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Heart rate variability (HRV) is a reliable tool for the evaluation of several physiological
factors modulating the heart rate (HR). Importantly, variations of HRV parameters may
be indicative of cardiac diseases and altered psychophysiological conditions. Recently,
several studies focused on procedures for contactless HR measurements from facial
videos. However, the performances of these methods decrease when illumination is
poor. Infrared thermography (IRT) could be useful to overcome this limitation. In fact,
IRT can measure the infrared radiations emitted by the skin, working properly even in
no visible light illumination conditions. This study investigated the capability of facial
IRT to estimate HRV parameters through a face tracking algorithm and a cross-
validated machine learning approach, employing photoplethysmography (PPG) as the
gold standard for the HR evaluation. The results demonstrated a good capability of
facial IRT in estimating HRV parameters. Particularly, strong correlations between the
estimated and measured HR (r = 0.7), RR intervals (r = 0.67), TINN (r = 0.71), and pNN50
(%) (r = 0.70) were found, whereas moderate correlations for RMSSD (r = 0.58), SDNN
(r = 0.44), and LF/HF (r = 0.48) were discovered. The proposed procedure allows for a
contactless estimation of the HRV that could be beneficial for evaluating both cardiac
and general health status in subjects or conditions where contact probe sensors cannot
be used.

Keywords: heart rate variability, cardiovascular risk assessment, infrared thermography, machine learning,
remote sensing, support vector machine

INTRODUCTION

Heart rate variability (HRV) is the temporal variation of the period between consecutive heartbeats,
which mainly depends on the regulation of the heart rate (HR). HRV analysis allows for assessing
overall cardiac health and the condition of the autonomic nervous system (ANS) (1, 2). Specifically,
HRV reflects neurocardiac function since it is generated by the interaction between the heart and
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dynamic nonlinear ANS processes; particularly, the HR is
dictated by the balance between the sympathetic nervous system
(SNS) and parasympathetic nervous system (PNS): dominance
of the SNS activity with respect to that of the PNS produces
an acceleration of the cardiac rhythm, whereas a prevalence
of the PNS activation causes a deceleration of the HR. Hence,
the variability in the HR is indicative of the functioning of the
autonomic nervous control on the cardiac rhythm and the heart’s
responsiveness (3). Moreover, a link between cardiovascular
state and HRV was found (4–6), fostering both technological
advancements for HRV measurement and improvement of the
effectiveness of HRV data analysis to predict cardiovascular
and psychophysiological states. The ANS state is linked with a
variety of diseases (7–9); in fact, HRV is considered an important
diagnostic tool in cardiovascular clinical practice and can be
used to estimate the integrity of cardiac autonomic innervation
and the vulnerability to cardiac arrhythmias resulting from
autonomic imbalance (9). It has been demonstrated that HRV
can be used for the risk assessment in patients recovering from
myocardial infarction (10). In addition, several HRV indices
have a high prognostic value to identify patients at risk for
cardiovascular events (11). Furthermore, impaired HRV can
be used to predict the risk of arrhythmic events after acute
myocardial infarction, assess diabetic neuropathy (8), mitral
valve abnormalities (12, 13), and study inappropriate sinus
tachycardia or postural orthostatic tachycardia syndrome (POTS)
to determine if there is evidence of parasympathetic dysfunction
as a cause of the condition (14). In addition, HRV is also
widely used in the exercise field to monitor the autonomic and
cardiovascular conditions of the all-age population, and this is
a crucial point since the cardiometabolic risk is increasing in
the general population other than people with well-known risk
factors (15–17).

Wearable devices were developed to provide continuous
monitoring of the heart rhythm through photoplethysmography
(PPG) (18–21). PPG is an optical technique able to estimate
HRV by means of the pulse rate variability (PRV) (22, 23). In
particular, PPG is sensitive to hemoglobin variations in vessels,
which are due to volumetric changes of peripheral arteries in
response to the propagation of pulse pressure waves from the
heart (18). Concerning data analysis, several indices have been
proposed in order to assess variations in HR in both the time and
frequency domains.

For instance, the root mean square of the successive
differences (RMSSD) of the neighboring ECG R-peaks (R–
R intervals) is a time-domain feature sensitive to the ANS’s
parasympathetic branch (24). The RMSSD reflects the variance
between consecutive heartbeats and is one of the most used time-
domain measures to obtain the estimation of the PNS-mediated
changes observed in HRV (25). Another used time domain is the
standard deviation (SD) of the interbeat intervals of normal-to-
normal RR intervals (SDNN, measured in ms), where “normal”
means that atypical heartbeats (e.g., ectopic beats) have been
eliminated. The percentage of adjacent NN intervals that differ
from each other by more than 50 ms (pNN50 %) is a time-
domain parameter, which can be considered analyzing 60 s period
of recording. This is highly correlated with parasympathetic

activity and may be a reliable index for brief samples used in
biofeedback settings. In addition, the triangular interpolation of
the NN interval histogram (TINN) represents the baseline width
of a histogram showing the NN intervals (2, 26).

Concerning the frequency domain, the ratio between power
spectrum densities (PSDs) at low-frequency (LF, 0.03–0.15 Hz)
and high-frequency (HF, 0.15–0.35 Hz) bands of the HRV is
commonly employed (27). Specifically, PNS contributes to HF
power, whereas LF is related to both SNS and PNS, hence, their
ratio (LF/HF) is indicative of the balance between the two systems
(2, 27–29).

Typically, HRV is evaluated using methods that require
skin contact (e.g., electrocardiography, ECG, and PPG), but,
although they are noninvasive, the contact with human skin
can be detrimental to subjects with sensitive skin (e.g., neonates
and patients with skin injury) and irritating or distracting
when worn, for instance, in a professional environment. In
these scenarios, measuring HRV through contactless technology
would be beneficial. To overcome this limitation, several
methods have been developed to assess HRV without skin
contact. These techniques are commonly referred to as remote
photoplethysmography (rPPG), and they exploit models based on
red, green, and blue (RGB) imaging to assess periodic variation
of the subject’s skin color, which depends on the cardiac cycle
(30, 31). These methods allow for the monitoring of the health
and psychophysiological conditions of individuals during several
tasks in a completely ecological manner, improving human safety
and wellbeing. However, scarce illumination conditions could
be detrimental to these methods, degrading the performance
of the HRV assessment. Infrared thermography (IRT) could be
employed to overcome this limitation. IRT is a noninvasive
contactless technique that passively measures the radiation from
a body, estimating its superficial temperature (32). Usually,
facial IRT is employed to provide information on the human
autonomic activity, considering the temperature time course
and spatial distribution of responsive region of interest (ROIs)
(33, 34).

Recently, machine learning (ML) frameworks have been used
to increase the capability of IRT in detecting pathologies and
modulations of autonomic activity (35, 36).

The aim of this study is to investigate the feasibility of
estimating HRV parameters from facial IRT through an ML
approach. Specifically, a support vector regression (SVR) was
implemented to estimate time and frequency domain metrics
(i.e., RMSSD, SDDN, pNN50 %, TINN, and LF/HF) and the
average HR and RR intervals from features evaluated on the
temperature time course of facial ROIs.

Specifically, the model does not require inference of the
physiology of the system, but the only a priori hypothesis
was the presence of a physiological link between HRV and
skin temperature modulations. This assumption was tested a
posteriori with the assessment of the generalization performance
of the model, through a cross-validation approach. This model
is useful for remote sensing of health conditions, which
is fundamental to monitor patients’ improvements during
rehabilitation and therapies (37). Moreover, during the COVID-
19 pandemic, several solutions have been proposed in order to
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remotely assess the vital signs and the clinical conditions of
patients to avoid the contagious (38). Furthermore, contactless
monitoring of the emotional and autonomic conditions can
be used to monitor cardiovascular risk and patient’s prognosis
in clinical practice when methods that require skin contact
are not possible to implement and for individuals performing
tasks, such as working and driving, improving the human
safety and wellbeing.

MATERIALS AND METHODS

Experimental Procedure and Data
Acquisition
The experimental session involved 32 healthy volunteers (20
women and 12 men, age = 51.46 ± 7.68 years). The paradigm
induced modifications in the HRV of the participants through
modulations of the breathing rate and intensity (39). In detail,
participants had to perform a breathing task comfortably sitting
on a chair in front of a computer staring at a visual stimulus
presented on the screen of the computer modulating the rate and
the intensity of their breathing. The experimental session lasted
1 min. To collect information on the pulse rate variability of
the participants, a PPG sensor (emWave Pro Plus, HeartMath,
Inc., Boulder Creek, CA, United States) was placed on the
fingertip of the subjects’ left hand during the task. The sampling
frequency was 370 Hz.

Concurrently, the facial temperature was recorded through a
digital thermal infrared camera FLIR SC660 (FLIR, Wilsonville,
OR, United States) (640 × 480 bolometer FPA, sensitivity/noise
equivalent temperature difference: <30 mK at 30◦C, the field of
view: 24◦

× 18◦). The IRT device was placed 60 cm distant from
the participant and pointed toward his/her face. The sampling
frequency was 10 Hz. The camera was blackbody-calibrated in
order to eliminate eventual drift/shift of the sensor’s response and
optical artifacts.

The study was approved by the Research Ethics Board
of the University of Chieti-Pescara (approval number: 1479,
date of approval: 03/05/2017), and it followed the principles
of the Declaration of Helsinki. Each participant signed the
informed consent, and they could withdraw from the experiment
at any time. The measurements were performed following
the standard guidelines for thermal imaging acquisitions (40).
Specifically, the experiment was performed in a thermoneutral
environment to prevent the risk of possible thermoregulatory-
induced alterations. Moreover, the participants could acclimate
to the environment for a period of 15 min before the session to
reach the thermal equilibrium (40). Furthermore, all the sessions
were scheduled at the same time of day with the aim to avoid the
effects of possible circadian rhythm variations (41).

Data Preprocessing
Concerning PPG, the signals were band-pass filtered setting the
cutoff frequencies at 0.2 and 10 Hz. A procedure for automatic
peaks identification is employed for the PPG filtered and
normalized (z-score) signals. The performance of the algorithm
was checked by visual inspection, but no correction had to be
applied. The PPG peaks were used to evaluate the HRV metrics

over the 1 min recording. Particularly, the following indices were
computed: mean HR (beats/min), mean RR (ms), LF/HF, SDDN
(ms), RMSSD (ms), pNN50 (%), and TINN (ms). Table 1 reports
the formulas employed to evaluate the HRV metrics considered.
In Table 2, the list of thermal features extracted from each ROI
selected to feed the different SVR models used to estimate the
HRV parameters is reported.

Regarding the IRT recordings, the quality of the signals was
checked by visual inspection and no video was rejected. Three
ROIs were selected on the glabella (G), nose tip (NT), and
nostrils (N). Since the participants stayed quite still during the
experiment, the algorithm did not fail in tracking any frames.
The following features were computed from the temperature
time course of each ROI to feed the machineries: mean value,
SD, kurtosis, skewness, variation of the signal computed as the
difference between the average of the first and last 5 s of the
acquisition (delta), sample entropy (SampEn), 75◦ percentile,
the power spectra density (PSD) of the thermal signal for the
respiratory (PSD-breath), cardiac (PSD-cardiac), and myogenic
(PSD-myo) frequency bands. In detail, mean value, SD, kurtosis,
and skewness are different moments of the distributions,
providing information on the central tendency, dispersion, and
shape of the temporal evolution of the temperature. Concerning
delta and 75◦ percentile, they are parameters indicative of the
variability of the signal. The sample entropy is a measure of
the predictability of the signals, which is defined as the negative
natural logarithm of the conditional probability that signal
subseries of length m (pattern length) that match pointwise
within a tolerance r (similarity factor) also match at the m+1
point, and it evaluates nonlinear predictability of the signal (42).
The PSD describes the distribution of power into frequency
components composing that signal. In this study, the mean
value of the PSD evaluated over the following frequency bands
was computed: myogenic band (0.04–0.15 Hz), respiratory
band (0.15–0.5 Hz), and cardiac band (0.5–1 Hz) (43). The
frequency bands were considered. Of note, all the features
were normalized (z-score) before being employed in the ML
framework. A representative thermogram of one participant is
reported in Figure 1.

Machine Learning Procedure
An SVR approach was used as previously described (44). In this
case, the SVR-based models with linear kernel were developed

TABLE 1 | Computation of HRV indices on the PPG signals, empoyed as output
of the ML models developed.

Variables Description

HR (bpm) Mean heart rate

RR (ms) Mean of RR intervals

TINN (ms) Baseline width of the RR interval histogram

pNN50 (%) NN50 divided by the total number of RR intervals

RMSSD (ms) Square root of the mean squared differences between
successive RR intervals

SDNN (ms) Standard deviation of NN intervals

LF/HF Ratio between LF and HF band powers
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TABLE 2 | Thermal features extracted from each ROI selected to feed the different SVR models used to estimate the HRV indices considered.

HRV Metrics Predictors

HR (bpm) Mean value (NT and N), std (G, NT and N), kurtosis (G and N), skeweness (N), SampEn (G and N) and PSD-Breath (N)

RR (ms) Mean value (NT), std (G and N), kurtosis (NT), SampEn (G and N), PSD-Breath (G) and PSD-Cardiac (NT)

TINN (ms) Std (NT and N), kurtosis (NT), skewness (N), SampEn (G) and PSD-Myo (NT)

pNN50 (%) Mean Value (G and N), std (G, NT and N), kurtosis (G) and PSD-Cardiac (N)

RMSSD (ms) Mean value (G), std (G and N), kurtosis (G and NT), skewness (N), SampEn (G and N), PSD-Breath (G), PSD-Cardiac (NT and N) and
PSD-Myo (NT and N)

SDNN (ms) Std (G), kurtosis (G and NT), SampEn (G and N), percentile (G), PSD-Breath (G, NT and N)

LF/HF Kurtosis (N), SampEn (G and N), PSD-Breath (NT and N) and PSD-Cardiac (G and NT)

The ROI on the glabella is referred as G, the one on the nose tip is called NT, and the one on the nostrils is called N. The input features reported are obtained from the
wrapper method in order to reduce the number of regressors and to optimize the models’ performance.

FIGURE 1 | Thermogram of a representative participant with ROIs placement
over the glabella (G), nose tip (NT), and nostrils (N).

to predict the different HRV metrics [i.e., mean HR (beats/min),
mean RR (ms), LF/HF, SDDN (ms), RMSSD (ms), pNN50 (%),
and TINN (ms)] evaluated from the PPG signals. The features
extracted from the temperature time course of each ROI were
used as input for the SVR models. Of note, since the number
of predictors (i.e., number of ROIs × number of features = 30)
was similar to the number of participants (i.e., 32), a subset of
the features was employed as an input of the ML framework,
after a selection based on wrapper method (45). A fivefold
cross-validation was implemented to reduce the risk of the
overfitting effect and assess the generalization performance of
the models. To test the stability of the results and to avoid a
possible effect related to the definition of the folds, 1,000 random
combinations of folds were tested in a bootstrap procedure. The
models associated with the average performance assessed by the
bootstrap were used for further analysis. The performance of the
models was evaluated by correlation (Spearman) analysis, Bland–
Altman plot, and paired t-test. Data preprocessing and analysis
were performed using MATLAB (MathWorks, Inc., Natick, MA,
United States).

RESULTS

Concerning the correlation analysis results, Figure 2 reports
the results of the bootstrap procedure. Specifically, it reports

the histogram of the distribution of the correlation coefficients
obtained after 1,000 iterations during which the folds were
randomly chosen. Results showed a strong correlation regarding
HR (Figure 2A; r = 0.70), RR (Figure 2B; r = 0.66), TINN
(Figure 2C; r = 0.71), and pNN50% (Figure 2D; r = 0.70), while a
moderate correlation was found for SDNN (Figure 2E; r = 0.44)
and LF/HF (Figure 2F; r = 0.48).

To summarize the data and show the stability of the model, the
average and associated SD of the correlation coefficients delivered
by the bootstrap analysis for all the HRV metrics are reported in
Table 3.

The models associated with the average correlation coefficient
obtained with the bootstrap procedure were used for further
analysis. Figure 3 reports the weights of the cross-validated
models developed for each HRV indices estimated. SampEn
measured at the glabella (G) showed the highest weight for the
prediction of HR and LH/HF (Figures 3A,G). The SD measured
at the G had the highest predictive value for RR, pNN50 (%), and
SDNN (Figures 3B,D,F). Power spectrum density of the thermal
signal for the myogenic frequency band (PSD-myo) measured
at the NT had the highest predictive value for both TINN and
RMSSD (Figures 3C,E). Regarding this latter, also PSD-myo
measured at the N showed a weight as high as that measured at
the NT (Figure 3E).

In addition, Figure 4 reports the correlation plot obtained
between the measured HRV indices and the ones predicted
form IRT signal features. Importantly, high coefficients of
determination (r2) were found for HR (Figure 4A; r2 = 0.48),
RR (Figure 4B; r2 = 0.43), TINN (Figure 4C; r2 = 0.51), pNN50
(%) (Figure 4D; r2 = 0.50), and RMSSD (Figure 4E; r2 = 0.35).
Moderate to weak r2 values were found for LF/HF (Figure 4G;
r2 = 0.23) and SDNN (Figure 4F; r2 = 0.19), respectively.

Table 4 reports the results of the paired t-test between the
measured HRV metrics and those predicted from IRT. No
significant results were showed for HR (t = 1.02, p = 0.317),
RR (t = 0.55, p = 0.583), TINN (t = –1.75, p = 0.090), pNN50
(%) (t = –1.26, p = 0.220), RMSSD (t = 1.18, p = 0.248), and
SDNN (t = 1.08, p = 0.289), indicating no differences between
the measured and predicted values. Conversely, a significant
difference was highlighted for LH/HF (−2.43, p = 0.021).

Concerning the agreement between measured and predicted
HRV variables, the Bland–Altman plot for HR (Figure 5A)
showed a mean difference of −2.6 beats/min (p = 0.19) with a
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FIGURE 2 | Distribution of the correlation coefficients for the predicted HRV variables after 1,000 iterations of the bootstrap procedure. In detail, the distributions of
the correlation coefficients obtained for the (A) heart rate (HR), (B) interval between consecutive R peaks (RR), (C) triangular interpolation of the NN interval
histogram (TINN), (D) pNN50 (%), (E) root mean square of the successive differences (RMSSD), (F) standard deviation of NN intervals (SDNN), and (G) ratio of
LF-to-HF power (LF/HF) are shown.

lower limit of agreement (LoA) of −24.0 beats/min and an upper
LoA of 19.0 beats/min. Regarding the RR intervals (Figure 5B),
the mean difference was −9.8 ms (p = 0.58) with a lower LoA of
−210.0 ms and an upper LoA of 190.0 ms. The mean difference
for the TINN (Figure 5C) accounted for 18.0 ms (p = 0.09)
with a lower LoA of −98.0 ms and an upper LoA of 140.0 ms.
Concerning the pNN50 (%) (Figure 5D), the mean difference was
−2.0 with a lower and upper LoA of −20.0 and 16.0, respectively.
The RMSSD (Figure 5E) showed a mean difference of 1.0 ms
(p = 0.73) with a lower LoA −32.0 ms and an upper LoA of
34.0 ms. The mean difference for SDNN (Figure 5F) was −4.7 ms

TABLE 3 | Mean values of the correlation coefficients (r) and associated standard
deviation were obtained through the bootstrap procedure for each HRV
metric estimated.

Variables Average r ± SD r2 Regression equation

HR (bpm) 0.70 ± 0.04 0.48 y = 0.93x + 3.12

RR (ms) 0.66 ± 0.02 0.43 y = 0.93x + 38.7

TINN (ms) 0.71 ± 0.02 0.51 y = 0.30x +179

pNN50 (%) 0.70 ± 0.05 0.50 y = 0.68x + 5

RMSSD (ms) 0.58 ± 0.02 0.35 y = 0.59x + 19.5

SDNN (ms) 0.44 ± 0.03 0.19 y = 0.46x + 25.9

LF/HF 0.48 ± 0.03 0.23 y = 0.46x + 28.4

Additionally, r2 and regression equations are reported.

(p = 0.29) while lower and upper LoA were −53.0 and 43.0 ms,
respectively. Finally, the mean difference for the LF/HF was 11
(p = 0.02) with a lower LoA of −39.0 and an upper LoA of
61.0 (Figure 5G).

DISCUSSION

This study investigated the possibility of estimating HRV
parameters from facial temperature skin oscillations by
developing models based on SVR with a linear kernel. To test
the generalization performance of the models, a five-fold cross-
validation approach was implemented. Furthermore, to prevent
a possible overfitting effect due to the choice of the folds used
to train and test the model, a bootstrap procedure with 1,000
iterations was performed for each model. The performance of
the models was tested through correlation analysis to investigate
the relationship between the real and predicted metrics. To assess
bias between the measured and estimated indices, the t-test was
used, and the Bland–Altmann plot was implemented to evaluate
the agreement between the PPG- and IRT-derived parameters.
In accordance with Cohen’s interpretation of the correlation
coefficient (28), a strong correlation between the estimated and
measured metric was found for the average HR, the average
RR intervals, pNN50 (%), and TINN, whereas a moderate
correlation was found for RMSSD, SDNN, and LF/HF. To show
the average behavior of the model and its stability, the mean
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FIGURE 3 | The weights for each predictor used in the support vector regressor (SVR) models to estimate (A) HR, (B) RR, (C) TINN, (D) pNN50 (%), (E) RMSSD,
(F) SDNN, and (G) LF/HF are shown. N, nostrils; NT, nose tip; G, glabella.

FIGURE 4 | SVR performance for the analyzed HRV variables. The figure reports the regression equation and r2 for the prediction of (A) HR, (B) RR, (C) TINN, (D)
pNN50 (%), (E) RMSSD, (F) SDNN, and (G) LF/HF. HR, heart rate; RR, the interval between consecutive R peaks; pNN50 (%), percentage of successive RR intervals
that differ by more than 50 ms; RMSSD, root mean square of successive RR interval differences; SDNN, standard deviation of NN intervals; LF/HF, ratio of LF-to-HF
power. The reported values are associated with the iteration closer to the mean correlation coefficient.

value and SD of the distributions of the correlation coefficients
obtained for the iterations were reported. Of note, although these
metrics are more suitable to describe the normal distribution,

they are able to provide information about the reliability and
robustness of the performance of the model. Accordingly,
data highlighted that a possible overfitting effect due to the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 893374

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-893374 May 16, 2022 Time: 9:57 # 7

Di Credico et al. Prediction of HRV Using IRT

TABLE 4 | Results of the t-test were computed to compare the HRV metrics
evaluated from the PPG signal and the correspondent metrics estimated by the
cross-validated SVR.

Variables t-stat df p-value

HR (bpm) 1.02 31 0.317

RR (ms) 0.55 31 0.583

TINN (ms) −1.75 31 0.090

pNN50 (%) −1.26 31 0.220

RMSSD (ms) 1.18 31 0.248

SDNN (ms) 1.08 31 0.289

LF/HF −2.43 31 0.021

creation of the folds is not present. Regarding the presence of
a bias in the estimation of the HRV metrics, the paired t-tests
assessed significant differences for LF/HF between the estimated
and measured metrics. Notably, concerning TINN, the t-test
delivered a p-value close to the chosen significance (p < 0.05),
whereas the other metrics did not exhibit a bias when estimated
from IRT signals features. Regarding the Bland–Altman plot
results, a clear systematic error of the model is assessed for
LF/HF, SDNN, and TINN. Considering the linear regression
equation associated with each model to estimate the different
HRV metrics, it is worth to highlight that a good model should
deliver a linear equation with the slope around 1 and the constant
term around 0 (46). The models implemented delivered a slope
above 0.5 for HR, RR, pNN50 (%), and RMSSD. Concerning the
constant terms, they are above 0 for all the models, allowing us
to obtain an estimation without bias (assessed by the t-test) of
almost all the HRV metrics, although the slope is not close to 1.
However, these features of the regression equation produce the
systematic error assessed for some models.

Considering all these aspects, the findings demonstrated the
feasibility to develop an acceptable model from IRT data for HR,
RR, pNN50 (%), and RMSSD.

The employment of a model with a linear kernel allows
to establish clear relationships between the predictors used as
input and the output of the machinery through the analysis of
the weights associated with each regressor (47). Moreover, the
linear kernel is less prone to overfitting effects with a limited
dataset (48). On the contrary, introducing a nonlinearity in the
prediction is not always beneficial to the performance. In fact,
if the relationship between the input regressors and the output
is well expressed by linear regression, using nonlinearities could
be detrimental to the performance of the model. Concerning
the HR model, the predictors exhibiting the highest weights are
the SampEn evaluated on the G and N and the PSD-breath
evaluated on the N. Of note, the negative sign of SampEn (N)
and PSD-breath (N) implies an inverse relationship between
the HR and these regressors, whereas the SampEn (G) is
positively related to this HRV metric. Regarding the RR model,
the highest weights of the regression are associated with the
SD of the signal evaluated on the G and N and the PSD-
breath computed on the G. Of note, the weight associated with
SD (G) is positive, whereas the ones associated with SD (N)
and PSD-breath (G) are negative. In the model developed for

pNN50 (%), the largest positive weights are associated with
SD computed over the G and NT, whereas the largest negative
weights are related to SD of the thermal signals measured on
the N and to the kurtosis of the signal collected from the
G. Finally, the RMSSD model shows a predominance of the
weights associated with the PSD. Particularly, positive weights
are associated with PSD evaluated over the myogenic band for
the NT and N, whereas PSD-breath (G) and PSD-cardiac (N)
exhibit negative weights. From these results, it is evident that
the estimation of the HRV indices is mainly due to metrics
of variability (SD) and predictability (SampEn) of the signal
with respect to metrics of central tendency (mean value). This
finding suggests that the HRV can produce variations of the
thermal signal. In fact, modulations of the HR can produce
oscillations of the blood volume of the vessels, which is related
to the skin temperature variations (49). This assumption is
also confirmed by the important role of the PSD evaluated
over the cardiac frequency band for estimating the RMSSD.
Moreover, the contribution of the PSD over the myogenic
band in the estimation of the RMSSD could be explained
by the influence of the vasomotor regulation of the vessels
on the skin temperature (50). Finally, the importance of the
respiratory band could be related to the influence of the
breathing rate on both HR and HRV (51) but also to the
relevance of this physiological process in the ROIs considered.
In fact, the temperature time course of the NT and N is
strongly influenced by the modulations of the breath, since the
inspired air has a different temperature with respect to the
exhaled air (52). Of note, the acquisitions have been performed
during the execution of a breathing task, further confirming
the assessed importance of these features in the estimation of
HRV indices. The findings of this study are based on a strong
relationship between HRV and facial thermography. In fact,
it is well known that both HRV and facial temperature time
courses are indicative of the psychophysiological condition of
the individual, and they are both influenced by the ANS activity
(53, 54). Particularly, IRT can provide information regarding
the superficial circulation, which is modulated by the ANS,
responsible for thermoregulation processes (55). Particularly, the
venous return and the cardiac output are also modulated by the
heat transfer from skin to blood, and subsequently to the body
core (56). However, it is worth to highlight that the superficial
microcirculation is influenced also by local factors, hence, it
could be licit to suppose that the not optimal correspondence
between the estimated and measured HRV metrics is related
to different physiological mechanisms underlying the cardiac
rhythm and the skin temperature modulations (57). In addition,
it is useful to highlight that PPG signals could vary based on the
measurement site and the skin temperature. Mejía-Mejía et al.
showed that the correlation between HRV measured through
PPG and that measured with ECG can slightly change based
on the recording site, and regarding the fingertip, they found
a high correlation (58). Accordingly, Selvaraj and colleagues
found a correlation of 0.97 between ECG-derived RR intervals
and PPG-derived peak-to-peak intervals (59). Thus, the finger
was chosen as the recording site since it is considered the gold
standard for clinical PPG acquisitions (60). In addition, the
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FIGURE 5 | Bland–Altman plots of the predicted HRV variables. The figure shows the agreement between the variables measured with PPG and the predicted ones
using IRT data. In each figure, mean difference and limit of agreement are reported. (A) HR, (B) RR, (C) TINN, (D) pNN50 (%), (E) RMSSD, (F) SDNN, and (G) LF/HF.
HR, heart rate; RR, interval between consecutive R peaks; pNN50 (%), percentage of successive RR intervals that differ by more than 50 ms; RMSSD, root mean
square of successive RR interval differences; SDNN, standard deviation of NN intervals; LF/HF, ratio of LF-to-HF power.

effect of temperature was controlled allowing the participant to
acclimate to the environment for a period of 15 min, to reach the
thermal equilibrium (61). In this way, pulse rate variability was
measured in normothermia conditions for every participant, thus
preventing a possible impairment of the method’s performance
due to the temperature variability.

The proposed procedure could represent a valuable tool
for continuous HRV monitoring also in poor environmental
light conditions. The employment of IRT for HRV monitoring
also allows to concurrently evaluate other physiological signals,
such as breathing rate and sweat glands activity. These signals
are indicative of the emotional status of the individual and
can provide information on the wellbeing of the subject. This
procedure could be highly suitable for clinical applications, such
as bedside vital signs monitoring, particularly for those patients
where contactless monitoring is preferred. The possibility to
use IRT to predict HRV parameters is of main importance to
investigate the health status of subjects with skin diseases, skin
injury, and neonates. In fact, HRV values are associated with the
risk, onset, and prognosis of a plethora of diseases. The short-
term HRV recordings show that low values of RMSSD and SDNN
were associated with an increased risk of coronary heart disease
and death from different causes (62).

Moreover, it could be employed to remotely assess the
vital signs and the clinical conditions of patients, especially
contagious patients, as during the COVID-19 pandemic (38).

Furthermore, IRT could, in fact, be used to monitor the
human psychophysiological state, stress, and emotional state
in the workplace and during the execution of cognitively
demanding tasks.

However, it is worth to highlight that the proposed procedure
does not provide a highly accurate estimation of all the HRV
metrics, and hence it could be worth to perform further studies
to improve the accuracy of the method. In fact, the first
limitation of the study is represented by the reduced number
of participants. Enlarging the sample size could allow to obtain
more accurate results and test more complex machineries, such
as deep learning. However, the proposed model was developed
employing a cross-validation procedure, hence guaranteeing the
generalization performance of the model.

Moreover, further studies are necessary to test the capability of
estimating other HRV metrics from the facial temperature time
course, also considering other ROIs or considering the whole
face temperature oscillations. In addition, further studies should
be performed in order to test the capability of IRT to estimate
HRV metrics through ML and deep learning approaches also
during resting-state condition, without the administration of a
breathing task. Furthermore, the developed model can estimate
HRV metrics integrating information over a temporal window
of 1 min. In fact, further studies are needed to decrease the
amplitude of the temporal window for the HRV prediction.
Finally, it could be worth to test the feasibility to estimate the
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cardiac pulse signal itself, providing a valuable tool able to deliver
performances similar to rPPG also in poor light conditions.

Although preliminary, these results could pave the way
to the employment of IRT for contactless HRV monitoring
for cardiovascular medicine and neuroergonomic applications,
to be exploited, for instance, in an Internet of Things
context. Specifically, this model could be suitable for clinical
applications when contact technique is not suitable (e.g., patients
with sensitive skin), for human–machine interaction (HMI),
automotive systems, and for monitoring the wellbeing of workers
in the workplace.

CONCLUSION

This study proposed an innovative model based on linear SVR
to estimate HRV metrics from facial temperature time course
assessed by IRT. Specifically, ROIs from G, NT, and N were
considered to compute thermal features used for the HRV indices
prediction. The performances of the model were tested through
correlation analysis, Bland–Altman plot, and paired t-test.
Models delivering a good estimation of HR, RR, pNN50 (%),
and RMSSD on a temporal window of 1 min were implemented.
These results could pave the way to the employment of IRT for a
contactless HRV assessment suitable for cardiovascular medicine
and neuroergonomic applications also with poor light conditions
or in a situation in which contact methods are not implementable.
Thus, our proposed method represents a new useful tool in the
field of cardiovascular medicine in different situations in which
methods that require skin contact are not possible to implement.
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