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Accurate and reproducible tissue identification is essential for understanding

structural and functional changes that may occur naturally with aging, or

because of a chronic disease, or in response to intervention therapies.

Peripheral quantitative computed tomography (pQCT) is regularly employed

for body composition studies, especially for the structural and material

properties of the bone. Furthermore, pQCT acquisition requires low

radiation dose and the scanner is compact and portable. However, pQCT

scans have limited spatial resolution and moderate SNR. pQCT image quality

is frequently degraded by involuntary subject movement during image

acquisition. These limitations may often compromise the accuracy of tissue

quantification, and emphasize the need for automated and robust

quantification methods. We propose a tissue identification and quantification

methodology that addresses image quality limitations and artifacts, with

increased interest in subject movement. We introduce a multi-atlas image

segmentation (MAIS) framework for semantic segmentation of hard and soft

tissues in pQCT scans at multiple levels of the lower leg. We describe the stages

of statistical atlas generation, deformable registration and multi-tissue classifier

fusion. We evaluated the performance of our methodology using multiple

deformable registration approaches against reference tissue masks. We also

evaluated the performance of conventional model-based segmentation against

the same reference data to facilitate comparisons. We studied the effect of

subject movement on tissue segmentation quality. We also applied the top

performing method to a larger out-of-sample dataset and report the

quantification results. The results show that multi-atlas image segmentation

with diffeomorphic deformation and probabilistic label fusion produces very

good quality over all tissues, even for scans with significant quality degradation.

The application of our technique to the larger dataset reveals trends of age-

related body composition changes that are consistent with the literature.
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Because of its robustness to subject motion artifacts, our MAIS methodology

enables analysis of larger number of scans than conventional state-of-the-art

methods. Automated analysis of both soft and hard tissues in pQCT is another

contribution of this work.

KEYWORDS

tissue segmentation, tissue quantification, multi-atlas techniques, subject movement,
clinical application, pQCT

1 Introduction

Accurate segmentation of tissues using medical imaging is

key for the quantification of changes in the structure and

composition of tissues, which may result from diseases, aging,

and other risk factors related to the tissue(s) in question

(Cordova et al., 2014; Töpfer et al., 2015; Owen et al., 2019;

Rodrigues and Pinheiro 2019; Wong and Manske 2020). Recent

advances of artificial intelligence (AI) in the field of medical

imaging have also drawn the interest of researchers in the

application of computer techniques in the area of bone and

muscle imaging (Burns et al., 2020). In clinical studies,

segmentation of bone, muscle, and adipose tissue can be used

for computing objective measures and descriptors of body

composition and for exploring the causes and effects of

differences of these descriptors between subject groups

(Lauretani et al., 2008; Makrogiannis et al., 2018).

In the past 2 decades, peripheral quantitative computed

tomography (pQCT) and high resolution peripheral

quantitative computed tomography (HR-pQCT) have emerged

as essential technologies for segmentation and quantification of

bone, muscle and adipose tissue properties at the diaphyseal

regions of the limbs. Segmentation of hard and soft tissues in

pQCT and HR-pQCT imaging has been used to assess the effects

of type-2 diabetes mellitus (T2DM) (Starr et al., 2018),

osteoporosis (Simon et al., 2022) and osteoarthritis (Chen

et al., 2018), to establish measures for characterizing sex-,

ethnic-, site-, and age-related outcomes (Gabel et al., 2018), to

study the effect of exercise on the muscle and fat cross-sectional

areas (Rowe et al., 2019), and in studies of aging and age-related

diseases (Chow et al., 2022; Liu et al., 2022). A challenge in

pQCT-based segmentation is subject movement and the

associated motion artifacts. Subject movement, subtle or

obvious, occurs frequently in standard pQCT and HR-pQCT

scans (Wong 2016). It may degrade the image quality and affect

the assessment of bone and muscle properties (Pialat et al., 2012;

Chan et al., 2018). pQCT motion has been assessed by visual

inspection followed by a pass or fail decision. Usual criteria are

the presence of discontinuities and streaks at the cortical bone

and changes in intensity of trabecular bone. Motion streaks

originating from the cortical bone extend into the muscle.

Quantitative evaluation methods have been proposed for

pQCT (Blew et al., 2014) and HR-pQCT (Pauchard et al.,

2011; Sode et al., 2011). Thresholding (Blew et al., 2014) and

watershed segmentation techniques (Wong 2016) have been

employed to identify and assess motion streaks in the muscle.

Motion artifact correction and automatic segmentation are

desirable.

However, to the best of our knowledge, there is no previous

report in the literature on pQCT segmentation techniques

explicitly addressing subject movement and the limited

contrast-to-noise ratio that are characteristic of this modality.

In this work we propose to address this gap by developing a

multi-atlas image segmentation (MAIS) framework (Rohlfing

et al., 2001, 2005; Shen and Hammer, 2002; Langerak et al., 2010;

Sotiras et al., 2013; Iglesias and Sabuncu 2015) for identification

of soft and hard tissues in pQCT scans of the lower leg. TheMAIS

framework includes the stages of statistical atlas generation,

linear and non-linear registration, and label fusion for tissue

segmentation. In these stages we use pQCT images of the lower

leg at 4%, 38%, and 66% of the tibial length. We validated

segmentation performance against manual reference masks

using the Dice Similarity Coefficient (DSC). We evaluated the

performance of multiple atlas-based tissue segmentation

techniques and an established model-based tissue

segmentation technique. We expect that the segmentation

performance of multi-atlas based methods is largely unaffected

by motion. We have also applied our framework to a larger out-

of-sample dataset and reported our results on age-related tissue

composition changes. Figure 1 summarizes the main

components of the proposed framework and related

experiments.

2 Our methodology

2.1 Atlas-based tissue segmentation

We formulate the problem of atlas-based segmentation next.

Given a subject S, an atlas A and its atlas label map SA, we aim to

produce the segmentation of S by warping the atlas to the spatial

domain of the subject. This stage is called image registration, and

is followed by pixel-wise assignment of tissue labels from the

warped segmentation atlas to the subject (Figure 2). Since a single

atlas is used for segmentation, we refer to this method as single

atlas image segmentation (SAIS).

In multi-atlas image segmentation (MAIS), multiple atlases

Ai, i = 1, . . . , N and corresponding segmented atlases SAi, i = 1,
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. . . , N are used to produce a segmentation of the subject S. The

main stages of a multi-atlas-based segmentation algorithm are

registration, label propagation and label fusion. Figure 3 shows

the main stages of MAIS. In the following subsections, we

elaborate on our method based on these stages. We will use A

when referring to each atlas Ai, i ∈ {1, . . . , N}.

2.2 Image registration

Image registration is a key stage of atlas-based

segmentation as described in the previous section. The goal

of registration is to align the spatial domain of a subject with

that of an atlas. In other words, we wish to find the optimal

FIGURE 1
Main components of the proposed framework. STAPLE (STPL), free-form deformation (FFD), symmetric diffeomorphic demons (SDD),
symmetric normalization (SyN), symmetric normalization - only (SyNO), dice similarity coefficient (DSC), true positive rate (TPR), precision (PR)
squared-Spearman’s correlation coefficient (R2), and coefficient of variation - root mean squared difference (CV-RMSD).

FIGURE 2
Illustration of single atlas based image segmentation (SAIS) stages of lower leg scans at 4%, 38% and 66% tibia. First row: subject (S), statistical
atlas (A) and segmented atlas label map (SA) for each tibial length that are used as inputs for segmentation. Second row: linear registration, nonlinear
registration and label propagation output. The tissue labels are color-coded as follows: trabecular bone (yellow), cortical bone (cyan), muscle (red),
and SAT (white). μ denotes linear transformation, τ◦μ denotes the composition of linear (μ) with nonlinear (τ) transformations.
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deformation τ* in the set {τ, τ : (A, ΩA) → (S, ΩS)} of all

transformations from the spatial domain of the source image

(or atlas) (A, ΩA) to the subject space (S, ΩS), that minimizes

the following energy functional (Sotiras et al., 2013;

Vercauteren et al., 2007),

E τ( ) ≔ λζζ S, A◦τ( ) + λρρ τ( ), (1)

where ζ is the similarity term, ρ is the regularization term, λζ
and λρ are the weights of the similarity and regularization terms,

respectively. Therefore,

τp � argmin
τ

E τ( ). (2)

To ensure accurate registration we applied both linear and

nonlinear registrations. Linear registration is used to capture

the rigid displacement of the subject while nonlinear

registration is used to capture the local deformation of the

anatomical structures of the subject. Anatomical structures are

the tissue types, i.e., the trabecular bone, cortical bone, muscle,

and subcutaneous adipose tissue as shown in Table 1. Figure 2

shows examples of rigid displacements of atlas A denoted by

μ(A), and local deformations τ◦μ produced by nonlinear

registration τ◦μ. Our techniques for linear and nonlinear

registration are described below.

2.2.1 Linear registration
Given a subject S and for each atlas A, we estimate the

parameters of a linear transformation μ from atlas space (A, ΩA)

to the subject space (S,ΩS) that defines the rigid motion between

the atlas and the subject. Our linear transformation is modeled

using affine transformations. We utilize the Mattes’ mutual

information similarity measure (Mattes et al., 2003) given in

Eq. 3,

ζ S, A◦μ( ) � −∑
ι

∑
κ

p ι, κ|μ( )log p ι, κ|μ( )
pA ι|μ( )pS κ( ) (3)

and a regular step gradient descent optimizer, to estimate the

parameters of the affine transformation μ,where p, is the joint

probability distribution of subject and the atlas, pA and pS are the

marginal probability distributions of the atlas and the subject

respectively, ι = 1, . . . , nA and κ = 1, . . . , nS are the indices of

the histogram bins for the source and target image. The image μ(A)

of the atlas A lives in the subject space and approximates the rigid

motion between the subject and the atlas (Figure 2).

2.2.2 Nonlinear registration
In this stage, the goal is to correct the local deformations

between the subject and the atlas. Hence we seek the parameters

of deformation τ : (μ(A), ΩS) → (S, ΩS) from μ(A) ⊂ S onto S. We

introduce the use of three nonlinear deformable registration

techniques, free-form deformation (FFD), symmetric

diffeomorphic demons (SDD), and symmetric image

normalization (SyN, SyNO) for our multi-atlas-based registration.

We discuss the nonlinear methods for our multi-atlas-based image

segmentation below.

2.2.2.1 Free-form deformations

Free-form deformation was originally proposed by Rueckert

et al., 1999 and was applied to automated registration of breast

FIGURE 3
Flowchart that shows the main stages of our multi-atlas based segmentation methodology.

TABLE 1 Tissues to quantify in each anatomical site.

Anatomical
site

Tissues to quantify

4% tibia Trabecular Bone (TB)

38% tibia Cortical Bone (CB), Trabecular Bone

66% tibia Cortical Bone, Trabecular Bone, Subcutaneous Adipose
Tissue (SAT), Muscle
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MRI scans. It uses a spline interpolation kernel to compute the

deformation values between the control points that produces a

locally controlled, globally smooth transformation.

Given a 2D spatial domainΩ = {x = (x, y)|0 ≤ x <X, 0 ≤ y < Y}

of an image, let Φ denote an nx × ny mesh of control points ϕi,j=

(iδ, jδ) with uniform spacing δ. Rueckert et al., 1999 proposed a

method that seeks the optimal FFD (displacement field τ) written

as the 2-D tensor product of 1-D cubic B-Splines

τ x( ) � ∑2
l�0

∑2
m�0

Bl u( )Bm v( )ϕi+l,j+m (4)

that optimizes the energy functional in Eq. 1. In Eq. 4, i = �x/nx� −
1, j = �y/ny� − 1, u = x/nx − �x/nx�, v = y/ny − �y/ny�, and Bl
represents the lth basis function of the B-spline. The

regularization term ρ is given by the bending energy of a

thin-plate of metal, which controls the smoothness of the

transformation, defined by

ρ τ( ) � 1
|Ω|∫∫Ω

zτ

zx
+ zτ

zy
( )2

dΩ, (5)

where |Ω| is the cardinality of the image spatial domain. We

employed Matte’s mutual information (Mattes et al., 2003)

defined in Eq. 3 as the similarity measure ζ. We used λζ = −1

and λρ = 0.01 in the energy function of Eq. 1. The optimization

process is based on updating control points via the gradient of the

cost function. We employed Limited-memory

Broyden–Fletcher–Goldfarb–Shannon optimization to find the

energy minimum of Eq. 1. We embedded this method in a

hierarchical multi-scale structure to be able to capture a wide

range of deformations. This structure contains a coarse and fine

scale for optimization. At the coarse scale, the optimizer can capture

extensive deformations, but the solution may have limited precision.

So we use the coarse solution to initialize the optimization at the fine

scale and find a more precise deformation field.

2.2.2.2 Symmetric diffeomorphic demons

We utilize a variant of the Demons algorithm that is

optimized in the log domain as proposed in Vercauteren

et al., 2008. This is a variational method that seeks to

minimize the following energy functional:

E c, τ( ) � 1

λ2ζ

1
2|Ωp| ∑

x∈Ωx

|S x( ) − A τ x( )( )|2 + 1

λ2h
‖log τ−1◦c( )‖2

+ 1

λ2ρ
‖∇log τ( )‖2

(6)
where the variable c was introduced to approximate the error in

the correspondence between image pixels, λh accounts for spatial

uncertainty on the correspondences, and Ωp is the region of

overlap between S and A◦τ.

In the update step, and under the assumption that the current

transformation τ is expressible as an exponential of smooth

vector fields v, i.e., τ = exp(v), the Baker-Campbell Hausdorff

(BCH) approximations are used to seek a smooth velocity field Z

(v, εu), such that exp(Z(v, εu) ≈ τ◦ exp(εu), where ε is a weight
parameter. Then u is given by

u x( ) � − S x( ) − A◦τ x( )( )
‖Jp‖2 + λ2ζ x( )/λ2h( )( )⎛⎝ ⎞⎠Jx

⊤
, (7)

and J is the Jacobian matrix. In the log-domain, the inverse of a

spatial transform τ−1, parametrized by τ = exp(v), can be obtained

efficiently by backward computation τ−1 = exp (−v). A symmetric

transformation can be obtained from a nonsymmetric one by

making the global energy symmetric, i.e.,

τopt � argmin
τ

Esym ≔ E S, A◦τ( ) + E A, S◦τ−1( )( ). (8)

The minimization of the energy functional in Eq. 8 can be

formulated as a constrained equation using two diffeomorphisms

τopt, τ
−1
opt[ ] � arg min

τ,τ−1[ ] Esym. (9)

2.2.2.3 Symmetric image normalization

This method uses diffeomorphisms as the transformation

model (Avants et al., 2008). SyN performs the normalization by

minimizing the energy functional defined in Eq. 10. SyN searches

for a symmetric diffeomorphic spatiotemporal mapping, τ ∈
Diff0: = {the space of diffeomorphic mappings with

homogeneous boundary conditions} that minimizes the energy

functional in the optimization problem defined in Eq. 10.

Esym S, A( ) � inf
τ1

inf
τ2

∫1
2

t�0
‖]1 τ1 x, t( ), t( )‖2L + ‖]2 τ2 x, t( ), t( )‖2L{ }dt + ∫

Ω
ζ S τ2 0.5( )(( , A τ1 0.5( )( )dΩ

subject to each τ ∈ Diff0 the solution of :dτ x, t( )/dt � ]i τ i x, t( ), t( )
with τi x, 0( ) � I, and τ−1i τ i( ) � I, τ i τ−1i( ) � I

(10)

The first integral in Eq. 10 corresponds to the regularization term

that is induced by a functional norm ‖·‖L through a linear

differential operator L = a∇2 + bI, with constants a and b,

and I is the identity mapping. The second integral

corresponds to the similarity term between the reference and

input image, where ζ is Mattes’mutual information defined in Eq.

3, Ω is the common spatial domain of the images, ](x, t) is the
velocity field, and t is the time. The optimization process

performs gradient descent to update the deformation field

and a fixed point method calculates the inverse

transformation. The velocity fields ]i are computed

iteratively, and they update the deformation τi, i = 1, 2. The

deformable registration stage is preceded by rigid and affine

transformation steps to address global misalignments as

described in.
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2.3 Shape modeling - statistical atlas
generation

We generate the statistical atlases by iteratively averaging

subject scans that are mapped onto a common reference space.

We first choose one subject to serve as the reference scan.

Then, we linearly register all subjects to the selected reference

and compute the group average. In the second iteration, we

use as reference the average image produced by linear group

registration. Next, we map all subjects to the new computed

template using nonlinear registration, and compute the

average. In the remaining iterations we only apply

nonlinear mappings to update the average image. We

repeat the above steps until the final iteration i = K. This

process converged to an atlas template within K = 5 iterations

on our data.

The above steps generate sequences of transformations

τ(n)i , where n = 0, 1, 2, . . . ,N is the nth image and i = 0, 1, . . . , K

is the ith iteration. Rohlfing et al., 2001 showed that in each

iteration i, the transformation τ(n+1)i and the preceding

transformation τ(n)i differ only by a small amount of

deformation. Finally, a human operator labeled the

trabecular bone, cortical bone, muscle, and SAT using the

MIPAV software suite (McAuliffe et al., 2001) by manual

selection of control points and spline interpolation. In the first

row of Figure 2, we display our computed atlas image and the

atlas label map for 4%, 38% and 66% of the tibia length,

respectively. In the first row, third, sixth and ninth columns of

Figure 2, we display the color-coded atlas labels, for each tibial

site under consideration.

2.4 Multi-atlas based tissue segmentation

2.4.1 Label propagation
Label propagation is the process of assigning labels from the

warped atlas labels to the reference space. We use the linear (μ)

and nonlinear (τ) transformations between S and A that we

found in the registration stage, to map labels from the atlas to the

subject space. Label propagation is achieved by nearest neighbor

interpolation after warping the atlas label to the subject domain

via the estimated deformation τ≔τ◦μ. The segmentation map is

produced by τ(SA).

2.4.2 Label fusion
This is a key stage of MAIS. Here, we combine all the

propagated atlases to obtain a final segmentation (Iglesias

and Sabuncu 2015). Various methods have been proposed

for this stage including best atlas selection, a selective and

iterative method for performance level estimation

(SIMPLE), joint label fusion, majority voting, weighted

majority voting, and simultaneous truth and performance

level estimation (STAPLE) algorithm (Warfield et al., 2004;

Langerak et al., 2010; Wang et al., 2013; Iglesias and Sabuncu

2015). In this work, we utilized STAPLE for fusing

segmentation results by individual atlases. We utilize

STAPLE for label fusion because it has performed very

well over a range of applications Cardoso et al., 2013;

Weston et al., 2019.

STAPLE can be formulated using probabilistic classification

terms. Given K segmentations (classifications) of a subject S

havingN pixels, let ek(x) be the decision of classifier k at voxel x. If

the (unknown) ground truth label for voxel x is l, we say that x ∈
Cl. The performance of classifier k is determined by two

parameters p (sensitivity) and q (specificity), referring to the

fractions of true positives and true negatives among the classified

voxels, that maximizes the complete log likelihood function, (p,

q) = argmaxp,q ln f (D, T|p, q), where T � ∪n
l�1Cl is the true

segmentation, also called missing or hidden data, and D = [ek(x)]

is an N × K decision matrix.

For each classifier k, and each class Cl, the parameters p and q

are modeled independently as the following conditional

probabilities: pk = Pr (ek(x) = l|x ∈ Cl)and qk = Pr (ek(x) ≠ l|

x∉Cl). The process of estimation of p and q is achieved by the

Expectation-Maximization (EM) algorithm.

The final segmentation Ŝ at voxel x is computed by E(x) =

argmaxiP (x ∈ Ci|e1(x), . . ., eK(x)). The probability p (x ∈ Ci|e)

follows from the classifier’s decisions and their performance

parameters using Bayes’ rule (Rohlfing et al., 2005).

3 Data description and performance
evaluation measures

3.1 Overview of dataset

We used pQCT data obtained from the InCHIANTI

clinical study to evaluate the performance of the methods.

InCHIANTI is a longitudinal study of risk factors for

mobility disability performed in a representative sample of

the middle aged and older populations living in Tuscany,

Italy (Ferrucci et al., 2000; Lauretani et al., 2008;

Makrogiannis et al., 2018). The validation dataset is

randomly sampled from the original InCHIANTI baseline

database as in Makrogiannis et al., 2018. It consists of pQCT

scans of the lower leg acquired at the 4%, 38% and 66% tibial

length of the lower leg. Our randomly sampled dataset

contains a total of 77 samples, that is 30 samples at 4%,

27 samples at 38% and 20 samples at 66% tibial length. The

pQCT scans of the right lower leg were acquired using a XCT

2000 scanner (Stratec Medizintechnik GmbH, Pforzheim,

Germany). The slice thickness of each scan is 2.1 mm and the

in-plane slice is 0.5 mm. At each tibial location, we used three

templates for MAIS. One of these three samples was used to

initialize statistical atlas generation. We cross-validated the

performance of each method on the testing samples that
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remained after removing the three templates. We focused on

specific tissue(s) of interest at each tibial location: trabecular

bone at 4%; cortical and trabecular bone at 38%;

subcutaneous adipose tissue (SAT), muscle, cortical bone

and trabecular bone at 66% as shown in Table 1.

3.2 Motion artifacts

Unique characteristics of the test data that made it

suitable for our analysis and clinically relevant are: 1) the

strong representation of older persons who are likely to

experience walking difficulties, 2) the different locations of

the tibial length that we considered for identification of six

different tissue types (Table 1), 3) the incidence of motion

artifacts in the dataset making it complicated for

segmentation. Motion artifacts occur as a result of the

voluntary and involuntary movement of the subject during

image acquisition.

Frequent criteria for motion assessment are discontinuities

and streaks in the cortical bone, and blurring and shifting of

trabecular bone. A clinical specialist used the above visual

inspection criteria and a grading system from 1 to 5 (1: no

artifacts) to classify the subject motion artifacts as described in

Wong 2016. This effect was more evident at the 66% tibial length

with more than 50% of the samples having significant motion

artifacts corresponding to grades 4 and 5.

3.3 Validation

We performed quantitative analysis of the performance of

the atlas-based tissue identification schemes by calculating the

Dice Similarity Coefficient (DSC), sensitivity or True Positive

Rate (TPR), and Precision (PR) between segmentation results

and their ground truths T. We cross-validated the

performance metrics by excluding the two subjects we used

as templates in MAIS, and the subject we used as template for

statistical atlas generation. We made comparisons across

single- and multi-atlas based image segmentation methods

with respect to registration algorithms. We compared the

results obtained by multi-atlas- based techniques with those

obtained by the automated tissue identification and

quantification (TIDAQ) method (Makrogiannis et al.,

2018), to emphasize the performance of MAIS techniques.

We chose TIDAQ for our comparisons because it is a model-

based tissue segmentation method that has produced good

results for images of good quality, but may be challenged by

images that have moderate to significant motion artifacts. We

performed nonparametric Wilcoxon rank sum tests to

examine the effects of motion artifacts on tissue

identification using pQCT scans of 66% tibia. The sample

size is n = 20.

3.4 Tissue quantification

We provide an extension of our analysis to non-labeled pQCT

scans of the lower leg from the InCHIANTI dataset to quantify body

composition changes caused by aging. Our aim is to show the

reliability of the MAIS-technique using SDD-STPL for tissue

quantification on an extended clinical dataset and evaluate the

agreement of our results with clinical observations. We decided

to quantify the baseline InCHIANTI dataset that includes a total of

2,425 pQCT scans. We applied the following procedures to prepare

the data for analysis. With the help of TIDAQ software, we sorted

the scans according to anatomical sites, selected scans at 4%, 38%,

and 66% of tibial length and removed scans with different

orientations. We then separated the remaining scans according to

their gender (male and females). After data preparation, we had a

total of 1748 scans for quantification thatmay be grouped as follows:

585 scans (males: 272, and females: 313) at 4%; 583 scans (males:

272, females: 311) at 38%; and 580 scans (Males: 270, females: 304) at

66%. A summary of our quantification dataset, including gender and

age distribution, is provided in Table 2.To characterize the effect of

aging on body composition, we calculated the cross-sectional area

(CSA) and density of the trabecular bones at 4% tibia, cortical bones

at 38% tibia, and muscle and subcutaneous adipose tissue (SAT) at

66% tibia. To obtain these measures, we ran our SDD-STPL

technique on all datasets to automatically identify these tissues

and computed the total CSA and the average density for each

tissue type. We decided to perform analyses of both genders jointly,

as well as separate gender-conditional analyses.

We used scatter plots and regression analyses of

quantification results to study the changes in body

composition (response variable) with respect to age (predictor

variable). We utilized the following statistical measures to

analyze the relationship between the two variables: the square

of the correlation coefficient (R2), the coefficient of variation of

TABLE 2 Summary of the unlabeled pQCT scans of the lower leg from
the InCHIANTI Study.

Site (%) Gender N Age (yrs)

Min Max Med Ave Std

4 Male 272 28 104 74 87.3 14.2

Female 313 26 104 74 87.4 15.0

Total 585 26 104 73 87.4 14.6

38 Male 272 28 104 73 69.2 14.5

Female 311 26 104 74 69.4 14.7

Total 583 26 104 74 69.3 14.6

66 Male 270 28 104 73 69.2 14.3

Female 304 26 104 73 69.1 14.8

Total 580 26 104 73 69.1 14.5
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the root mean squared difference (CV-RMSD) (Eq. 11) between

the reference (y) and the predicted (ŷ) measurements, the slope

and intercept of the regression line, and the p − values.

CV − RMSD � 1
μ

�������������∑N
k�1 yk − ŷk( )2

N

√
; μ � ∑N

k�1yk

N
(11)

4 Experiments and results

Here we evaluate the performances of the fourMAIS techniques

and an automated model-based tissue quantification method

(TIDAQ) (Makrogiannis et al., 2018). We then explore the effect

of subject movement artifacts on tissue segmentation performance.

Finally, we expand our analysis to quantify the complete

InCHIANTI baseline dataset.

Our aim is to support or reject the hypotheses that 1) MAIS

techniques, in general, improve the segmentation performance of

SAIS, 2) STAPLE on SDD mappings produces better segmentation

quality than the other methods, 3) MAIS is more resilient to subject

movement than model-based segmentation.

We analyzed the performance of the deformable methods

by validating the SAIS results of statistical atlases against

reference standards, T. Reference standard is a tissue label

map that was generated manually by a clinical specialist. We

evaluated single atlas segmentation performances of STAT-

FFD, STAT-SDD, STAT-SyN, and STAT-SyNO, where

‘STAT’ represents the statistical atlas. The MAIS techniques

we developed and evaluated in this framework are STPL-FFD,

STPL-SDD, STPL-SyN, and STPL-SyNO. ‘SyNO’ denotes an

‘Symmetric Normalization with our own linear registration’

and ‘STPL’ denotes ‘STAPLE.’

TABLE 3 4% Trabecular Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Method DSC TPR PR

STAT-FFD 0.947 ± 0.045 0.96 ± 0.021 0.939 ± 0.084

STPL-FFD 0.936 ± 0.056 0.971 ± 0.018 0.911 ± 0.103

STAT-SDD 0.959 ± 0.019 0.939 ± 0.037 0.981 ± 0.015

STPL-SDD 0.972 ± 0.009 0.965 ± 0.021 0.98 ± 0.014

STAT-SyNO 0.906 ± 0.072 0.922 ± 0.081 0.9 ± 0.103

STPL-SyNO 0.914 ± 0.068 0.936 ± 0.07 0.902 ± 0.104

STAT-SyN 0.947 ± 0.05 0.972 ± 0.017 0.93 ± 0.122

STPL-SyN 0.947 ± 0.054 0.975 ± 0.02 0.928 ± 0.128

TIDAQ 0.941 ± 0.022 0.913 ± 0.038 0.972 ± 0.024

FIGURE 4
Comparisons of tissue segmentation by MAIS and model-based
methods at 4% tibia and38% tibia. Two subjects (subject (A) and subject
(B)) are selected at each tibial site to demonstrate the performance of
the compared methods. At 4% the trabecular bone is delineated
by the green contour, and at 38% the cortical bone and the trabecular
bone are delineated by the green and magenta contours, respectively.
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4.1 4% tibia segmentation

Table 3 displays the summarized performance measures

obtained by the single-atlas image segmentation using the

statistical atlas and multi-atlas image segmentation methods,

and TIDAQ for identification of the trabecular bone (TB)

over the test-set. In Figure 4, column 1 we show examples of

multi-atlas segmentations of the trabecular bone at 4% tibia by

the compared methods, delineated by the green contours.

A comparison of single-atlas and multi-atlas segmentation

results in Table 3 shows that the use of multiple atlases improves

segmentation quality. With respect to multi-atlas image

segmentation techniques, we examined the performance

quality of the methods and the effect of label fusion on the

improvement of the results. The range and mean ± standard

deviation of DSC values produced by STPL-SDD are [0.944,

0.992] and 0.972 ± 0.009, by STPL-FFD are [0.739, 0.991] and

0.936 ± 0.056, by STPL-SyN are [0.743, 0.990] and 0.947 ± 0.054,

and by STPL-SyNO are [0.731, 0.991] are 0.914 ± 0.068,

respectively, as can be seen in Table 3. In summary, we

observe that STPL-SDD outperformed the other multi-atlas

techniques.

The range of DSC values produced by TIDAQ for trabecular

bone identification is [0.897, 0.967] with mean ± standard

deviation of 0.941 ± 0.022. The results in Table 3 indicate that

TIDAQ outperformed STPL-FFD, and STPL-SyNO registration

techniques. On the other hand, TIDAQ was less accurate than

STPL-SDD, and STPL-SyN.

4.2 38% tibia segmentation

Tables 4 and 5 contain the performance measures produced

by these experiments. Figure 4 displays examples of tissue

delineations, on two of our test subjects.

Overall, quantitative results of the methods reported in

Tables 4 and 5, show that SDD produced better segmentation

quality than the other deformable models, followed by SyN.

Low DSC values are produced by SyN, FFD, and SyNO

models (in decreasing order) for both cortical and

trabecular bone in some subjects. SyNO missed the

trabecular bone in few subjects producing zero DSC. We

also noticed that all deformable methods produced DSC

means that are greater than 75% for cortical and

trabecular bone except SyNO in the trabecular bone. We

infer that the range of DSC values for SDD is more compact

than the other deformable models. The minimum value of

DSC produced by SDD is greater than 85% for cortical bone,

and about 82% for trabecular bone. The DSC values produced

by SyN are fairly compact in the identification of bone

compartments, and their mean values are greater than 85%

with standard deviations about 10%.

In Tables 4 and 5, we observe that FFD results for both

single- and multi-atlas image segmentation techniques show a

wider DSC dispersion than SDD, the former producing values

lower than 60% for cortical bone and about 45% for

trabecular bone.

SyNO results show wider DSC spread than all of the other

deformable models. SyNO produced the least mean DSC of about

78% for identification of cortical bone and about 68% for

trabecular bone. This error is usually caused by linear

registration failures propagated to the symmetric

normalization stage.

TIDAQ performed very well in the identification of

trabecular bone, and much better in the identification of

cortical bone. Overall, the identification accuracy is promising

with DSC mean ± standard deviation of 89.7 ± 2.2% for cortical

bone and 82.5 ± 16.7% for trabecular bone. Despite the good

performance of TIDAQ, STPL-SDD outperformed it in the

identification of cortical bone, while STPL-SDD and STPL-

SyN outperformed it in the identification of trabecular bone.

This shows that multi-atlas image segmentation techniques have

the potential to produce higher tissue identification accuracy

than TIDAQ.

TABLE 4 38% Cortical Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Method DSC TPR PR

STAT-FFD 0.809 ± 0.126 0.933 ± 0.064 0.721 ± 0.125

STPL-FFD 0.781 ± 0.136 0.889 ± 0.135 0.706 ± 0.153

STAT-SDD 0.932 ± 0.022 0.965 ± 0.025 0.902 ± 0.032

STPL-SDD 0.947 ± 0.021 0.949 ± 0.036 0.947 ± 0.023

STAT-SyNO 0.78 ± 0.174 0.891 ± 0.173 0.704 ± 0.184

STPL-SyNO 0.76 ± 0.215 0.841 ± 0.233 0.704 ± 0.216

STAT-SyN 0.871 ± 0.07 0.983 ± 0.026 0.787 ± 0.104

STPL-SyN 0.873 ± 0.112 0.96 ± 0.079 0.807 ± 0.141

TIDAQ 0.897 ± 0.15 0.954 ± 0.156 0.847 ± 0.147

TABLE 5 38% Trabecular Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Method DSC TPR PR

STAT-FFD 0.823 ± 0.084 0.774 ± 0.145 0.917 ± 0.121

STPL-FFD 0.797 ± 0.131 0.759 ± 0.177 0.891 ± 0.155

STAT-SDD 0.92 ± 0.027 0.868 ± 0.052 0.981 ± 0.019

STPL-SDD 0.939 ± 0.019 0.91 ± 0.041 0.972 ± 0.026

STAT-SyNO 0.703 ± 0.294 0.627 ± 0.282 0.831 ± 0.309

STPL-SyNO 0.687 ± 0.343 0.624 ± 0.338 0.807 ± 0.363

STAT-SyN 0.849 ± 0.079 0.764 ± 0.081 0.97 ± 0.109

STPL-SyN 0.877 ± 0.08 0.811 ± 0.11 0.972 ± 0.078

TIDAQ 0.825 ± 0.167 0.726 ± 0.156 0.96 ± 0.187
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4.3 66% tibia segmentation

Figure 5 displays segmentation results produced by the

compared approaches on two scans with low motion

degradation and two scans with high motion degradation. The

mean ± standard deviation values of DSC, TPR and PR of each

tissue over all testing samples are given in Tables 6–9. Overall,

SDD exhibited better performance across the three metrics than

the other deformable models for the identification of all tissues,

followed by SyN and TIDAQ. In addition, SDD produced DSC,

true positive rate, and precision values of lower dispersion

(expressed by smaller standard deviation) than the other

methods. STPL-SDD yielded the top DSC performance for

SAT, muscle, and trabecular bone segmentation. The DSC

minimum values for this method were about 62.7% for SAT,

89% for muscle, 75% for cortical bone, and 86.2% for trabecular

bone. All MAIS techniques produced mean DSC greater than

89%, mean TPR greater than 84%, andmean PR greater than 95%

in muscle segmentation. Conversely, all tested methods yielded

FIGURE 5
Segmentation comparisons of scans at 66% tibial length
with low and high levels of artifacts caused by subject motion.
Scans (A,B) have low motion artifacts, while scans (C,D) have
high motion artifacts. The delineation of the
subcutaneous adipose tissue (SAT) is represented by the green
contour, muscle by magenta color, cortical bone by cyan
color, and trabecular bone by yellow color.

TABLE 6 66% SAT Segmentation Performance (mean ± standard
deviation). DSC: Dice Similarity Coefficient, TPR: True Positive
Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.682 ± 0.158 0.953 ± 0.051 0.562 ± 0.2

STPL-FFD 0.73 ± 0.16 0.912 ± 0.085 0.649 ± 0.227

STAT-SDD 0.708 ± 0.151 0.939 ± 0.042 0.594 ± 0.189

STPL-SDD 0.771 ± 0.144 0.917 ± 0.057 0.692 ± 0.202

STAT-SyNO 0.684 ± 0.152 0.938 ± 0.065 0.572 ± 0.2

STPL-SyNO 0.729 ± 0.161 0.892 ± 0.093 0.659 ± 0.229

STAT-SyN 0.677 ± 0.147 0.935 ± 0.079 0.565 ± 0.197

STPL-SyN 0.734 ± 0.157 0.889 ± 0.078 0.664 ± 0.225

TIDAQ 0.746 ± 0.228 0.845 ± 0.14 0.702 ± 0.267

TABLE 7 66% Muscle Segmentation Performance (mean ± standard
deviation). DSC: Dice Similarity Coefficient, TPR: True Positive
Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.893 ± 0.032 0.837 ± 0.067 0.962 ± 0.037

STPL-FFD 0.902 ± 0.034 0.857 ± 0.074 0.959 ± 0.037

STAT-SDD 0.922 ± 0.029 0.891 ± 0.057 0.958 ± 0.032

STPL-SDD 0.938 ± 0.028 0.914 ± 0.057 0.966 ± 0.029

STAT-SyNO 0.894 ± 0.038 0.847 ± 0.073 0.953 ± 0.054

STPL-SyNO 0.911 ± 0.038 0.874 ± 0.078 0.959 ± 0.048

STAT-SyN 0.893 ± 0.035 0.844 ± 0.077 0.957 ± 0.051

STPL-SyN 0.913 ± 0.04 0.875 ± 0.084 0.962 ± 0.045

TIDAQ 0.904 ± 0.085 0.861 ± 0.131 0.963 ± 0.025
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mean DSC less than 80%, and a top PR of 70.2% in SAT

segmentation.

In SAT delineation, FFD and SyNO models compete with

each other in the identification of SAT, but SyNO

outperforms free-form deformation in the identification

of other tissues by at least 10% accuracy. Except

for cortical bone, we observe that MAIS outperformed

TIDAQ.

4.4 Effects of subject motion on tissue
identification at 66% tibia

In this experiment, we studied the effect of artifacts on

segmentation performance. The motion was assessed using 5-

level visual grading as described in Wong (2016). We separated

the samples into low level of motion determined by grades 1–3,

and high level of motion with grades 4 and 5, and compared the

performance of all methods. As stated above, 12 out of 20 pQCT

scans at 66% tibia contain high to severe motion artifacts (grades

4 and 5).

The next step is to explore the differences in segmentation

performance between the two groups. Table 10 summarizes the

segmentation performance measured by DSC, true positive rate

(TPR) and precision (PR) for each tissue type and each method.

This table also contains the relative differences of the

performance measures. To estimate the statistical significance

of the differences in segmentation performance, we applied

nonparametric Wilcoxon rank sum tests between the two

groups and we report the p-values.

Considering SAT, we observe consistent decrease of average

DSC and PR with increasing motion artifacts for all methods. We

observe that TIDAQ shows the highest decrease in all

performance measures. The Wilcoxon tests indicate

statistically significant performance differences for TIDAQ in

DSC and precision, and for STPL-SDD in DSC and true

positive rate.

4.5 Tissue composition assessment

We applied our STPL-SDD method to the baseline

InCHIANTI dataset that we described in Section 3 and

summarized in Table 2. We then analyzed the quantification

results of cross-sectional areas and average densities for each

tissue to explore changes in its composition as a function of age.

The scatter plots and regression results in Figures 6, 7 lead to the

following observations. Trabecular bone density decreases with

age at similar rates for males and females. The CSA of cortical

bone decreases with age at similar rates for males and females.

Cortical bone density decreases with age for males and females,

and the rate of decrease is higher for females. Muscle CSA

decreases with age for males and females, and the rate of

decrease is higher for males. Muscle density decreases with

age at similar rates for males and females. Our analysis does

not reveal significant changes with age for SAT CSA, SAT

density, and trabecular bone CSA.

In addition, the statistical results reported in Tables 11–13

show that there is increased correlation of cortical bone density

with age, and trabecular bone density with age, especially for

females, relative to the other tissues. In addition, there is

noticeable correlation between muscle CSA and age for males.

The CV-RMSD values show decreased variation mostly for

cortical density and muscle density for each gender. We also

observe that the gender-conditional analyses produce lower

variability than joint analyses of males and females as we

expected.

4.6 Method implementation and
execution time

We developed the programs of the proposed methodologies

in C++, Python 3.7, and used the ITK library. We implemented

TABLE 8 66% Cortical Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.665 ± 0.152 0.668 ± 0.121 0.677 ± 0.196

STPL-FFD 0.668 ± 0.132 0.696 ± 0.11 0.666 ± 0.19

STAT-SDD 0.681 ± 0.094 0.55 ± 0.112 0.911 ± 0.059

STPL-SDD 0.829 ± 0.083 0.776 ± 0.118 0.898 ± 0.064

STAT-SyNO 0.721 ± 0.156 0.708 ± 0.145 0.754 ± 0.201

STPL-SyNO 0.765 ± 0.194 0.792 ± 0.181 0.761 ± 0.225

STAT-SyN 0.718 ± 0.147 0.719 ± 0.084 0.737 ± 0.21

STPL-SyN 0.788 ± 0.152 0.827 ± 0.112 0.769 ± 0.194

TIDAQ 0.851 ± 0.115 0.987 ± 0.032 0.76 ± 0.157

TABLE 9 66% Trabecular Bone Segmentation Performance (mean ±
standard deviation). DSC: Dice Similarity Coefficient, TPR: True
Positive Rate, PR: Precision.

Methods DSC TPR PR

STAT-FFD 0.825 ± 0.087 0.902 ± 0.124 0.783 ± 0.124

STPL-FFD 0.827 ± 0.085 0.911 ± 0.123 0.783 ± 0.138

STAT-SDD 0.86 ± 0.049 0.983 ± 0.023 0.769 ± 0.08

STPL-SDD 0.913 ± 0.045 0.968 ± 0.037 0.869 ± 0.088

STAT-SyNO 0.843 ± 0.179 0.91 ± 0.203 0.803 ± 0.142

STPL-SyNO 0.868 ± 0.167 0.913 ± 0.191 0.838 ± 0.14

STAT-SyN 0.856 ± 0.116 0.946 ± 0.073 0.791 ± 0.149

STPL-SyN 0.895 ± 0.105 0.939 ± 0.077 0.862 ± 0.133

TIDAQ 0.871 ± 0.221 0.816 ± 0.216 0.994 ± 0.026
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the symmetric normalizations, -SyN and -SyNO (originally

-SyNOnly) of ANTs on the ANTsPY python library (antspyx

version 0.2.5) with default parameters to generate the

segmentation results corresponding to these nonlinear

registration algorithms. The TIDAQ backend is implemented

in C++ and uses ITK, while the user interface is a Java plugin. We

executed our experiments on a system with Linux CentOS 7, 2 x

Intel(R) Xeon(R) CPU E5-2,690 v4 2.60 GHz, and 128 GB RAM.

We computed the execution time of SAIS andMAIS, with respect

to the deformable registration algorithms, for all subjects at the

different tibia location. We calculated the mean ± standard

deviation of the execution time over all subjects in the

segmentation set and report the values in Table 14. We

observe that the execution time of STAT-SDD is about 27 s

for 4% tibia, and about 32 s for 38% and 66% tibia, while the

execution time of STPL-SDD is about 102 s for 4%, 118 s for 38%,

and 148 s for 66%.

5 Discussion

5.1 Method comparisons, tissue
separability and technical characteristics

Tissue delineation is an important, but challenging task in

medical image analysis. The accuracy of tissue delineation

TABLE 10 Effect of motion artifacts on segmentation performance.

Dice similarity coefficient (DSC)

TISSUE 66%-SAT 66%-MUSCLE 66%-CB 66%-TB

MOTION Low High Diff% p Low High Diff% p Low High Diff% p Low High Diff% p

STPL-FFD 0.799 0.703 −11.9% 0.208 0.919 0.896 −2.5% 0.143 0.691 0.660 −4.5% 0.849 0.785 0.843 7.4% 0.173

STPL-SDD 0.866 0.734 −15.2% 0.046 0.964 0.928 −3.8% 0.004 0.876 0.810 −7.5% 0.059 0.908 0.914 0.7% 0.849

STPL-SyN 0.794 0.711 −10.5% 0.246 0.926 0.908 −2.0% 0.503 0.792 0.786 −0.8% 0.173 0.845 0.914 8.2% 0.453

STPL-SyNO 0.814 0.697 −14.4% 0.173 0.936 0.901 −3.7% 0.095 0.813 0.747 −8.1% 0.143 0.900 0.856 −4.9% 0.775

TIDAQ 0.922 0.678 −26.4% 0.014 0.978 0.876 −10.5% 4.7·10–4 0.956 0.811 −15.2% 2.3·10–4 0.960 0.837 −12.8% 0.035

TRUE POSITIVE RATE (TPR)

TISSUE 66%-SAT 66%-MUSCLE 66%-CB 66%-TB

MOTION Low High Diff% p Low High Diff% p Low High Diff% p Low High Diff% p

STPL-FFD 0.914 0.912 −0.3% 0.703 0.882 0.847 −4.0% 0.443 0.695 0.697 0.2% 0.633 0.952 0.895 −6.0% 0.633

STPL-SDD 0.958 0.901 −5.9% 0.007 0.950 0.901 −5.1% 0.117 0.819 0.760 −7.2% 0.336 0.966 0.969 0.3% 0.387

STPL-SyN 0.886 0.890 0.5% 0.775 0.894 0.868 −2.9% 0.775 0.822 0.829 0.8% 0.849 0.925 0.944 2.1% 1.000

STPL-SyNO 0.903 0.888 −1.6% 0.703 0.911 0.860 −5.7% 0.246 0.843 0.772 −8.4% 0.387 0.980 0.887 −9.4% 0.143

TIDAQ 0.911 0.820 −10.0% 0.336 0.978 0.817 −16.4% 2.3·10–4 1.000 0.982 −1.8% 0.185 0.925 0.774 −16.3% 0.035

PRECISION (PR)

TISSUE 66%-SAT 66%-MUSCLE 66%-CB 66%-TB

MOTION Low High Diff% p Low High Diff% p Low High Diff% p Low High Diff% p

STPL-FFD 0.732 0.617 −15.7% 0.503 0.964 0.957 −0.6% 0.924 0.719 0.645 −10.3% 0.387 0.672 0.826 23.0% 0.026

STPL-SDD 0.797 0.651 −18.3% 0.289 0.980 0.960 −2.0% 0.173 0.958 0.875 −8.7% 0.002 0.868 0.870 0.3% 0.775

STPL-SyN 0.747 0.631 −15.5% 0.443 0.966 0.961 −0.6% 0.775 0.794 0.759 −4.4% 0.117 0.791 0.890 12.6% 0.443

STPL-SyNO 0.766 0.617 −19.4% 0.246 0.967 0.956 −1.1% 1.000 0.814 0.740 −9.1% 0.117 0.838 0.839 0.2% 0.566

TIDAQ 0.933 0.613 −34.3% 0.010 0.979 0.957 −2.2% 0.117 0.915 0.700 −23.5% 2.3·10–4 1.000 0.992 −0.8% 1.000
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depends on many factors, including the intrinsic characteristics

of the technique, image modality, artifacts or noise, and the

number of tissues to be identified in each scan. Peripheral

quantitative computed tomography imaging quality is

significantly affected by artifacts caused by subject movement.

Overall, the proposed multi-atlas image segmentation techniques

address the aforementioned factors. Furthermore, the multi-atlas

symmetric diffeomorphic demons technique proved to be more

robust to reduced image quality than the other methods, followed

by symmetric image normalization.

Visual inspection of tissue densities in the image at multiple

tibial sites that are displayed in Figure 8, second row, shows that

the distributions of different tissues significantly overlap with one

another. At 4% tibia, we observe a clear overlap between the

distribution of all leg tissues and the trabecular bone. An

optimized thresholding technique based on tissue densities,

for example, may not separate the distributions accurately,

because of high false positives and false negatives. At 38%

tibia, although it appears that there is a valley between the

cortical and trabecular bones, yet there is still significant

overlap between the distributions of the trabecular bone

tissues and all leg tissues. At 66% tibia, we note the extensive

overlap among the distributions of SAT, muscle, and trabecular

bone. These distributions illustrate the difficulties that would be

FIGURE 6
Scatter plots of tissue of interest’s cross sectional area versus age for males, females, and both genders at 4%, 38% and 66% tibia.
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encountered by segmentation techniques that rely on density

alone. Yet, the proposed MAIS technique STPL-SDD, yields high

segmentation accuracy (DSC >90%), in almost all tissue

delineations at different sites, except for 66%-SAT and 66%-

cortical bone.

Specific properties of these methods that improved the tissue

delineation accuracy are their 1) symmetric nature, and 2)

diffeomorphism. Concerning symmetry, the method in

question provides equal treatment to both fixed and moving

images. In addition, the interactive force between the two images

can produce accurate registration of one part of the image to the

other, and vice versa (Rogelj and Kovačič, 2006). On the other

hand, diffeomorphism affords the algorithms the ability to

handle both large and small deformations (Sotiras et al.,

2013). It is important to note that large deformations are a

result of large strains or rotations, which are caused by subject

movement. Thus, symmetric diffeomorphic demons and

symmetric normalization are robust to local image artifacts or

large image deformations that are difficult to register.

The segmentation results shown in Figure 4, at 4% and 38%

tibial length, correspond to subjects corresponding to variable

levels of delineation challenges, caused by either the condition

of the subject (in the 4% examples) or subject motion (in the

38% examples). At both anatomical sites, subject ‘B’ presents

FIGURE 7
Scatter plots of tissue of interest’s density versus age for males, females, and both genders at 4%, 38% and 66% tibia.
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TABLE 11 Statistical measures of the relationships between tissue properties and age for males and females.

Measurement Site R2 CV-RMSD Slope Intercept p-value

Trabecular CSA 4 0.031 3.646 2.235 1,045.3 < 10−4

Trabecular density 4 0.181 4.799 −1.603 361.4 < 10−4

Cortical CSA 38 0.033 4.661 −0.728 349.8 < 10−4

Cortical density 38 0.178 1.260 −1.784 1,194.3 < 10−4

SAT CSA 66 0.013 7.361 −6.810 3,221.9 0.0054

SAT density 66 0.011 18.583 0.110 12 0.0123

Muscle CSA 66 0.058 3.967 −17.048 7,206.7 < 10−4

Muscle density 66 0.113 1.663 −0.127 83.4 < 10−4

TABLE 12 Statistical measures of the relationships between tissue properties and age for females.

Measurement Site R2 CV-RMSD Slope Intercept p-value

Trabecular CSA 4 0.102 2.159 3.052 887.9 < 10−4

Trabecular density 4 0.348 3.025 −1.911 358.5 < 10−4

Cortical CSA 38 0.086 2.528 −0.779 313.3 < 10−4

Cortical density 38 0.307 0.977 −2.643 1,233 < 10−4

SAT CSA 66 0.010 5.122 −6.067 3,498.9 0.0870

SAT density 66 0.044 17.826 0.132 −0.3 0.0002

Muscle CSA 66 0.034 2.428 −9.817 6,238.6 0.0013

Muscle density 66 0.150 1.185 −0.142 83.3 < 10−4

TABLE 13 Statistical measures of the relationships between tissue properties and age for males.

Measurement Site R2 CV-RMSD Slope Intercept p-value

Trabecular CSA 4 0.013 1.950 1.246 1,229.6 0.0611

Trabecular density 4 0.127 2.704 −1.219 362.7 < 10−4

Cortical CSA 38 0.048 1.937 −0.627 388.7 0.0003

Cortical density 38 0.081 0.554 −0.756 1,147.1 < 10−4

SAT CSA 66 0.032 4.019 −7.441 2,895.9 0.0032

SAT density 66 0.009 5.721 0.075 26.5 0.1141

Muscle CSA 66 0.135 2.362 −26.153 8,364.7 < 10−4

Muscle density 66 0.087 1.098 −0.110 83.5 < 10−4

TABLE 14 Mean ± standard deviation (in seconds) of the execution times of SAIS and MAIS with respect to nonlinear registration models.

Tibia site Method FFD SDD SyN SyNO

4% SAIS 56.47 ± 3.34 27.01 ± 0.81 5.55 ± 0.30 37.25 ± 2.91

MAIS 191.45 ± 9.54 101.82 ± 1.72 41.27 ± 0.99 136.48 ± 5.61

38% SAIS 55.49 ± 7.00 31.15 ± 1.46 5.67 ± 0.33 37.16 ± 1.90

MAIS 189.31 ± 18.62 117.18 ± 3.97 41.88 ± 1.34 140.61 ± 15.20

66% SAIS 55.47 ± 3.96 31.48 ± 1.29 4.42 ± 4.42 36.38 ± 1.30

MAIS 209.66 ± 31.41 147.18 ± 36.05 52.51 ± 13.25 151.13 ± 25.72
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more segmentation challenges than subject ‘A’. Visual

inspection of subject ‘B’ at 4% tibia in Figure 4 shows that

STPL-FFD and STPL-SyNO could not delineate the trabecular

bone accurately when compared to STPL-SDD and STPL-SyN.

Similarly, under 38%-tibia scans in Figure 4, we observe that

due to the higher presence of streaks in subject ‘B’ than in

subject ‘A’, STPL-FFD and STPL-SyNO produced lower tissue

delineation accuracy than STPL-SDD and STPL-SyN. This

observation provides insight into the improved delineation

accuracy produced by symmetric diffeomorphic demons and

symmetric normalization.

5.2 Effects of subject motion on tissue
identification at 66% tibia

The effect of motion artifacts is less pronounced on muscle

identification in terms of the relative differences. We observe

statistically significant differences in DSC for STPL-SDD and

TIDAQ. TIDAQ also showed statistically significant decrease of

muscle true positive rate.

In the cortical bone, most performance changes are not

statistically significant. TIDAQ produced p-values smaller

than 0.05 for DSC and precision, and STPL-SDD for precision

only. In the trabecular bone, STPL-FFD produced p-values

smaller than 0.05 for precision, and TIDAQ for DSC and true

positive rate. DSC and precision values of the trabecular bone

produced by STPL-FFD and STPL-SyN increase from low to high

motion group, because of segmentation errors in subjects of the

low motion group.

We observe that TIDAQ is significantly affected by motion

artifacts, as average DSC clearly decreases from the low to high

subject motion group. MAIS techniques and especially STPL-

SyN are more resilient to subject motion. STPL-SDD still

produces the highest DSC and precision values in the high

motion group overall.

5.3 Tissue composition assessment

The results in Figures 6, 7 and Tables 11–13 are consistent

with findings of clinical studies of aging that used semi-manual

quantification workflows (Makrogiannis et al., 2018; Ferrucci

et al., 2000). These results indicate that our automated

methodology can help to increase the throughput of

sophisticated cross-sectional and longitudinal analyses of

tissue properties. We also note that the proposed

methodology enables the analysis of both hard and soft tissues

in pQCT. This is a desirable and innovative feature as pQCT has

beenmostly restricted to quantification of bone in the past (Gabel

et al., 2018; Wong and Manske, 2020). Our methodology opens

the door for efficient exploration of muscle properties in the

lower leg using pQCT. On the other hand, a greater number of

reference segmentation masks may be needed to improve the

statistical power of performance evaluations.

6 Conclusion

We introduced multi-atlas segmentation methods for soft

and hard tissue segmentation in the lower leg using pQCT data.

Our results indicate that the MAIS technique, STPL-SDD,

produced more accurate tissue delineation as measured by

DSC than all compared methods. STPL-SyN is largely resilient

FIGURE 8
Examples of the pQCT scans, masks and tissue distributions. Top row: image-mask pairs of pQCT scans at 4%, 38%, and 66% tibial length
respectively. Bottom: distributions of tissues corresponding to the above tibia sites. On the masks, air, trabecular bone, cortical bone, muscle, and
subcutaneous adipose tissue (SAT) are identified by black, yellow, cyan, red, and white colors, respectively.
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to subject motion artifacts and noise. The results of our

experiments indicate that our methodology can analyze data

with degradations caused by subject motion that conventional

methods cannot analyze. Future directions of this work include

extending this framework to 3D imaging data, and using the

segmentation and quantification results for disease prognosis and

diagnosis.
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