other
words, B is the benefit for positive prediction, and consequent treatment, among those with the outcome.
Similarly, B can be interpreted as the consequence of failing to treat when it would have been of benefit,
that is, the harm from a false negative result (compared to a true positive result). Comparably, H is the
difference between the utility of avoiding treatment in patients who do not have the outcome and the utility
of administering treatment to those who do not have the outcome (i.e., UTN − UFP). In other words, H
is the consequence of being treated unnecessarily, this is the harm associated with a false positive result
(compared to a true negative result).



Tailored Bayes for risk prediction 89

We henceforth refer to t as the target threshold. Alternative names in the literature are risk threshold
(Baker and others, 2009) and threshold probability (Tsalatsanis and others, 2010). It is a scalar function
of UTP, UFN, UTN, and UFP that determines the cut-off point for calling a result positive that maximizes
expected utility. Equation (2.2) therefore tells us that the target threshold at which the decision maker will
opt for treatment is informative of how they weigh the relative harms of false positive and false negative
results. The main advantage of this decision theoretic approach is there is no need to explicitly specify the
relevant utilities, but only the desired target threshold.

Example:Assume that for every correctly treated patient (true positive) we are willing to incorrectly
treat 9 healthy individuals (false positives).2 Then, we consider the benefit of correctly treating a
patient to be nine times larger than the harm of an unnecessary treatment: the harm-to-benefit ratio
is 1:9. This ratio has a direct relationship to t: the odds of t equal the harm-to-benefit ratio. That is,
H/B = t/(1 − t) which is implied by (2.2). For example, t of 10% implies a harm-to-benefit ratio of
1:9 (odds(10%) = 10/90).

2.2. Net benefit for risk prediction

In practice, we do not know the probability of the outcome of any given individual. Instead, we need to
estimate it, according to a set of covariates. Let X ∈ R

d be a vector of d covariates and define π(x) as the
conditional class 1 probability given the observed values of the covariates, x : π(x) = P[Y = 1 | X = x].
We are concerned with the problem of classifying future values of Y from the information that the covariates
X contain. Assume we have a prediction model and an estimate of π(x), denoted π̂(x). We classify an
individual as positive if π̂(x) ≥ t, where t is the target threshold (defined in (2.2)) and as negative
otherwise. The expected utility of assigning treatment or not (i.e., classifying positive or negative) at t
based on the model’s predictions π̂(x) can be written as

EUPred(t) = P(π̂(x) ≥ t, y = 1)UTP + P(π̂(x) < t, y = 1)UFN+
P(π̂(x) < t, y = 0)UTN + P(π̂(x) ≥ t, y = 0)UFP

= πTPRtUTP + π(1 − TPRt)UFN + (1 − π)FPRtUFP + (1 − π)(1 − FPRt)UTN

= {πTPRtB − (1 − π)FPRtH } + {πUFN + (1 − π)UTN},

(2.3)

where TPRt is the true positive rate, that is, P(π̂(x) ≥ t|y = 1) and FPRt is the false positive rate, that is,
P(π̂(x) ≥ t|y = 0). The drawback of this formulation is the need to specify the four utilities. Equation
(2.3) can be simplified by considering the expected utility of risk prediction in excess of the expected
utility of no treatment. The expected utility of no treatment is given in (2.1b), and so, subtracting this from
both sides of (2.3), the expected utility of risk prediction in excess of the expected utility of no treatment
is

EUPred(t) − EUno treat = πTPRtB − (1 − π)FPRtH

= B
{
πTPRt − (1 − π)FPRt

t

1 − t

}
.

(2.4)

This is a Hippocratic utility function because it is motivated by the Hippocratic oath; do the best in
ones ability (beneficence) and do no harm (nonmaleficence) (Childress and Beauchamp, 2001). To be

2 The statement is equivalent to the following: Assume that not treating an individual with the outcome (false negative) is 9 times
worse than treating unnecessarily a healthy individual (false positive). Both statements result in the same harm-to-benefit ratio.
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consistent with the Hippocratic oath, the modeler chooses the model that has the greatest chance of giving
an outcome no worse than the outcome of no treatment. With B = 1, (2.4) is defined as the Net Benefit
of risk prediction versus treat none (Vickers and Elkin, 2006; Baker and others, 2009). Setting B = 1 as
the reference level means that Net Benefit is measured in units of true positive predictions. To see this we
re-write (2.4) as

NBPred(t) = TPt

n
− FPt

n

t

1 − t
, (2.5)

where TPt is number of patients with true positive results, FPt is number of patients with false positive
results, and n is the sample size. To simplify notation we write NB instead of NBPred(t). NB gives the propor-
tion of net true positives in the data set, accounting for the different misclassification costs. In other words,
the observed number of true positives is corrected for the observed proportion of false positives weighted
by the odds of the target threshold, and the result is divided by the sample size. This net proportion is equiv-
alent to the proportion of true positives in the absence of false positives. For instance, a NB of 0.05 for a
given target threshold, can be interpreted as meaning that use of the model, as opposed to simply assuming
that all patients are negative, leads to the equivalent of an additional 5 net true positives per 100 patients.

For the remainder of the manuscript NB will be our main performance measure for model evaluation.
We have written NB as a function of the target threshold t, which allows information about the relative
utilities of treatments to be included in our model formulation, which we now show.

2.3. Model formulation

Denote data D = {(yi, xi) : i = 1, . . . , n} where yi is the outcome indicating the class to which the ith

datapoint belongs and xi is the vector of covariates of size d. The objective is to estimate the posterior
probability of belonging to one of the classes given a set of new datapoints. We use D to fit a model
p(yi | xi) and use it to obtain π(x∗) for a future datapoint y∗ with covariates x∗. We simplify the structure
using p(yi | f (xi)), where f : X → R is a function that maps the vector of the covariates to the real line
i.e., the linear predictor used in generalized linear models. To develop the complete model, we need to
specify p(yi | f (xi)) and f .

In the machine learning literature, most of the binary classification procedures use a loss-function-
based approach. In the same spirit, we model p(yi | f (xi)) according to a loss function �(yi, f (xi)) which
measures the loss for reporting f when the truth is y. Mathematically, minimizing this loss function can
be equivalent to maximizing −�(y, f ), where exp{−�(y, f )} is proportional to the likelihood function.
This duality between “likelihood” and “loss,” that is viewing the loss as the negative of the log-likelihood
is referred to in the Bayesian literature as a logarithmic score (or loss) function (Bernardo and Smith,
2009; Bissiri and others, 2016). A few popular choices of loss functions for binary classification are the
exponential loss used in boosting classifiers (Friedman and others, 2000), the hinge loss of support vector
machines (Zhang, 2004), or logistic loss of logistic regression (Friedman and others, 2000; Zhang, 2004).
In this article, we focus on the following loss,

�wi (yi, f (xi)) = −π(f (xi))
wiyi (1 − π(f (xi)))

wi(1−yi), for i = 1, . . . , n (2.6)

where we define πwi (f (xi)) := π(f (xi))
wi = (exp{xT

i β}/1 + exp{xT
i β})wi and wi ∈ [0, 1] are datapoint-

specific weights. This is a generalized version of the logistic loss, first introduced by Hand and Vinciotti
(2003). We recover the standard logistic loss by setting wi = 1 for all i = 1, . . . , n. Note that we specify
f as a linear function, i.e., f (xi) = xT

i β, where β is a d + 1 dimensional vector of regression coefficients.
Hence, our objective is to learn β. We make this explicit by replacing πwi (f (xi)) with πwi (xi; β) for the
rest of this work.
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The datapoint-specific weights, wi, allow us to tailor the standard logistic model. We wish to weigh
observations based on their vicinity to the target threshold, t, upweighting observations close to t (the
most informative) and downweighting those that are further away. To accomplish this, we set the weights
as

wi = exp
{ − λh(πu(xi), t)

} = exp
{ − λ(πu(xi)− t)2

}
, (2.7)

where h is the squared distance (see Supplementary material available at Biostatistics online for other
options) and πu(xi) is the unweighted version of πwi (xi; β). Of course, in practice we do not know πu(xi)

so we cannot measure the distance between t and each datapoint’s predicted probability, πu(xi), in order to
derive these weights. To overcome this, we propose a two-stage procedure. First, the distance is measured
according to an estimate ofπu(xi), π̂u(xi), which can be compared with t to yield the weights. This estimate
could be based on any classification method: we use standard unweighted Bayesian logistic regression in
the analysis below. If a well-established model of πu(xi) already exists in the literature that could be used
(as in our cardiac surgery case study, see Section 4.2) this task would not be necessary. After deriving
the weights, they are then used to estimate πwi (xi; β). Finally, under the formulation in (2.7) the weights
decrease with increasing distance from the target threshold t. The tuning parameter λ ≥ 0 controls the rate
of that decrease. For λ = 0 we recover the standard logistic regression model. We use cross-validation to
choose λ, see later for details.

2.4. Tailored likelihood function

To gain a better insight into the model, we define the tailored likelihood function as

L(D | β) = −
n∏

i=1

�wi (yi, xT
i β) =

n∏
i=1

(
exp{xT

i β}
1 + exp{xT

i β}
)yiwi(

1 − exp{xT
i β}

1 + exp{xT
i β}

)wi(1−yi)

. (2.8)

Strictly speaking, this quantity is not the standard logistic likelihood function. Nevertheless, it is
instinctive to see its correspondence with the standard likelihood function. Thus, we rewrite (2.8) (after
taking the log in both sides) as

log(L(D | β)) = −
n∑

i=1

log(�wi (yi, xT
i β))

=
n∑

i=1

yiwi log
(

exp{xT
i β}

1 + exp{xT
i β}

)
+ wi(1 − yi) log

(
1 − exp{xT

i β}
1 + exp{xT

i β}
)

=
n∑

i=1

wi

[
yi log

(
exp{xT

i β}
1 + exp{xT

i β}
)

+ (1 − yi) log
(

1 − exp{xT
i β}

1 + exp{xT
i β}

)]

=
n∑

i=1

wili(D | β), (2.9)

where li(D | β) is the standard logistic log-likelihood function. We can further replace (2.7) into (2.9)

log(L(D | β)) =
n∑

i=1

exp
{ − λ(πu(xi)− t)2

}
li(D | β)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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to see that each datapoint contributes exponentially proportional to its distance from the target threshold
t, which summarizes the four utilities associated with binary classification problems (see 2.2). One option
to proceed is by optimizing the tailored likelihood function with respect to the coefficients in an empirical
risk minimization approach (Vapnik, 1998). An attractive feature of (2.9) is that this optimization is
computationally efficient since we can rely on existing algorithmic tools, for example, (stochastic) gradient
optimization. However, here we learn the coefficients in a Bayesian formalism.

2.5. Bayesian tailoring

Following Bayes Theorem, the TB posterior is

p(β | D) = L(D | β)p(β)

p(D)
, (2.10)

where L(D | β) is the tailored likelihood function given in (2.8), p(β) is the prior on the coefficients, and
p(D) = ∫

L(D|β̃)p(β̃)dβ̃, is the normalizing constant. In this work we assume a normal prior distribution
for each element of β, that is, p(βj) = N (μj, σ 2

j ), where μj and σj are the mean and standard deviation
respectively for the jth element of β (j = 1, . . . , d + 1). For all analysis below, we use vague priors with
μj = 0 and σj = 100, for all j.

Conveniently, we can interpret the choice of prior as a regularizer on a per-datapoint influ-
ence/importance (see Section S1). Crucially, this allows us to view the TB posterior as combining a
standard likelihood function with a data-dependent prior (Section S1). Hence, even though the tailored
likelihood function does not have a probabilistic interpretation the TB posterior is a proper posterior.

In the Supplementary material available at Biostatistics online, we provide details on the model infer-
ence and predictions steps (Section S2), the cross-validation scheme for choosing λ (Section S3), the
data-spitting strategy (Section S4), and the Markov chain Monte Carlo (MCMC) algorithm we are
implementing (Section S5).

3. Simulations

The simulations are designed to provide insight into when TB can be advantageous compared to the
standard Bayesian paradigm. Two scenarios where TB is expected to outperform standard Bayes (SB) are
the absence of parallelism of the optimal decision boundaries and data contamination.A decision boundary
determines distinct classification regions in the covariate space. It provides a rule to classify datapoints
based on whether the datapoint’s covariate vector falls inside or outside the classification region. If a
datapoint falls inside the classification region it will be labeled as belonging to class 1 (e.g., positive), if
it falls outside it will be labeled as belonging to class 0 (e.g., negative). According to Bayesian decision
theory the optimal decision boundaries determine the classification regions where the expected reward
is maximized given prespecified misclassification costs (Duda and others, 2012). More specifically, we
classify as positive if π(x)

1−π(x) >
t

1−t , where π(x) denotes the true class 1 probability, as in Section 2.1.
Simulations 1 and 2 present two settings where the optimal decision boundaries are not parallel with their
orientation changing as a function of the target threshold. Simulation 3 is an example of data contamination.

3.1. Simulation 1: linear decision boundaries

We first evaluate the performance of tailoring by extending a simulation from Hand and Vinciotti (2003).
We simulate n data points according to two covariates, x1 and x2, and assign label 1 with probability:
θ := p(y = 1|x1, x2) = qx2

x1+qx2
with y ∼ Bernoulli(θ), x1, x2 ∼ U(0, 1) and where q is a scalar. The

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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(a) (b)

Fig. 1. Optimal decision boundaries (black lines) for target thresholds 0.1, 0.3, 0.5, 0.7, and 0.9. Posterior mean
boundaries for SB (grey) and TB (yellow) when targeting the (a) 0.3 and (b) 0.5 boundary. Shaded regions represent
90% highest predictive density (HPD) regions.

parameter q determines the relative prevalence of the two classes, when q > 1 there are more class 1 than
class 0, otherwise there are more class 0 than class 1. Figure 1 shows the optimal decision boundaries in
the covariate space for a range of target thresholds using n = 5000 and q = 1 (which leads to a prevalence
of 0.5). A key feature is that these boundaries are linear but not parallel. The absence of parallelism renders
any linear model unsuitable as a global fit, but the linearity of the decision boundaries allows linear models
to describe these boundaries sufficiently.

We use the decision boundaries corresponding to 0.3 and 0.5 target thresholds as exemplars. SB results
in a sub-optimally estimated decision boundary for t = 0.3 (Figure 1a). The estimated 0.3 boundary
from SB is parallel to the 0.5-optimal boundary. This is expected because under this simulation setting
logistic regression is bound to find a compromise model which should be linear with level lines roughly
parallel to the true 0.5 boundary (where misclassification costs are equal). On the other hand, TB allows
derivation of a decision boundary which is far closer to the optimum. Note the wider predictive regions
of the tailoring. This is an expected consequence of our framework which we comment on in Section S9
of the Supplementary material available at Biostatistics online. When deriving decision boundaries under
the equal costs implied by a 0.5 target threshold (Figure 1b), the two models are almost indistinguishable.

To systematically investigate the performance of tailoring across a wide range of settings, we set-up
different scenarios by varying: (i) the sample size, (ii) the prevalence of the outcome, (iii) and the target
threshold. Model performance is evaluated in an independently sampled data set of size 2000. Under
most scenarios tailoring outperforms standard Bayesian regression (Figure 2). The performance gains are
evident even for small sample sizes. With a few exceptions (most notably t = 0.7 and 0.9) the advantage
of tailoring is relatively stable across sample sizes. The advantage of tailoring persists even when varying
the prevalence of the outcome. In fact, we see that under certain scenarios TB is superior to SB even for
the 0.5 boundary. Figure S2 of the Supplementary material available at Biostatistics online illustrates such
a scenario for q = 0.1, which corresponds to prevalence of 0.15. Under such class imbalance, which is
common in medical applications, even when targeting the 0.5 boundary, one might want to use tailoring
over standard modeling approaches.

3.2. Simulation 2: quadratic decision boundaries

Our second simulation is a more pragmatic scenario where the optimal decision boundaries are a quadratic
rather than a linear function of the covariates. The model is of the form

x|y = 1 ∼ N
([

1
0

]
,
[

1, 0
0, 2

])

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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Fig. 2. Difference in Net Benefit for samples sizes of 500, 1000, 5000, 10 000 averaged over 20 repetitions. A positive
difference means TB outperforms SB. The values of 0.1, 0.5, and 1, for the q parameter correspond to prevalence of
around 0.15, 0.36, and 0.50, respectively.

x|y = 0 ∼ N
([

0
1

]
,
[

2, 0
0, 1

])
,

where x = (x1, x2)
T contains the two continuous-valued predictors. The marginal probabilities of the

outcome are equal, that is, p(y = 0) = p(y = 1) = 0.5. In this case of unequal covariance matrices,
the optimal decision boundaries are a quadratic function of x (Figure 3a) (Duda and others (2012),
Chapter 2). A linear model, like the one we implement is suboptimal. Nevertheless, this example allows
us to demonstrate in an analytically tractable way the advantage of tailoring and it allows us to explore
a broader array of generic simulation examples, since arbitrary Gaussian distributions lead to decision
boundaries that are general hyperquadrics.

Figure 3(b) and (c) shows the posterior median decision boundaries for SB and TB using n = 5000
under the data generating model described above, and for a range of target thresholds. It is clear that the
direction of the optimal decision boundary is a function of the costs. The parallel decision boundaries
obtained by applying different thresholds to the standard logistic predictions are clearly not an optimal
solution when comparing against the optimal boundaries depicted in Figure 3(a). Although limited to
estimation of linear boundaries, tailoring is able to adapt the angle of the boundary to better approximate
the optimal curves. One exception in comparative performance is the 0.5 threshold which is estimated
perfectly for both models. This is expected, since the standard logistic model targets the 0.5 boundary.

As before, we investigate the performance of tailoring across a wide range of settings, by varying: (i) the
sample size, (ii) the prevalence of the outcome, and (iii) the target threshold. Performance is evaluated in
an independently sampled test set of size 2000. Figure 4 shows the difference in NB between TB and SB.
Tailoring performs similarly or better than standard regression across all target thresholds for prevalence
scenarios 0.3 and 0.5. For 0.1 the two models are closely matched. A further comparison with a non-linear
model, namely Bayesian Additive Regression Trees (BART) (Sparapani and others, 2021) is detailed in
the supplementary material (Section S7). Briefly, TB demonstrated equivalent or better performance than
BART at the clinically relevant lower disease prevalences of 0.1 and 0.3, indicating that the benefits offered
by TB cannot be matched simply by switching to a non-linear modeling framework.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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(a)

(b)

(c)

Fig. 3. (a) Optimal decision boundaries for target thresholds 0.1, 0.3, 0.5, 0.7, 0.9. Posterior median boundaries for
(b) SB, and (c) TB.
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Fig. 4. Difference in Net Benefit for samples sizes of 500, 1000, 5000, 10 000 averaged over 20 repetitions. A positive
difference means TB outperforms SB. Each grid corresponds to a different prevalence setting.

3.3. Simulation 3: Data contamination

Our third simulation scenario demonstrates the robustness of tailoring to data contamination, that is, the
situation in which a fraction of the data have been mislabeled. The data generating model is a logistic
regression with a large fraction of mislabeled datapoints. We simulate d = 2 covariates and n = 1000
datapoints. Figure 5 depicts a scenario with 10% of datapoints mislabeled among those with high values
of both covariates, that is, among the upper right hand side of the data cloud. For each covariate, 1000
values are independently drawn from a standard Gaussian distribution. Denoting the coefficient vector
by β ∈ R

3 with values β = (0, 2, 3) (the first value corresponds to the intercept term) we simulate the

outcome vector as y ∼ Bernoulli
(

exp{xT β}
1+exp{xT β}

)
, where x = (1, x1, x2)

T . We then corrupt the data with class

0 datapoints, that is, we set y := 0 for ψn datapoints where ψ is the fraction of contamination taking
values 5%, 10%, 15%, 20%, and 30%. The covariates are generated from equivalent and independent
normal distributions, specifically x1, x2 ∼ N (1.5, 0.5). This type of contamination framework has been
popularized by Huber (1964, 1965) and used extensively to study the robustness of learning algorithms
to adversarial attacks in general (Balakrishnan and others, 2017; Diakonikolas and others, 2019; Prasad
and others, 2018; Osama and others, 2020) and medical applications (Paschali and others, 2018).

We derive the optimal NB based on the true probability score in an independent non-contaminated
test data set of size n = 2000. Figure 6 shows the results for various contamination fractions. For
most fractions TB outperforms SB. As the contamination fraction gets larger the performance of both
models degrades, but standard regression degrades at a faster rate. Tailoring can accommodate vari-
ous degrees of contamination better than standard regression, while generally never resulting in poorer
performance.

Note that under no contamination (i.e., ψ = 0, first panel Figure 6) SB is an optimal classifier, since
the optimal decision boundaries are parallel straight lines (Figure 5). However, for all other scenarios even
a data corruption as small as 5% results in poor performance under SB for target thresholds > 0.5. On
the contrary, tailoring maintains stable performance and close to the optimal for t < 0.5, for up to 15% of
mislabeled datapoints.
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Fig. 5. Single realization from contaminated distribution with 10% corrupted datapoints. Data (n = 1000) with labels
0 and 1 are shown in blue and red, respectively. The corrupted data points are depicted with triangles on the upper
right-hand corner of the data cloud. The lines corresponds to target thresholds 0.1, 0.5, and 0.9.

Fig. 6. Net Benefit of tailoring (red) and standard regression (green) compared to optimal classification (blue) averaged
over 20 repetitions. Each grid corresponds to different contamination fraction.

4. Real data applications

We evaluate the performance of TB on three real-data applications involving a breast cancer prognosti-
cation task (Section 4.1), a cardiac surgery prognostication task (Section 4.2) and a breast cancer tumor
classification task (Section S8 of the Supplementary material available at Biostatistics online). Overall, our
empirical results demonstrate the improvement in predictive performance when taking into consideration
misclassification costs during model training.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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Fig. 7. Difference in Net Benefit for various t values evaluated on the test set. Error bars correspond to one standard
error of the difference. That is, denoting the difference in Net Benefit Di = NBi

TB − NBi
SB with i = 1, . . . , m = 5 for

each t then the standard error of the difference is SED =
√∑

(Di−D̄)2

m(m−1) , where D̄ = ∑
i Di/m. This accounts for the fact

that both models have been evaluated on the same data. The units on the y axis may be interpreted as the difference in
benefit associated with one patient who would die without treatment and who receives therapy. The 0.14–0.23 shaded
area on the x axis corresponds to 3%–5% absolute risk of death reduction with and without chemotherapy. These are
the risk ranges where chemotherapy is discussed as a treatment option.

4.1. Real data application 1: Breast cancer prognostication

Here, we apply the TB methodology to predict mortality after diagnosis with invasive breast cancer. The
training data is based on 4718 estrogen receptor positive subjects diagnosed in East Anglia, UK between
1999 and 2003. The outcome modeled is 10-year mortality. The covariates are age at diagnosis, tumor
grade, tumor size, number of positive lymph nodes, presentation (screening vs. clinical), and type of
adjuvant therapy (chemotherapy, endocrine therapy, or both). We use 20% of the data as design and the
rest as development set (see Figure S1 of the Supplementary material available at Biostatistics online),
repeating the design/development set split m = 5 times. The entire train data is used to fit SB. Both models
are evaluated in an independent test set consisting of 3810 subjects. Detailed information on the data sets
can be found in Karapanagiotis and others (2018).

An important part of the TB methodology is the choice of t. In breast cancer, accurate predictions are
decisive because they guide treatment. In clinical practice, treatment is given if it is expected to reduce the
predicted risk by at least some pre-specified magnitude. For instance, clinicians in the Cambridge Breast
Unit (Addenbrooke’s Hospital, Cambridge, UK) currently use the absolute 10-year survival benefit from
chemotherapy to guide decision making for adjuvant chemotherapy as follows: <3% no chemotherapy;
3%–5% chemotherapy discussed as a possible option; >5% chemotherapy recommended (Down and
others, 2014). Following previous work (Karapanagiotis and others, 2018), we assume that chemotherapy
reduces the 10-year risk of death by 22% (Peto and others, 2012). Then, a risk reduction between 3% and
5%, corresponds to target thresholds between 14% and 23%. Hence, we explore misclassification cost
ratios corresponding to t in the range between 0.1 and 0.5.

Figure 7 shows the difference in NB between the two models averaged over the five splits. We see TB
outperforms SB for most target thresholds, especially where decisions about adjuvant chemotherapy are
made. Compared to SB, tailoring achieves up to 3.6 more true positives per 1000 patients (when t = 0.15),

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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Fig. 8. Marginal density plots of posterior parameters for t = 0.15 for SB (blue) and TB (red).

Table 1. Overlapping area of posterior
distributions for each coefficient based
Gaussian kernel density estimations
(Pastore and Calcagnì, 2020).

Covariate Posterior overlap (%)

Nodes 3.05
Size 23.46
Chemo 41.92
Age 48.78
Hormone 57.76
Grade 62.66
Screen 69.94

which is equivalent to having 3.6 more true positives per 1000 patients for the same number of unnecessary
treatments.

Next, we examine the effect of tailoring on the posterior distributions of the coefficients.As an exemplar,
we use the posterior samples for the model corresponding to t = 0.15 (Figure 8). We see that tailoring
affects both the location and spread of the estimates compared to standard modeling. First, note the wider
spread of tailoring compared to the standard models. Second, the tailored posteriors are centered on
different values. The most extreme example is the coefficient for the number of nodes. Under tailoring
it has a stronger positive association with the risk of death. To quantify the discrepancy between the
posteriors of the two models Table 1 shows estimates of the overlapping area between the posteriors for
each covariate. These range from 3% to 70%. The relative shifts in magnitude of the effect sizes indicates
different relative importance of the covariates in terms of their contribution to the predictions from the
two models.



100 S. KARAPANAGIOTIS AND OTHERS

Fig. 9. Difference in Net Benefit (	NB) between TB and EuroSCORE (ES) (red), and between TB and SB (green)
for various target thresholds evaluated on the test set. Error bars correspond to one standard error of the difference
(see caption of Figure 7 for details).

4.2. Real data application 2: Cardiac surgery prognostication

For our second case study, we investigate whether TB allows for better predictions, and consequently
improved clinical decisions for patients undergoing aortic valve replacement (AVR). Cardiac patients
with severe symptomatic aortic stenosis are considered for surgical AVR (SAVR). Given that SAVR is
typically a high-risk procedure, transcatheter aortic valve implantation (TAVI) is recommended as a lower
risk alternative but it is associated with higher rates of complications (Baumgartner and others, 2017). The
European System for Cardiac Operative Risk Evaluation (EuroSCORE) is routinely used as a criterion
to choose between SAVR and TAVI (Roques and others, 2003). EuroSCORE is an operative mortality
risk prediction model which takes into account 17 covariates encompassing patient-related, cardiac and
operation-related characteristics. It was first introduced by Nashef and others (1999) and it has been
updated in 2003 (Roques and others, 2003) and 2012 (Nashef and others, 2012). Published guidelines
recommend TAVI over SAVR if a patient’s predicted mortality risk is above 10% (Baumgartner and others,
2017) or 20% (Vahanian and others, 2008). Here, we compare the performance of TB with EuroSCORE
and SB given these target thresholds.

We use data (n = 9031) from the National Adult Cardiac Surgery Audit (UK) collected between 2011
and 2018. We use 80% of the data for training and the rest for testing, repeating the train/test set split m = 5
times. For this data a design set to estimate πu(xi) is not necessary (see Figure S1 of the Supplementary
material available at Biostatistics online) but instead we use the predictions from EuroSCORE (Roques
and others, 2003). We add an extra step of re-calibration to account for the population/time drift (Cox,
1958; Miller and others, 1993). Figure 9 presents the results. We see TB outperforms both EuroSCORE
and SB when targeting the 0.1 threshold, and only EuroSCORE at t = 0.2.

We further investigate the effect of tailoring to individual parameters. Figure 10 shows the highest
posterior density (HPD) regions for a subset of the covariates under SB and TB for t = 0.1 and 0.2. As
in the previous case study, under tailoring the regions are generally wider and are centered on different
values. For instance, compared to SB under both t = 0.1 and 0.2 the posteriors of critical operative state
and unstable angina are shifted towards the same direction (positive for critical operative state and negative

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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Fig. 10. Highest posterior density (HPD) regions for the parameters. Dots represent medians, and thick and thin lines
represent 90 and the 95% of the HPD regions, respectively. The dashed vertical lines pass through the posterior median
values of the SB parameters.

for unstable angina). Contrast these with the posterior of emergency that compared to SB it is centered
on more positive values under t = 0.1 and more negative under t = 0.2. On the contrary, extracardiac
arteriopathy, recent myocardial infarct, and sex are centered on similar values across the three models.
This once more exemplifies the change in the contribution of some covariates towards the predicted risks
when taking into account misclassification costs.

5. Discussion

In this work, we present Tailored Bayes, a framework to incorporate misclassification costs into Bayesian
modeling. We demonstrate that our framework improves predictive performance compared to standard
Bayesian modeling over a wide range of scenarios in which the costs of different classification errors are
unbalanced.

The methodology relies solely on the construction of the datapoint-specific weights (see (2.7)). In
particular, we need to specify t, the grid of λ values for the CV, a model to estimate πu(xi) and the
weighting function, h. For some applications there may be a recommended target threshold, t. For instance,
UK national guidelines recommend that clinicians use a risk prediction model (QRISK2; Hippisley-Cox
and others, 2008) to determine whether to prescribe statins for primary prevention of cardiovascular
disease (CVD) if a person’s CVD risk is 10% or more (NICE, 2016). When guidelines are not available,
the specification of t is inevitably subjective, since it reflects the decision maker’s preferences regarding the
relative costs of different classification errors. In practice, eliciting these preferences may be challenging,
despite the numerous techniques that have been proposed in the literature to help with this (e.g., Tsalatsanis
and others, 2010; Hunink and others, 2014). In such situations, we advocate fitting the model for a range of
plausible t values that reflect general decision preferences. For example, research in both mammographic
(Schwartz and others, 2000) and colorectal cancer screening (Boone and others, 2013) has shown that
healthcare professionals and patients alike greatly value gains in sensitivity over loss of specificity. For
additional examples on setting t, see Vickers and others (2016) and Wynants and others (2019). Further
examples in which benefits and costs associated with an intervention (as well as with patients’preferences)



102 S. KARAPANAGIOTIS AND OTHERS

Fig. 11. Predictive uncertainty for the risk of death in two patients. These posterior predictive distributions reflect
the range of risks assigned to these patients, and the mean risk is shown as vertical lines. Despite the fact that both
patients have similar mean risks, we may be more inclined to trust the predictions for patient 2 given the lower amount
of uncertainty associated with that prediction.

are taken into account, are provided by Manchanda and others (2016), Le and others (2017), Watson and
others (2020).

We discuss the remaining elements for the construction of the weights in Section S9 of the
Supplementary material available at Biostatistics online. There we define the effective sample size for
tailoring, ESST , and showcase how to use it to set the upper limit for the grid of λ values. In addition, we
show our framework is robust to miscalibration of πu(xi) and the choice of h. The framework is therefore
flexible, allowing many ways for the user to specify the weights.

In contrast to the work of Hand and Vinciotti (2003), our approach is framed within the Bayesian
formalism. Consequently, the tailored posterior integrates the attractive features of Bayesian inference—
such as flexible hierarchical modeling, the use of prior information and quantification of uncertainty—
while also allowing for tailored inference. Quantification of uncertainty is critically important, especially
in healthcare applications (Begoli and others, 2019; Kompa and others, 2021). Whilst two (or more)
models can perform similarly in terms of aggregate metrics (e.g., area under ROC curve) they can provide
very different individual (risk) predictions for the same patient (Pate and others, 2019; Li and others,
2020). This can ultimately lead to different decisions for the individual, with potential detrimental effects.
Uncertainty quantification can mitigate this issue since it allows the clinician to abstain from utilizing the
model’s predictions. If there is high predictive uncertainty for an individual, the clinician can discount or
even disregard the prediction.

To illustrate this point, we use the SB posterior from the breast cancer prognostication case study. The
posterior predictive distributions for two patients are displayed in Figure 11. The average posterior risk
for each patient is indicated by the vertical line at 34 and 35%, respectively. Based solely on these average
estimates chemotherapy should be recommended as a treatment option to both patients (see Section 4.1). It
is clear, however, that the predictive uncertainty for these two patients is quite different, as the distribution
of risk for patient 1 is much more dispersed than the distribution for patient 2. One way to quantify the
predictive uncertainty would be to calculate the standard deviation of these distributions, which are 6.9%
and 2.8% for patient 1 and patient 2, respectively. Even though both estimates are centered at similar
values the predictive uncertainty for patient 1 is more than two times higher than patient 2. Using this
information, we could flag patient 1 as needing more information before making a clinical decision.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab023#supplementary-data
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A few related comments are in order. In this work, we use vague Gaussian priors, but they could be
replaced with other application-specific distribution choices. For instance, in the case of high-dimensional
data another option could be the sparsity-inducing prior used by Bayesian lasso regression (Park and
Casella, 2008). Furthermore, we can easily incorporate external information in a flexible manner, through
πu(x), in addition to the prior on the coefficients. If a well-established model exists, then it is natural
to consider using it to improve the performance of an expanded model. We have implemented such an
approach in Section 4.2. Cheng and others (2019) propose several approaches for incorporating published
summary associations as prior information when building risk models. A limitation of their approaches is
the requirement for a parametric model, that is, information on regression coefficients. Our method does
not have any restriction on the form of πu(x), it can arise from a parametric or non-parametric model.

We note that we opted to use the same set of covariates, x, to estimate both πwi (x; β) and πu(x). This
does not need to be the case. If available, we could instead use another set of covariates, say Z to estimate
πu(z). The set Z could be a superset or a subset of X or the two sets could be completely disjoint. We also
note that in this work we focus on linear logistic regression to showcase the methodology (linear refers
to linear combinations of the covariates). This is because it is widely utilized and allows analytical and
computational tractability. Nevertheless, we would stress that our framework is generic, and not restricted
to linear logistic regression. It can accommodate a wide range of modeling frameworks, from linear to non-
linear and from classical statistical approaches to state-of-the-art machine learning algorithms. As a result,
future work could consider such extensions to non-linear models. Also, future work could consider the
advantages of a joint estimation, that is, both steps, stage 1 (estimation of weights) and stage 2 (estimation
of weighted prediction probabilities) jointly. A further direction is the extension of the framework to
high-dimensional settings.

To conclude, in response to recent calls for building clinically useful models (Chatterjee and others,
2016; Shah and others, 2019), we present an overarching Bayesian learning framework for binary classifi-
cation where we take into account the different benefits/costs associated with correct and incorrect classi-
fications. The framework requires the modelers to first think of how the model will be used and the conse-
quences of decisions arising from its use—which we would argue should be a prerequisite for any modeling
task. Instead of fitting a global, agnostic model and then deploying the result in a clinical setting we propose
a Bayesian framework to build towards models tailored to the clinical application under consideration.

6. Software

The R code used for the experiments in this article has been made available as an R package, TailoredBayes,
on Github: https://github.com/solonkarapa/TailoredBayes.

Supplementary material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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