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Abstract: Accurate knowledge of the rain amount is a crucial driver in several hydrometeorological
applications. This is especially true in complex orography territories, which are typically impervious,
thus, leaving most mountain areas ungauged. Due to their spatial and temporal coverage, weather
radars can potentially overcome such an issue. However, weather radar, if not accurately processed,
can suffer from several limitations (e.g., beam blocking, altitude of the observation, path attenuation,
and indirectness of the measurement) that can hamper the reliability of the rain estimates performed.
In this study, a comparison between rain gauge and weather radar retrievals is performed in the target
area of the Abruzzo region in Italy, which is characterized by a heterogeneous orography ranging from
the seaside to Apennine ridge. Consequently, the Abruzzo region has an inhomogeneous distribution
of the rain gauges, with station density decreasing with the altitude reaching approximately 1500 m
a.s.l. Notwithstanding, pluviometric inflow spatial distribution shows a subregional dependency
as a function of four climatic and altimetric factors: coastal, hilly, mountain, and inner plain areas
(i.e., Marsica). Such areas are used in this analysis to characterize the radar retrieval vs. rain gauge
amounts in each of those zones. Compared to previous studies on the topic, the analysis presented
the importance of an accurate selection of the climatic and altimetric subregional areas where the
radar vs. rain gauge comparison is undertaken. This aspect is not only of great importance to
correct biases in radar retrieval in a more selective way, but it also paves the way for more accurate
hydrometeorological applications (e.g., hydrological model initialization and quantification of aquifer
recharge), which, in general, require the accurate knowledge of rain amounts upstream of a basin.
To fill the gap caused by the uneven rain gauge distribution, ordinary Kriging (OK) was applied
on a regional scale to obtain 2D maps of rainfall data, which were cumulated on a monthly and
yearly basis. Weather radar data from the Italian mosaic were also considered, in terms of rain rate
retrievals and cumulations performed on the same time frame used for rain gauges. The period
considered for the analysis was two continuous years: 2017 and 2018. The output of the elaborations
included raster maps for both radar and interpolated rain gauges, where each pixel contained a
rainfall quantity. Although the results showed a general underestimation of the weather radar data,
especially in mountain and Marsica areas, they were within the 95% confidence interval of the OK
estimation. Our analysis highlighted that the average bias between radar and rain gauges, in terms
of precipitation amounts, was a function of altitude and was almost constant in each of the selected
areas. This achievement suggests that after a proper selection of homogeneous target areas, radar
retrieval can be corrected using the denser network of rain gauges typically distributed at lower
altitudes, and such correction can be extended at higher altitudes without loss of generality.

Keywords: rain gauge; weather radar rain retrievals; ordinary Kriging; water budget; central Italy

Hydrology 2022, 9, 225. https://doi.org/10.3390/hydrology9120225 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology9120225
https://doi.org/10.3390/hydrology9120225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0002-2465-1014
https://orcid.org/0000-0002-7473-810X
https://orcid.org/0000-0003-0099-0393
https://orcid.org/0000-0003-0512-5614
https://doi.org/10.3390/hydrology9120225
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology9120225?type=check_update&version=1


Hydrology 2022, 9, 225 2 of 14

1. Introduction

The distribution of meteorological measurement stations on the Italian national terri-
tory is not homogeneous due to the logistical and morphological conditions of the mountain
ranges. In particular, such distribution in the Apennine chain, where the study area is
focused, is uneven and has a very poor coverage above 1000 m above sea level (a.s.l.) [1–3].
This becomes a critical issue, especially when there is the need to have information re-
garding the amount of precipitation in mountain areas, e.g., to estimate the recharge of
aquifers [4].

On one hand, to overcome the issues related to a discrete and sparse distribution of
rain gauges of the national and regional monitoring network, the spatial distribution of
rainfall can be reconstructed using either traditional interpolation techniques [5,6], such
as Thiessen polygons, triangulation with linear interpolation, natural neighbor, inverse
weighted distance, or spline, or more advanced ones, such as geostatistics. This wide
group of methods is based on the regionalized variable theory [7], stating that values of a
specific variable defined in space depend on each other [8–10]. According to this theory,
measurements include a spatially correlated casual component, the mean value, and the
residual nonsystematic error [11,12]. These techniques are physically based, as they take
advantage of the spatial variability structures of experimental measurements. In addition,
they are implemented in a fashion that ensures optimal and unbiased prediction of the
selected variables in areas where they are not measured.

On the other hand, weather RaDAR systems (radio detection and ranging, hereafter
named “radar” for simplicity) can represent an alternative solution, as they can provide
a spatially seamless estimation of rainfall in near real time. A single weather radar can
cover large areas up to 200 km from the radar site with a temporal resolution of 5–10 min
and a spatial range resolution ranging from 125 m up to 500 m [13]. Weather radar
estimates of near-surface precipitation can be affected by several limiting factors [14],
which include partial beam blocking from nearby orography, path attenuation caused by
the liquid amount along the radar line of sight, radiofrequency interferences, and cone of
silence, i.e., unobserved areas close to the ground. Most of these issues can be reduced
and compensated for after the proper processing of radar data [15], delivering filtered and
reliable radar data. However, especially in complex orography, weather radar sites are
often positioned on mountain peaks [16] to ensure large coverages and prevent mountain
blocks with the unavoidable drawbacks of (i) increasing the indirect characteristics of the
radar measurement in rain regimes caused by the increased distance between the radar
measurement aloft and the surface level and (ii) likely differences in the vertical distribution
of hydrometeors (i.e., ice snow/ice is sampled by the radar aloft while liquid rain is falling
below close to the surface) that makes the inversion of the radar acquisitions into rain rate
more challenging. Several techniques exist to compensate for some of the radar limiting
factors [17], although residual errors are difficult to completely zero out.

Despite all the above-mentioned critical factors, weather-radar-derived rainfall datasets
are valuable with respect to rain gauge networks because they can potentially reduce the un-
certainty about precipitation inflow volumes due to their higher spatial-temporal resolution.
Weather radars are currently networked and generally used for weather surveillance, hy-
drological, and meteorological purposes with a special emphasis on data assimilation [18],
in support of civil protection activities [19], as well as to better define the water budget in
regional aquifers [20] or in wide catchments [21].

In the present study, the possibility of using an alternative precipitation evaluation
technique based on weather radar surveys is analyzed with the possibility of cooperation
between different methods. In particular, weather radar measurements from the Italian
network are compared to geostatistical estimations obtained through the application of
the ordinary Kriging (OK) method to rain gauge measurements. Even though it is the
most simplified geostatistical approach, if compared to more sophisticated techniques such
as co-Kriging [22–25] or Kriging with external drift [26–28], OK is not influenced by the
uncertainty associated with auxiliary variables that are generally not quantified. For this
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reason, in this case, it is considered appropriate, as the main aim is to compare rainfall data
collected by different sources and characterized by different supports.

The selected study area falls within the territory of the Abruzzo region and covers a
portion of the Italian territory between the Adriatic coast and the Apennine chain.

Because of limitations in data transfer and huge amounts of weather radar data, only
2 years (2017 and 2018) of annual and monthly datasets were analyzed. For the comparison
between the interpolated data from the rain gauge network and the weather radar data,
the Abruzzo territory is divided into four homogeneous altimetric/climatic zones, and the
mean rainfall amount is calculated for each one of them.

Apart from many hydrological applications focused on the rapid response of hydro-
logical basins, this study is more oriented toward applications of rain infiltration into
aquifers, which is a long-term process that scarcely depends on small-scale fluctuations
of precipitation in space and time. For this reason, a seasonal evaluation is elaborated;
for every climatic zone, both sources of rainfall data are aggregated to a seasonal basis to
highlight seasonal trends.

The manuscript first explains the study area and the used methods; then, data are
shown and discussed using maps and tables followed by conclusions.

2. Materials and Methods
2.1. Study Area and Datasets

The study area is represented by the whole Abruzzo Region with its heterogeneous
territory. Its landscape includes mountain areas in the western part and hillier and flatter
areas in the eastern (Figure 1); these different morphological features imply different
meteorological and pluviometric conditions [29,30].
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For these reasons, the study area was divided into four zones on the basis of different
altitudes, climatic conditions, and morphological characteristics (Figure 1):

• Coastal area, from sea level to approximately 300 m a.s.l., mainly including the river
plains and the seacoast land;

• Hilly area, from approximately 300 to 900 m a.s.l., comprising the hills behind the
plains and the lower peaks;
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• Mountain area, from approximately 900 m to 3000 m a.s.l., with drainage to the eastern
side of the study area (Adriatic Sea), including the main peaks, usually corresponding
to the major recharge area, where the Sulmona and L’Aquila plains can also be found;

• Marsica area, with drainage to the western side of the study area (Tyrrhenian Sea),
which includes the Fucino plain and nearby mountains.

This subdivision allows correlating precipitations to land features for more accurate
data comparison.

Furthermore, considering each zone separately enables highlighting the differences
inside the rain gauge network; the coastal and hilly areas are the most homogeneous in
station distribution, while the mountain and Marsica ones show a consistent lack of station
distribution. As can be seen in Figure 1, automatic stations are mainly located in the flat
areas (i.e., Fucino and Sulmona plains), leaving the peaks (i.e., Majella massif) completely
uncovered; the higher number of gauges in the mountain area reflects the larger size of
that area.

The annual and monthly rainfall datasets (mm; accuracy ± 0.1 mm [1]) used for this
paper derive from the regional rain gauge network, managed by the Hydrographic Service
of the Abruzzo Region; 72 stations were selected for 2017 and 2018 as they were the only
ones with complete monthly data for the considered period (Figure 1 and Table 1).

Table 1. Numbers of stations for every climatic zone used for ordinary Kriging.

Climatic Zone Number of Gauging Stations

Coastal area 19
Hilly area 17

Mountain area 27
Marsica area 9

Furthermore, in the Abruzzo region, there are four radar sensors installed, but only
two of them converge into the national radar mosaic used in this study: Mt. Il Monte and
Mt. Midia radars (pink triangles in Figure 1). Mosaicked data were processed to produce
monthly and annual cumulative datasets of precipitation.

2.2. Geostatistical Method

The ordinary Kriging (OK) technique [8,9,11] was selected to spatialize rainfall data
sampled at the gauging station of the Abruzzo Region monitoring network (Figure 1). In
OK, the selected target variable (z∗(x0)) can be calculated at each location of a domain grid
(x0) through an unbiased and optimal estimator, namely, the best linear unbiased estimator
(BLUE), described by the following equation:

z∗(x0) =
N

∑
i=1

λiz(xi) with i = 1, . . . , N, (1)

where λi denotes the weights attributed to the variable values (z(xi)) measured at specific
locations in the neighborhood (xi).

BLUE ensures that the estimated values are the most optimal and unbiased (i.e.,
E(z∗(x0)− z(x0)) = 0) possible by imposing the following condition:

∑
i
λi = 1. (2)
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This constraint is included in the Kriging equation system (Equation (3)), which
consists of a set of N + 1 linear equations, as shown below:

N
∑

j=1
λiγ
(
xi, xj

)
+ µ = γ(xi, x0)

N
∑

j=1
λj = 1

(3)

where µ is a Lagrangian multiplier, whereas γ
(
xi, xj

)
and γ(xi, x0) are the semi-variograms

(or variograms) related to pairs of measurements and to pairs that include the unsampled
location (x0).

In geostatistics, the variogram is a function that describes the spatial dependency of
a given random variable of interest [31] as a relation between semi-variance (γ(h)) and
distance, described by a separation vector called lag (h). Variograms are defined by the
following equation (Equation (4)):

γ(h) =
1

N(h)

N(h)

∑
i=1

[z(xi)− z(xi + h)]2 with i = 1, . . . , N(h), (4)

where z(xi) and z(xi + h) are a pair of distinct measurements separated by a lag h regarding
a specific location within the considered domain (xi), while N(h) is the number of pairs
separated by the same lag.

To solve the linear equation system in Equation (3), the experimental variogram (i.e.,
the one obtained from actual measurements) is fitted by a variogram model, which can be
either simple (i.e., one spatial structure) or nested (i.e., two or more spatial structures).

In addition to the predicted value, OK provides a measure of the uncertainty associated
with the estimate, namely, the Kriging variance (σ2(x0)), as follows:

σ2(x0) = µ+
N

∑
i=1

λiγ(xi, x0). (5)

In the case of variables characterized by a non-Gaussian statistical distribution, the
prediction may be nonlinear and then not optimal, and the Kriging variance or the cor-
responding standard deviation cannot be used as a local measure of error [32]. For this
reason, the yearly and monthly rainfall data were transformed through a well-known
function in geostatistics: Gaussian anamorphosis [10]. This function can convert a Gaussian
variable (Z = Φ(Y)) into a non-Gaussian one by fitting a polynomial expansion, as defined
in Equation (6).

Φ(Y) = ∑ ΨiHi(Y) (6)

Here, Hi(Y) denotes the Hermite polynomials, while Ψi denotes the Hermite coefficients.
Once defined, this function can be inverted and used to transform a non-Gaussian

variable into a standardized one (Equation (7)).

Y = Φ−1(Z) (7)

In this study, raw rainfall data were previously transformed into standardized Gaus-
sian variables and then interpolated. Finally, the predictions were back-transformed to
obtain the yearly and monthly rainfall maps with the origin unit through the Gaussian
anamorphosis function. Back-transformation was also applied to 95% confidence interval
limits (lower limit—LL and upper limit—UL) maps, obtained via the following relationship:

Limits of 95% CI = z∗(x)± 1.96σ√
n

, (8)
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where σ is the OK standard deviation, while n is the optimal number of measurement
locations in the neighborhood.

The performance of selected variogram models used in the OK analyses was evaluated
using the cross-validation, which consists of sequentially removing the measurements one
at a time and estimating each one of them at the corresponding sampling location, using the
model under evaluation and the experimental data in the neighborhood. The differences
between measured values and estimates represent errors, from which it is possible to
calculate the following performance evaluation statistics, with their reference value:

Mean Error = ME =
1
N

N

∑
i=1

(z∗i − zi)→ 0, (9)

Mean Standardized Error = MSE =
1
N

N

∑
i=1

(
z∗i − zi

σi

)
→ 0, (10)

Root Mean Squared Error = RMSE =

√√√√ 1
N

N

∑
i=1

(
z∗i − zi

)2 → 0, (11)

Root Mean Squared Standardized Error = RMSSE =

√√√√ 1
N

N

∑
i=1

(
z∗i − zi

σi

)2
→ 1, (12)

where z∗i and zi are the estimated and measured values, N is the number of sampled
locations, and σi is the Kriging standard deviation.

ME and MSE measure the variogram model unbiasedness, RMSE measures its preci-
sion, and RMSSE measures its accuracy.

The rainfall values were estimated by OK through Equation (1) on the same grid (i.e.,
support) as the weather radar rasters (cell size of 1000 × 1000 m), to make the comparison
reliable. Eventually, the output rasters were sliced into the four altimetric zones, rain data
were sampled from every pixel, and the mean rainfall amount was calculated for each zone.

All geostatistics analyses were preformed using the software Geovariances Isatis.neo
2021.07 (www.geovariances.com/en/software/isatis-neo-geostatistics-software/).

2.3. Weather RaDAR Method

Weather radars are active instruments that emit electromagnetic (EM) waves, typically
in the microwave spectrum and, after the interaction of the EM signal sent with hydromete-
ors in the atmosphere, the reception of the backscattered component is used to infer some
key geophysical information (e.g., hydrometeor typology such as rain, hail, show, water
content, and rain rate). Single polarized radars allow the reception of the backscattered
power in one single polarization, typically the horizontal one (h), to derive the reflectivity
factor (Zhh), which is strongly dependent on the sixth power of the size of hydrometeors
intercepted along the radar ray path. After a proper calibration and processing, Zhh is
converted into instantaneous surface rainfall intensity (SR), expressed in (mm/h) using the
following power law equation:

SR =

(
10

Zhh
10

) 1
b
(

1
a

) 1
b

, (13)

where a and b are two-dimensional coefficients geographically calibrated [14], and Zhh is
conventionally expressed in mm6·m−3. SR is then converted into hourly accumulation by
assuming constant rain within the time elapsed between two consecutive radar acquisitions,
such that hourly precipitation (P1h) is:

P1h =
N

∑
t=1

SR(t)∆t, (14)

www.geovariances.com/en/software/isatis-neo-geostatistics-software/
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where ∆t is the time sampling of the radar in (h), and N is the number of the radar acquisi-
tions in the hour considered. Larger accumulation periods are obtained by summing the
needed number of hours. It is worth mentioning that dual-polarized radars are multivari-
able systems adding more information on the shape and composition of hydrometeors,
allowing Equation (13) to be constrained to obtain more accurate rain estimates [33]. In
addition, these systems allow a better discrimination of the unwanted radar returns, thus,
achieving a better data quality, which also indirectly contributes to the accuracy of SR [17].

The C-band weather radar data used in this work came from the Italian mosaic for a
2017–2018 period with a temporal resolution of ∆t = 10 min and the raster representation
with a grid spacing of 1 × 1 km2. For the Abruzzo territory, the main contributing radars
were those of Il Monte (lon = 14.621◦, lat = 41.939◦, alt = 710 m) and Mt. Midia (lon = 13.177◦,
lat = 42.057◦, alt = 1660 m) managed by the Italian civil protection and the regional authority,
respectively. Il Monte radar is a Doppler dual-polarized system, and it mostly covers the
coastal eastern side, whereas Mt. Midia is a Doppler single-polarized system, and it has an
open view mainly in the westmost part of the region. Because of the different radar site
altitudes, as well as the polarization capability of Il Monte radar with respect to Mt. Midia,
which suggests a better data quality of the former than the latter, different rain retrieval
performances were expected in the respective areas covered by the two radars.

Figure 2 illustrates, for reference only, the average monthly rain accumulation for
March 2017 obtained by the radar mosaic for the Abruzzo region.
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are also displayed.

Radar data represented in the maps were processed at the central level including
modules to remove some artefacts: orographic blocks, disturbing interferences, and path
attenuation (for dual-polarized data only) fostered by strong precipitation [17]. For oro-
graphic echoes (ground clutter), they were successfully removed using clutter maps (i.e.,
representation of static obstacles in the radar view geometry using statistic of clear sky
radar acquisitions) [34], as well as polarimetric filters when available [13]. The vertical
profile reconstruction of reflectivity was also applied to extrapolate the data near the surface.
Then, SR was calculated for each cell of the radar volumes, and a weighted average of SR
profiles was applied to obtain the rain rates in each grid point of the final composite. Note
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that the weights used depended on a precalculated quality index driven by the altitude of
radar cells from the surface, distance from the radar, level of obstruction of the radar beams,
and presence of bright band, thus reducing the errors in the final precipitation products.

The analyzed radar dataset extended to 2 years. The limitation to only 2 years of
analysis was justified by the fact that the data request was limited by technical reasons,
especially for large data volumes. Thus, we decided to ask for a relatively small amount
of data for this pilot study and postpone the additional request for a larger dataset for a
future study. The 2-year record was cumulated to a monthly time frame and represented as
raster monthly radar maps. Additional annual maps were provided for both years.

3. Results and Discussion

The rain data from gauging stations were cumulated monthly and annually for 2017
and 2018 and then interpolated using the ordinary Kriging (OK).

In Figure 3 and Table 2, as an example, annual fitted variogram models related to
the Gaussian-transformed rainfall data and their performance statistics from the cross-
validation are shown, respectively.
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Table 2. Cross-validation related to 2017 and 2018 variogram shown in Figure 3.

2017 Cross-Validation

ME 0.00
MSE −0.0029

RMSE 0.78
RMSSE 0.9518

2018 Cross-Validation

ME 0.01
MSE 0.0087

RMSE 0.85
RMSSE 1.0553

For both annual datasets, a spherical variogram model was selected; for 2017, the
range was equal to approximately 24,200 m, while, for 2018, the range was approximately
26,600 m.

The selected variogram models reflected a satisfying level of unbiasedness, precision,
and accuracy, as demonstrated by the cross-validation results.



Hydrology 2022, 9, 225 9 of 14

As outputs, 13 raster maps for each year were carried out. The same cumulation
periods used for rain gauges were used for radar data.

All obtained rasters were sliced into the four altimetric zones (Figure 1), as shown
in Figure 4, where the comparisons between OK interpolated data (left panels) and radar
estimates (right panels) are represented for 2017 and 2018 (in the upper and lower pan-
els, respectively).
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As can be seen in Figure 4a, where OK interpolated data for 2017 were displayed, spots
of lower values were in the southern part of the coastal and hilly areas due to local minima
in the rainfall measures from the rain gauge stations located in those zones. Likewise,
a similar situation can be found in Sulmona, L’Aquila, and Fucino plains where rainfall
values were more modest than the surrounding ones. Generally, coastal and hilly areas
indicate the highest rainfall values.

The 2017 weather radar data are shown in Figure 4b, where it is clear that coastal and
hilly area rainfall values were higher than mountain and Marsica ones, confirming the
deduction from OK interpolation with plain internal regions that were less rainy.

The 2018 OK interpolated data (Figure 4c) showed similar features to 2017; the plains
had lower values than the spots in the southern part of coastal and hilly areas; on the other
hand, for 2018, the mountain and Marsica zones were rainier than the other two.

Weather radar data from 2018 (Figure 4d) had the same 2017 trend, indicating a greater
rain amount in coastal and hilly portions and a lower amount in intramountain plains.

For both years, weather RaDAR underestimated rainfall values, but it detected areas
where inflows were relatively higher or lower than surrounding areas.



Hydrology 2022, 9, 225 10 of 14

For a deeper and more accurate comparison between the two types of inflow esti-
mations, the corresponding mean rainfall amounts (mm) were considered and elaborated
seasonally in each climatic area for every single month and summed as seasonal contributions:

• January, February, and December as winter;
• March, April, and May as spring;
• June, July, and August as summer;
• September, October, and November as fall.

Using both types of data, i.e., weather radar and OK data, monthly rainfall amounts
were summed to obtain the quantities reported in Figure 5, where seasonal results are
shown for the 2 years analyzed.
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As can be seen, all graphs showed higher values in OK interpolated data (OK in the
graphs), except for coastal and hilly areas, in which radar and OK tended to a better overall
agreement. This can be explained by the fact that those areas were mainly covered by the
Il Monte radar, which had the advantage of polarimetry and was positioned closer to sea
level, thus, having a closer agreement with ground stations.
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The highest discrepancies were shown for winter and fall rainfall amounts, especially
in mountain and Marsica areas, whereas the best correspondence was obtained for summer
data in all four zones. One possible explanation for this behavior can be attributed to
the fact that, in the summer, the freezing-level altitude was higher than in the winter,
and consequently, in the summer, radar observations were performed in a rain regime
(i.e., they were likely picked up at altitudes below the freezing level). Contrarily, in the
winter, the radar more likely sampled in ice/snow regimes, especially when the freezing
level approached the radar site altitude (i.e., 1660 m). Thus, as evidenced in Figure 5, in
the summer, we expected an augmented consistency between the radar estimations and
rain gauges, as the two sources both sampled rain. In this context, the Mt. Midia radar
positioned at 1660 m of altitude was disadvantaged during the winter, thus, contributing
significantly to the errors registered in the mountain and Marsica areas during the fall and
winter periods.

Moreover, the interpolated maps showed a good agreement with the literature data [35]
which considered a 79 year period.

As highlighted in Figure 5, the mountain and Marsica zones showed the greatest
differences in the seasonal comparison; at the same time, these two were the poorest in
terms of rain gauge stations, and weather radar could represent a good solution. For these
reasons and for a deeper investigation, rainfall data and the altitudes corresponding to the
gauge station locations were correlated.

In any case, the seasonal rainfall amount estimated from RaDAR data always fell
into the 95% confidence interval of the OK estimates, which means that they were able to
catch the spatial and temporal variability in an acceptable way, and little effort (e.g., bias
correction in the postprocessing phase) was required to make them reliable for quantita-
tive purposes.

The OK estimation uncertainty highlights that spatial interpolations obtained using
rainfall point measurements can have a low reliability; indeed, they suffer from such a
low-density rain gauge monitoring network, as can be seen for the mountain and Fucino
areas (Figure 5). As a matter of fact, albeit more accurate at rain gauges, sparse rainfall
measurements were not able to catch the spatial variability properly, especially in areas
where topography was strongly heterogeneous.

Figure 6 presents this relationship for the 2-year period considered. Rainfall data
were from gauge stations located in mountain and Marsica areas and cumulated annually;
weather radar data were extracted from annual raster maps at the locations corresponding
to the positions of the rain gauge stations within each area considered. Both these rainfall
datasets were correlated with automatic station altitudes.

As can be seen, data from gauging stations were more “scattered” than weather radar
data, especially in the Marsica area; consequently, these dispersed distributions did not
allow deduction of a clear rainfall–altitude correlation.

Despite these issues, both linear and logarithmic regressions were attempted, revealing
that the linear correlation fit better than the logarithmic one.

These diagrams confirmed the higher values in the gauge station datasets as already
seen in Figure 5; more importantly, they come up with a way to correct radar estimates in
complex orography or wide areas [21]. Indeed, the differences (bias) that characterize the
two curves (dotted blue and green curves) in Figure 6, which are almost parallel to each
other, seemingly suggest that the bias found at a lower altitude is applicable to that at a
higher altitude. This finding could be a first step for radar estimate bias correction in pre-
selected complex orography environments, i.e., datasets collected in denser areas at lower
altitudes can be used to extrapolate the bias found at higher-altitude and less-instrumented
areas. Notably, if subseasonal cumulation periods are considered, a different result can
be obtained. However, the hydrological application to which such a bias correction can
significantly contribute consists of rain infiltration into aquifers, which is more sensitive to
seasonal trends of precipitation.
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4. Conclusions

Although weather radars are widely used as ground reference in many hydro-
meteorological applications, the elaborations performed in this study, verified by their
rain estimates, especially in an operational context, can suffer from non-negligible errors
if compared with rain gauge networks. Thus, rain gauges and weather radars appear to
be integrative with each other; in particular, the former can cooperate with the latter to
compensate, at least on average, for some retrieval biases. In that sense, in the future, it will
be necessary to develop methods to optimally combine weather radar and rain gauge data
in an operational setup. The radar and rain gauge comparison performed in the Abruzzo
region highlighted the following positive aspects:

• Good agreement between the two sources in the warmer seasons due to the homo-
geneity in the quantity observed by the radar and rain gauges;

• Generally good agreement in the coastal and hilly areas due to the better radar cover-
age in those areas by one of the two radars used in the analysis. This also suggests the
importance of studying the radar view geometry compared to the local orography to
identify areas where better results are expected.

Among the problematic aspects that require further study, we highlight the following:

• General underestimation of the results obtained by weather radar. Although the radar
underestimation is very well known, its compensation can be less obvious in complex
orography, as pointed out in this work. The selection of homogenous climatic and
altitude areas, as suggested in this study, could be a way to compensate for the radar
underestimation problem,

• Worse agreement between the radar and rain gauges in the cold and rainy seasons
(especially in winter and autumn in the mountain and high plain areas), which is
justified by the mismatch in the observation of the same precipitation regime by the
radar and rain gauge. Such a problem is more severe when the altitude of the radar
site is closer to the altitude of the freezing level, because, in such a situation, the radar
likely observes ice/snow, whereas rain gauges catch liquid water.
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Considering the discrepancies in the results obtained with the two measuring methods,
weather radar needs to be better elaborated, compensating for biases in order to fill the lack
of directly measured inflows at a high altitude where gauging stations are not present. To
this end, future studies will investigate the possibility of using the knowledge of hydrogeo-
logical balance in well-known aquifer and catchment areas where the hydrometeor inflow
can also be calculated by the sum of the water outlets and evapotranspiration.
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