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Abstract: Background: Although electronic health records (EHR) provide useful insights into disease
patterns and patient treatment optimisation, their reliance on unstructured data presents a diffi-
culty. Echocardiography reports, which provide extensive pathology information for cardiovascular
patients, are particularly challenging to extract and analyse, because of their narrative structure.
Although natural language processing (NLP) has been utilised successfully in a variety of medical
fields, it is not commonly used in echocardiography analysis. Objectives: To develop an NLP-based
approach for extracting and categorising data from echocardiography reports by accurately convert-
ing continuous (e.g., LVOT VTI, AV VTI and TR Vmax) and discrete (e.g., regurgitation severity)
outcomes in a semi-structured narrative format into a structured and categorised format, allowing
for future research or clinical use. Methods: 135,062 Trans-Thoracic Echocardiogram (TTE) reports
were derived from 146967 baseline echocardiogram reports and split into three cohorts: Training and
Validation (n = 1075), Test Dataset (n = 98) and Application Dataset (n = 133,889). The NLP system
was developed and was iteratively refined using medical expert knowledge. The system was used to
curate a moderate-fidelity database from extractions of 133,889 reports. A hold-out validation set
of 98 reports was blindly annotated and extracted by two clinicians for comparison with the NLP
extraction. Agreement, discrimination, accuracy and calibration of outcome measure extractions
were evaluated. Results: Continuous outcomes including LVOT VTI, AV VTI and TR Vmax exhibited
perfect inter-rater reliability using intra-class correlation scores (ICC = 1.00, p < 0.05) alongside high
R2 values, demonstrating an ideal alignment between the NLP system and clinicians. A good level
(ICC = 0.75–0.9, p < 0.05) of inter-rater reliability was observed for outcomes such as LVOT Diam,
Lateral MAPSE, Peak E Velocity, Lateral E’ Velocity, PV Vmax, Sinuses of Valsalva and Ascending
Aorta diameters. Furthermore, the accuracy rate for discrete outcome measures was 91.38% in the
confusion matrix analysis, indicating effective performance. Conclusions: The NLP-based technique
yielded good results when it came to extracting and categorising data from echocardiography reports.
The system demonstrated a high degree of agreement and concordance with clinician extractions.
This study contributes to the effective use of semi-structured data by providing a useful tool for
converting semi-structured text to a structured echo report that can be used for data management.
Additional validation and implementation in healthcare settings can improve data availability and
support research and clinical decision-making.

Keywords: electronic health records (EHR); Big Data; unstructured data; echo report; echocardiography
analysis; natural language processing (NLP); data extraction; validation
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1. Introduction

Electronic health records (EHR) have become increasingly important as they generate
more and more data leading to “Big Data”, holding key insights into disease patterns and
opportunities to optimise patient treatment. However, the reliance on semi-structured
data is a major barrier in using EHR. These types of data do not have a fixed structure
but have some type of organisation, generally through the use of tags, labels or metadata.
While semi-structured data enables flexibility in data representation, they are limited in
terms of the lack of standardisation, irregular organisation, ambiguity and interpretation
issues. Extracting useful information and integrating semi-structured data can be difficult,
necessitating the use of advanced techniques such as natural language processing and data
mapping. When interacting with patients, healthcare workers frequently use freeform
notes to record vital details [1].

The echo report based on echo imaging is the fundamental record of evidence for the
diagnosis of a cardiovascular patient. The structure (e.g., valves, cardiac chambers and
blood vessels dimensions) and functionalities (e.g., ejection fraction, global longitudinal
strain) of the heart are examined and described in the echo report by the echocardiogra-
pher with a mix of semi-structured numerical data and free text descriptions. However,
the extraction and generation of research data from the original document are challeng-
ing, mainly due to the narrative nature of the echo report, different reporting styles of
echocardiographers, differences in echo devices (reporting platforms and vendor software)
and hospital specific protocol differences. As such, the extraction of structured data from
semi-structured echo reports, especially for statistical analyses, tends to be excessively time
consuming and requires tremendous effort and cost, owing to its presentation as a narrative
document.

While NLP models and tools were used to process data from psychiatry, X-ray radiog-
raphy [2] and pathology [3] to distinguish healthy from diseased patients [4,5], they are not
frequently used in echocardiography analysis.

Whilst the retrieval of categorised data from clinical data repositories is relatively
simple, not all data are available in this format. Large organisations, such as the NHS,
typically store large amounts of information in the form of free text, within which specific
categories of data (e.g., aortic or mitral valve haemodynamics) cannot be easily retrieved for
analysis. To enable the data contained within free text to be used for statistical analyses, it
is necessary to both extract and convert that information into a structured format. However,
there are significant challenges to the extraction process, which can be summarised as:
(a) variability of language, which is often ambiguous and complex; (b) lack of standard-
isation; and (c) incomplete information and privacy concerns. This paper presents an
approach that employs a natural language processing (NLP) system to handle variations
in echocardiographic data to construct a comprehensive data repository by accurately
categorising, extracting and organising semi-structured echocardiographic data.

The primary aim of this study is to improve data management and analysis for more
effective use of echocardiographic data in research and clinical applications. To achieve this
aim, we have defined two key objectives. Our primary objective is to create a structured
moderate-fidelity echocardiogram database using automated data extraction and curation
technologies. We envision this database being easily integrated with high-fidelity datasets
such as EHRs [6], supporting the aim of effective echocardiographic data usage in research
by promoting multimodal learning methodologies [7]. In parallel, our second objective is
to meticulously identify factors that consistently display superior extraction performance.
This aspect of research is critical in terms of future clinical applications, such as patient
monitoring and the development of predictive risk scores, both of which have the potential
to alter patient care and medical research.

We validated the proposed method by comparison of the NLP extraction with clini-
cian’s annotations on a sample of the most common type of echocardiography examination,
Trans-Thoracic Echocardiogram (TTE). Finally, the approach is scaled to extract all available
echocardiogram free text reports within the local hospital.
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The main contributions of the study are summarised as follows:

• Improved Data Extraction Using NLP. This study introduces and illustrates the usage
of a GATE-based NLP system to extract comprehensive information from echocardiog-
raphy reports. This approach substantially improves the efficiency while maintaining
accuracy to extract meaningful insights from these reports by automating the data
extraction process.

• Data-Driven Clinical Decision-Making. By utilising Big Data resources, this work
contributes to the realisation of learning health systems. It provides the foundation
for using data-driven [8] insights to help healthcare practitioners make precise diag-
noses, identify at-risk patients, develop personalised treatment regimens and enhance
medical research in complex patient populations. It enables healthcare workers to im-
mediately identify critical parameters and red flags in preoperative and postoperative
settings, such as changes in aortic diameters or valve haemodynamics. This feature
can also help to expedite surgical prioritisation, patient monitoring and waiting list
administration.

• Opportunities for Research and Audits. The NLP system’s capabilities go beyond
treating specific patients. It paves the way to advanced audit and research projects in
cardiac care. With the use of this technology, researchers can monitor patterns and
examine large datasets, advancing our knowledge of heart conditions and therapeutic
outcomes.

• Interpretable Integration of Data. The study addresses the challenge of integrating
both continuous and discrete data, such as qualitative ratings and quantitative mea-
surements, in echocardiogram reports. The structured database generated by the NLP
system offers a clear and interpretable representation of this combined information,
facilitating its practical use.

• Potential for Broader Healthcare Applications. While the study focuses on echocar-
diography reports, the concepts and methods explored here can potentially extend
to other investigative modalities, including CT scans. The NLP system’s ability to
integrate with risk modelling approaches further expands its potential impact on
healthcare research and practice.

In the next section we report on some related work.

2. Related Work

In [9], NLP algorithms were created and verified to identify aortic stenosis (AS) cases
from echocardiography reports and compare their precision to diagnosis codes. The
promise of NLP for enhancing case identification in population health was demonstrated
by the NLP algorithms’ greater accuracy in detecting AS cases than diagnostic codes. An
approach for obtaining numerical test results and associated descriptions from free-text
echocardiogram reports was proposed in another study [10]. The system efficiently han-
dled typos, synonyms and abbreviations by using corpus-independent algorithms and
fuzzy matching to detect and pair expressions with measurement results. It was useful for
processing large numbers of echocardiographic findings and showed potential for assisting
medical research or clinical trial verification. In a different study, a method for turning
heterogeneous echocardiographic medical notes into structured data based on NLP was
provided [11]. The researchers developed a unique NLP-based extraction and processing
programme, EchoInfer, to automate the extraction and organisation of the 80 frequently
evaluated echocardiogram data items. By converting unstructured, semi-structured and
structured data from echocardiograms into a format compatible with traditional analytical
techniques, EchoInfer’s effectiveness and consistency were established. Another study
evaluated the generalisability of Left Ventricular Ejection Fraction (LVEF) extraction mod-
ules, using a data set known as the TUCP EF year 3 corpus (including echocardiography
and radiology data reports) [12]. The features for detecting LVEF information were ex-
amined, and NLP techniques based on a machine learning (ML) sequential tagger were
deployed. The work made contributions by assessing how well previous LVEF extraction
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modules performed on the new corpus, and by examining how the amount of training data
influenced the accuracy of the new NLP modules. Another study showed that NLP may
be used to categorise stress echocardiography (SE) data and extracted variables that were
frequently utilised in stress testing score models [13]. By synthesising data elements from
the reports, the NLP system produced a valid summary and demonstrated high accuracy
in criteria validity when compared to the reference standard. Construct validity was also
evaluated [13], and the results demonstrated that, in line with prior findings, NLP-derived
SE results effectively distinguished patients at short-term cardiac risk.

Transformer based models, such as the Bidirectional Encoder Representations from
Transformers (BERT), have also been applied for extract knowledge from unstructured
notes in the healthcare domain. Studies typically begin with standardisation of text by
using the NLTK toolkit for case conversion, removing new line characters, punctuation,
single character-words and performing spell checks [14]. A recent study found that a Dutch
version of this model, referred to BERTje, outperformed traditional approaches (TF-IDF
and doc2vec with ML), other health domain specific Dutch transformers RobBERT and
MedRobERTa.n in predicting the reasons for undertaking MRI scan from three classes:
(1) Diagnosis; (2) Progression; or (3) Monitoring [15]. eXplainable Artificial Intelligence
(XAI) techniques such as Shapley Additive Explanation (SHAP) and Local Interpretable
Model-Agnostic Explanation (LIME) were used to generate variable importance for words
that result in class predictions and were ranked by the radiologist to understand the average
impact of (perhaps) valid words on predictions. Another study compared French language
BERT models against a Bidirectional and Auto-Regressive Transformer (BART) based model
for prediction emergency department triage status (hospitalised or discharged). Interest-
ingly, PCA dimensionality reduction of transformer embedding was applied followed by
k-means clustering of different cluster sizes ranging from 2–10 and cluster membership
robustness assessed through the Silhouette score and the Fowlkes–Mallows (FM) score,
suggesting models with larger number of parameters having higher performance [14].

Previous research has mostly concentrated on extracting predefined outcomes from
echocardiographic records. There have only been two published studies that integrated
corpus-specific knowledge for complete extraction of measurement outcomes [10,11]. Few
studies have applied automated conversion of units to a standardised dictionary-specified
format. In addition, few studies have clinically applied the data extraction approach within
the National Health Service (NHS) settings utilising efficient EHR database extraction and
data loading processes for maximising the availability of structured echo report results.

3. Materials and Methods

The register-based cohort study using de-identified patient data is part of a research
approved by the Bristol Heart Institute, and the need for patients’ consent was waived.
Reporting of results follows the TRIPOD statement.

3.1. Dataset

The study was performed using the University Hospitals Bristol and Weston NHS
Foundation Trust (UHBW) echocardiogram dataset, which comprises UHBW echocardio-
gram reports prospectively stored by UHBW following patient examinations. Cardiac
resynchronisation optimisation echo, 3D TTE, TTE with contrast agents; Stress Echocar-
diogram (SE) with and without dobutamine and contrast agents; and Trans-Oesophageal
Echocardiogram (TOE) cases were excluded, resulting in a total of 135,062 TTE reports
for analysis. This study was performed using data from all TTE echocardiogram exami-
nations across the UHBW from January 2009 to November 2020. A total of 200 routinely
reported echocardiography outcomes measurements were extracted by the system at base-
line. All names and demographics were removed from the echocardiography reports and
corresponding metadata.

Although obtaining true labels for examination results through manual annotation can
be a laborious process, two cardiologists undertook the task of blindly labelling of 98 reports
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from this TTE cohort to extract examination results for 43 of the most clinically relevant
(35 continuous and 8 discrete) outcomes as the gold standard for the test dataset (Table 1).
Differences in extraction were resolved by the lead cardiologists. Variables extracted by the
cardiologists was on the same unit scale as that within the original echocardiography report.

Table 1. Abbreviations and definitions for 43 of the most clinically relevant outcomes labelled by the
two clinicians. Heart category and data type are also shown.

Abbreviation
Clinician Abbreviation NLP Definition Category Data Type

LVEF EF Left Ventricular Ejection Fraction

Left ventricle

Continuous

LVIDd LVIDd Left Ventricular Internal Diameter in Diastole Continuous

LVIDs LVIDs Left Ventricular Internal Diameter in Systole Continuous

LVSF LV Systolic Function Left Ventricular Shortening Fraction Discrete

IVSd IVS Interventricular Septum Thickness in Diastole Continuous

PWd PWd Posterior Wall Thickness in Diastole Continuous

LVOTd LVOT Diam Left Ventricular Outflow Tract Diameter Continuous

LVOTvti LVOT VTI Left Ventricular Outflow Tract Velocity-Time Integral Continuous

LVOTpv LVOT Vmax Left Ventricular Outflow Tract Peak Velocity Continuous

RV_TDI_S RV S’ Right Ventricle Tissue Doppler Imaging S Wave

Right ventricle

Continuous

RVD1 RVD1 Right Ventricle Diameter at Basal Level Continuous

TAPSE RV TAPSE Tricuspid Annular Plane Systolic Excursion Continuous

LA_area LA Area Left Atrial Area
Left atrium

Continuous

LA_vol LA Volume Left Atrial Volume Continuous

RA_area RA Area Right Atrial Area Right atrium Continuous

AS_sev AV Stenosis Aortic Stenosis Severity

Aortic valve

Discrete

AR_sev AR level Aortic Regurgitation Severity Discrete

AVpv AV Vmax Aortic Valve Peak Velocity Continuous

AVpg AV max PG Aortic Valve Peak Gradient Continuous

AVmg AV MPG Aortic Valve Mean Gradient Continuous

AVpht AR PHT Aortic Valve Pressure Half-Time Continuous

AVvti AV VTI Aortic Valve Velocity-Time Integral Continuous

MS_sev MV Stenosis Mitral Stenosis Severity

Mitral valve

Discrete

MR_sev MV Regurgitation Level Mitral Regurgitation Severity Discrete

MAPSE Lateral MAPSE Lateral Mitral Annular Plane Systolic Excursion Continuous

MV_E_vel Peak E Velocity Mitral Valve E Wave Velocity Continuous

MV_A_vel Peak A Velocity Mitral Valve A Wave Velocity Continuous

MV_decT DcT Mitral Valve Deceleration Time Continuous

MV_Earatio E/A ratio Mitral Valve E/A Ratio Continuous

MV_EE_avg Average E/E’ Mitral Valve E/E’ Average Continuous

TDI_lat_S Lateral S’ Velocity Tissue Doppler Imaging Lateral S Wave Continuous

TDI_lat_E Lateral E’ Velocity Tissue Doppler Imaging Lateral E Wave Continuous

TDI_sep_S Septal S’ Velocity Tissue Doppler Imaging Septal S Wave Continuous

TDI_sep_E Septal E’ Velocity Tissue Doppler Imaging Septal E Wave Continuous

TS_sev TV Stenosis Tricuspid Stenosis Severity

Tricuspid valve

Discrete

TR_sev TR level Tricuspid Regurgitation Severity Discrete

TR_pv TR Vmax Tricuspid Regurgitation Peak Velocity Continuous

TR_pg TR max PG Tricuspid Regurgitation Peak Gradient Continuous

PS_sev PV Stenosis Pulmonary Stenosis Severity
Pulmonary valve

Discrete

PV_Vmax PV Vmax Pulmonary Valve Maximum Velocity Continuous

AO_SOV Sinuses of Valsalva Sinus of Valsalva

Aorta

Continuous

AO_STJ Sinotubular Junction Aortic Outflow Sinotubular Junction Continuous

AO_ASC Ascending Aorta Aortic Outflow Ascending Aorta Continuous
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The dataset was split into three cohorts: Training and Validation (n = 1075), Test
Dataset (n = 98) and Application Dataset (n = 133,889). The primary evaluation criteria
were discrimination, calibration, and overall accuracy of the NLP system in the extraction
of TTE echocardiogram variables into the structured format.

3.2. Data Exploration

A list of common occurring words, but which are not specifically echocardiogram
variable related, in the echocardiographic examination reports was curated (see Supple-
mentary Materials Figure S1). This list was entered into the high dimensionality Cluto
clustering toolkit as exclusion criteria algorithm, along with the training/validation dataset
to identify important variables within the current context [16]. Hierarchical clustering was
utilised to cluster variables that showed a high degree of similarity across documents.

The clustering was analysed using (i) automatic clustering (Figure S2), allowing the
algorithm to determine the appropriate detailed level of the clustering structure; and
(ii) using a clustering size of 3 to show higher level similarities across variables (Figure S3).
Due to the high dimensionality of the heatmap, Ghostscript interpreter was used to visualise
the heatmap. This exploratory analysis, along with echocardiography expertise was used
to guide the categorisation of system extraction components including the JAPE rules (as
discussed later).

An analysis of variations across echocardiogram variables was then conducted for
all 200 outcome variables (Table 2). This process was supported by the use of Regular
Expressions within macro based excel spreadsheets to rapidly establish presence and
location of each variable. The underlined textual elements show features that are taken into
account during the text annotation and extraction process.

Table 2. Example of outcome measure variations for continuous and qualitative (discrete) measurements.

Aortic Valve (AV) Velocity Time Integral (VTI) AV Regurgitation Level

AV Vmax 4.2 m/s MPD 46 mmHg VTI 103 cm Aortic Valve (biological AVR): AVR in situ, well seated. . . .
No significant regurgitation. . . . Aorta:

AV Vmax 4 m/s MPD 42 mmHg VTI 87.9 cm Aortic Valve (unclear imaging of AVR): . . . AVR seen in situ
with a mild paraprosthetic regurgitation. . . . Aorta:

Ao VTI 36 cm; AVA (VTI) 1.8 cm2 Aortic Valve: . . . with valve type/size in situ
No aortic regurgitation Right Ventricle:

Ao VTI 36 cm; Aortic Valve: . . . No aortic stenosis. Trivial aortic regurgitation.
AV Vmax: 1.6 m/s. Aorta:

Aortic Valve: Appears Trileaflet. Thickening of LCC/NCC with
reduced mobility of these cusps. V max 2.8 m/s, PPD: 32

mmHg, MPD: 19 mmHg, VTI: 62.3 cm.

Aortic Valve (TAVI): . . . No aortic stenosis/obstruction
indicated. Trivial–mild paravalvular aortic regurgitation. . . .

Aorta:

AV Vmax 4 m/s MPD 42 mmHg VTI 87.9 cm LVOT 2.7 cm Peak
V = 0.7 m/s, MPD 1.2 mmHg, VTI 16.2 cm

Aortic Valve: AVR in situ. . . .No significant obstruction/stenosis
indicated. No obvious aortic regurgitation. . . . Aorta:

AV Vmax: 4.8 m/s, PPD: 91 mmHg, MPD: 57 mmHg,
VTI: 107 cm

Aortic Valve: . . .
Mild eccentric paravalvular aortic regurgitation seen. Aorta:

AV mean PG: 54 mmHg. AV VTI: 78 cm. AVA VTI: 0.88 cm2.
AVAi VTI: 0.45 cm/m2 Aortic Valve: . . .. Mild transvalvular aortic regurgitation. . . .

AV VTI 61.3 cm
Aorta: Aortic Valve: . . . Aortic regurgitation present . . .Overall
assessment is of mild aortic regurgitation. AV Vmax: 1.5 m/s.

Aorta:

Ao VTI 106 cm; Aortic Valve: . . . ? BAV. Moderate AS. Trivial AR . . .. Aorta:

AV VTI: 78 cm. Aortic Valve: . . .. Overall assessment is of
severe aortic regurgitation. . . . Aorta:
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3.3. Data Annotation Approach

In order to capture crucial information such as heart dimensions, ejection fraction,
valve properties and other relevant measurements, we first defined specific data cate-
gories in preparation for the annotation process. These categories were designed to ensure
the comprehensive extraction and standardisation of both discrete and continuous vari-
ables. This annotation process adhered to the UK echosonographers guidelines, as well as
categories established in collaboration with medical experts [17].

NLP-based annotations were performed using the JAPE engine, which automatically
annotated data from echocardiography reports. The annotation pattern description is
situated on the left-hand side (LHS) of the JAPE, whereas the annotation manipulation
statements are found on the right-hand side (RHS) [18]. The annotations identified on the
LHS were then processed on the RHS using labels from the LHS to refer to matched text seg-
ments. RHS processing tasks included unit conversions, the conversion of qualitative data
to binary or ordinal formats, the addition of annotations (units and measurements values
(varValue)) for the matched patterns and grouping annotations to higher parent-ontological
levels (e.g., Sinotubular Junction is grouped under parent level VesselsMeasurements).
The annotations and corresponding measurement varValues are then parsed by the JAVA
functions for conversion into structured CSV (comma-separated values) format before
insertion into the designated SQL database tables, according to the parent-ontological
levels.

Two cardiologists separately performed manual annotations in excel (CSV) spread-
sheets to enable the validation of the correctness and reliability of the NLP generated
annotations. For both NLP and clinical based CSV annotations, we collapsed the outcome
columns in from wide to long formats to enable metric-based performance evaluations.

3.4. Model Development

The model was developed with the Java and GATE NLP framework using the Eclipse
development environment. The JAPE Transducer was included to enable mapping of the
input text to output text, in order to enable other components to be integrated as part of
the processing pipeline. We used the GATE tokeniser, which separates the input text into
discrete tokens that represent individual meaningful language components, such as words
or punctuation. The sentence splitter was then used to separate the text into individual
sentences based on sentence boundaries identified by the output of the tokeniser (Figure 1).
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We then used the Java Annotation Patterns Engine (JAPE, as explained further later
on) to establish unique annotation rules over the text. We were able to define and match
particular token patterns (combinations) using JAPE rules, applying new annotations based
on the patterns discovered.

In addition, we used gazetteers [19], referred to herein as dictionaries, which are
standardised groupings of terms or phrases associated with a specific topic. Gazetteers
contributed to improving the tokenisation process by ensuring proper treatment of echocar-
diography terms, levels of severity and exclusion topics that could not have been adequately
captured in the general language corpora or tokeniser. The JAPE rules and dictionaries
were developed for 200 echocardiographic examination outcomes.

Furthermore, our technique is cross data repository compatible, enabling direct extrac-
tion to any specified data repository within the same distributed NHS network.

JAPE is a rule-based language that is used in GATE to extract information from
text. JAPE rules provide patterns and actions for detecting linguistic patterns in the
text and create or modify annotations [19]. These rules are carried out in a sequential
manner, specified by their priority to resolve overlapping annotations. GATE JAPE rules
were further used to extract the corresponding numerical (integer or float) or qualitative
categorisation values of each variable. Some examples are provided in Table S1.

For example, the aortic regurgitation (AR) level was defined quantitatively as inte-
gers with the following criteria: 0—no regurgitation; 1—Trivial regurgitation; 2—Mild
regurgitation (Or Trivial–Mild); 3—Moderate regurgitation (Or Mild–Moderate); 4—Severe
regurgitation (Or Moderate–Severe), while Left Ventricular (LV) Systolic Function were
defined qualitatively with the following criteria: Hyperdynamic, Normal, Borderline, Mild,
Mild–Moderate, Moderate, Moderate–Severe, Severe. For continuous values that have a
range scale, e.g., Ejection Fraction (EF) 45–50%, the system extracted the average of the
range values (47.5%).

Apart from the ability to pattern match data variations, the JAPE rules were designed
to extract numerical clinical measurement values (Table S1). During this process, our
technique automatically converts any measurement values into pre-defined scales and
units, standardising to a common unit scale where appropriate. For example, an outcome
reported in centimetres (cm) in one examination but in meters (m) in another would have
been standardised to cm by multiplication of 100 in the second report, if cm was the most
commonly reported unit.

A graphical user interface (GUI) option can be turned on in the system to enable
real-time tracking of the extraction process and to provide explainability of the extraction
process (Figure 2). Due to increased memory consumption and processing time, this
function was turned on during the training and validation phase but was switched off
during the test and application phases to enable annotations at high throughput. Red
highlighted sections of the report show the relationship annotations generated through the
JAPE rules for associating outcomes with their measurements.

The JAVA interface then enables the extraction of these annotations for matching
and inserting into the corresponding table columns in the Microsoft SQL server database.
The NLP model was iteratively refined using the training and validation dataset using
echocardiography expert knowledge to drive human in the loop reinforcement-based
improvements. Microsoft SQL server database was used for storing and loading raw and
extracted reports through an interface with the main Java application.
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3.5. Statistical Analysis and Validation

The results for the aggregated mean and standard deviation of each continuous
variable for both the doctor and NLP extractions were reported in the exploratory and cali-
bration analysis. Additionally, coefficients of determination (R2) and intraclass correlation
coefficients (ICC) [13,20–22] with p-value for continuous variables were calculated. ICC is
a measure of interrater reliability and was categorised as poor: <0.5; moderate: 0.5–0.75;
good: 0.75–0.9 and excellent: >0.9 [23].

The magnitude calibration of the variable values in the dataset was visualised using
bubble plots. The x and y positions in these plots were determined by the total (combined)
magnitude of the values across all test dataset reports for each outcome, and the size of the
circles indicated how frequently the variable values occurred.

For the performance evaluation of discrete variables, we adopted the confusion matrix,
precision-recall and the F1 score. The confusion matrix was determined to evaluate the
system’s overall accuracy, while precision and recall values were applied to evaluate
how accurately the system identified positive cases (presence of measurements), while
avoiding false positives (measurement extracted where not actually present) and false
negatives (measurement missed in the extraction process), respectively. Rare outcomes
were aggregated to prevent undefined (NaN) values that would otherwise prevent the
calculation of precision and recall values. F1 score was utilised for evaluation of the overall
performance of positive case extraction.

3.6. Practical System Application

Once development was complete, the system was installed onto the central hospital
server and utilised to process the automated extraction for 133,962 separate TTE reports
(Application Dataset).

4. Results
4.1. Demographics

A total 146,967 echocardiographic examinations were conducted on 78,536 patients
within UHBW during the study period at baseline. Cardiac resynchronisation optimisation
echo, 3D TTE, TTE with contrast agents; SE with and without dobutamine and contrast
agents; and Trans-Oesophageal Echocardiogram (TOE) cases were excluded, resulting in
135,062 reports. The pre-processing of data has been described previously in the methods
section. A patient flow consort diagram is shown in Supplementary Materials Figure
S4. Baseline differences in echocardiogram variables between clinician and algorithm
extractions are shown in Table 3.
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Table 3. Baseline patient demographics.

Baseline Patient Total = 78,536

Age (years), mean (SD) 59.4 (33.0)

Female gender, n (%) 36,959 (47.1%)

Mortalities, n (%) 25,048 (31.9%)

Number of repeat echocardiograms

1 53,508 (68.1%)

2 13,031 (16.6%)

3 5064 (6.4%)

4 2675 (3.4%)

5 1632 (2.1%)

6 933 (1.2%)

7 531 (0.7%)

8 356 (0.5%)

9 233 (0.3%)

>10 573 (0.7%)

Using coefficients of determination (R2) and intraclass correlation coefficients (ICC)
for continuous outcomes, the effectiveness of the system for outcome measures extraction
was assessed (Table 4). Variables including LVOT VTI, LVOT Vmax, AV VTI and TR Vmax
showed R2 values of 1, demonstrating a perfect fit between the predictions of the system
and the clinicians’ extractions. Of these outcomes, LVOT VTI, AV VTI and TR Vmax
exhibited perfect ICC scores (1.00, p < 0.05) alongside high R2 values, demonstrating ideal
agreement between the system and clinicians.

The ICC results demonstrated a good level of inter-rater reliability for numerous out-
comes. ICC values of 0.75–0.9 were observed for variables such as LVOT Diam, Lateral
MAPSE, Peak E Velocity, Lateral E’ Velocity, PV Vmax, Sinuses of Valsalva and Ascending
Aorta diameters. Furthermore, with excellent ICC scores (0.97 b, 0.99 b, 0.92 b and 0.90 b, respec-
tively) and high R2 values, the outcomes LA Area, LA Volume, RA Area and Peak A Velocity
demonstrated excellent inter-rater reliability across the system and clinicians’ extractions.

For outcomes with very low R and ICC values e.g., Aortic Valve max Pressure Gradient
(AV max PG), we analysed the reports in detail and discovered that the reason for low
observed performance was due to the following factors: (i) the system extracted the
correct values, but the clinicians missed such values (Figure 3, green annotations), possibly
due to incorrect recording by the echocardiographer. In this case, the “38 9” should
likely be recorded as “38.9”, instead when considering the correct scale required; (ii) the
echocardiographer used the wrong terminology (e.g., incorrectly using peak transvalvular
velocity to describe AV max PG, Figure 3, purple annotations);

(iii) due to low number of cases, there were only 7 AV max PG positive cases recorded
by the clinician out of 98 documents in the test dataset. Hence, non-system induced errors
(e.g., from (i) and (ii)) can inflate the perceived underperformance of the system.

In the bubble plot, larger bubbles represent frequently occurring outcomes across
all reports in the test dataset, while smaller bubbles represent less frequent outcomes
(Figure 4). The bubble plot demonstrates that the LA area, located close to the plot’s centre,
is represented by the largest circle. This shows that the LA area is the variable that is
most frequently extracted. Other variables with substantial circle sizes include LA volume,
Lateral E’ velocity and RA area, indicating that they are also frequently extracted by the
NLP system.
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Table 4. Coefficients of determination (R2) and intraclass correlation coefficients (ICC) with p-value for
continuous variables; a represents good interrater reliability 0.75–0.9; b indicates excellent interrater
reliability 0.9–1.0 [23].

Variable Name R Squared ICC ICC p-Value

EF 0.47 0.64 0.00

LVIDd 0.10 0.18 0.07

LVIDs 0.14 0.25 0.04

IVS 0.31 0.47 0.00

PWd 0.39 0.43 0.04

LVOT Diam 0.70 0.83 a 0.00

LVOT VTI 1.00 1.00 b 0.00

LVOT Vmax 1.00 0.02 0.42

RV S’ 0.10 0.29 0.00

RVD1 0.07 0.16 0.05

RV TAPSE 0.11 0.16 0.05

LA Area 0.95 0.97 b 0.00

LA Volume 0.98 0.99 b 0.00

RA Area 0.86 0.92 b 0.00

AV Vmax 0.13 0.29 0.00

AV max PG 0.00 0.03 0.39

AV MPG 0.20 0.35 0.00

AR PHT 0.46 0.63 0.00

AV VTI 1.00 1.00 b 0.00

Lateral MAPSE 0.60 0.76 a 0.00

Peak E Velocity 0.59 0.76 a 0.00

Peak A Velocity 0.81 0.90 b 0.00

DcT 0.05 0.15 0.06

E/A ratio 0.18 0.36 0.00

Average E/E’ 0.03 0.13 0.08

Lateral S’ Velocity 0.49 0.65 0.00

Lateral E’ Velocity 0.62 0.77 a 0.00

Septal S’ Velocity 0.45 0.62 0.00

Septal E’ Velocity 0.49 0.69 0.00

TR Vmax 1.00 1.00 b 0.00

TR max PG 0.30 0.45 0.00

PV Vmax 0.62 0.77 a 0.00

Sinuses of Valsalva 0.73 0.85 a 0.00

Sinotubular Junction 0.82 0.17 0.03

Ascending Aorta 0.64 0.78 a 0.00
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The centres of circles of the bubbles in the bubble plot are closely aligned to the
diagonal line from the origin, indicating that the system and clinician extractions are well
calibrated overall. However, certain variables, including EF, AR PHT and TR max PG,
were below the diagonal line, suggesting under-extraction by the system compared to the
clinician.

Using precision, recall and F1 score metrics, we assessed the effectiveness of the system
for extracting discrete outcome measures (Table 5).

Table 5. Precision recall results for discrete variables sets in the test dataset.

Outcome TP FN FP TN Precision Recall F1 Score

AR level 24 3 4 67 0.86 0.89 0.87

LV Systolic Function 12 17 3 66 0.80 0.41 0.55

MV Regurgitation Level 59 2 1 36 0.98 0.97 0.98

AV + MV + PV + TV Stenosis 5 4 8 375 0.38 0.56 0.45

TR Level 57 32 2 105 0.97 0.64 0.77

4.2. Aortic Regurgitation (AR) Level

The system showed a precision of 0.86 and a recall of 0.89 for the identification of AR
levels. Only three occurrences (false negatives) were missed while accurately identifying
24 true positive situations. The system generated four instances of false positives. The
final F1 score was 0.87, demonstrating a performance that was balanced across recall
and precision.

4.3. LV Systolic Function

The NLP algorithm achieved a precision of 0.80 and a recall of 0.41 for the classification
of Left Ventricular (LV) Systolic Function. While missing 17 occurrences (false negatives),
it accurately recognised 12 true positive cases. Three false positive cases were produced
by the algorithm. In this situation, there was a trade-off between precision and recall, as
indicated by the F1 score of 0.55.

4.4. MV Regurgitation Level

The NLP algorithm performed exceptionally in the detection of mitral valve (MV)
regurgitation levels. With a precision and recall of 0.98 and 0.97, respectively, it was able to
correctly identify 59 true positive cases while producing only two false negatives. One false
positive case was obtained by the algorithm. The final F1 score was 0.98, which represents
a strong overall performance.

4.5. AV+MV+PV+TV Stenosis

The aortic valve (AV), mitral valve (MV), pulmonic valve (PV) and tricuspid valve
(TV) stenotic levels that were extracted were aggregated, since occurrences were rare and
were classified with moderate precision and recall by the system. The precision and recall
were 0.38 and 0.56, respectively. Five true positive cases were accurately recognised by the
algorithm, whereas four false negative cases were missed. It produced eight instances of
false positives. The F1 score for this result was 0.45, indicating a performance that was
reasonably balanced between recall and precision.

4.6. TR Level

The system displayed high precision and moderate recall for classifying extractions of
tricuspid regurgitation (TR) levels. It achieved a precision of 0.97 and a recall of 0.64. A
total of 32 false negatives were missed by the system, while 57 true positive cases were
successfully identified. It obtained two false positive cases. The F1 score for this result was
0.77, indicating a favourable balance of precision overall.
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The confusion matrix exhibits a predominant pattern where the extractions align
diagonally from the top left to the bottom right (Figure 5), indicating a high degree of correct
classification. Out of the 882 instances evaluated, the NLP system achieved an accuracy rate
of 91.38%. The remaining 8.62% of errors primarily consisted of false negatives, accounting
for 7.6% of the total. Conversely, false positives constituted only 1.02% of the errors.
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5. Discussion

This study presents the use of a GATE-based system for extracting outcomes from
TTE reports, with a special emphasis on capturing both discrete and continuous variables.
Most of the rule-based research in the field of NLP in healthcare have focused on general
clinical text, methodology or specific medical domains, with limited exploration in the
context of echocardiography reports or the use of GUI based interface to interpret extrac-
tion [18,20–22,24–28]. To the best of our knowledge, this is one of the first studies to use
a GATE-based NLP system for TTE extraction, adding to the understanding of natural
language processing (NLP) in this area.

Our study set out to achieve two separate aims that aligned to increase the manage-
ment and utility of echocardiographic data. First, we attempted to create a moderate-fidelity
echocardiography report database by utilising automated data extraction and curation.
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The intention to integrate this with high-fidelity datasets, exemplified in [6], highlights the
potential of multimodality learning strategies [7].

Our analysis also included identifying outcomes with consistently high extraction
performance. The selection of robust variables is paramount since it provides the foundation
for potential clinical applications and the development of predicted risk scores. These
two initiatives are aligned, aiming to improve data utilisation, ultimately enabling more
efficient use of echocardiographic data in both research and clinical contexts.

5.1. Technical Perspective

While studies have generally evaluated outcomes irrespective of the data type, this
study presents an evaluation pipeline for considering discrete and continuous outcomes
using their own respective sets of evaluation metrics. A recent study demonstrates that, for
both discrete and sequential datasets, discrete-feature approaches outperformed sequential
time-series (continuous variable) methods [29]. This finding contrasted with conventional
assumptions and emphasised the importance of integrating discrete data, which is consis-
tent with our exploration of diverse variable types in echocardiography reports. Another
study highlighted the advantages of translating datasets into appropriate formats, by
comparing continuous (visual analogue scales) against discrete (verbal descriptor scales)
rating scales [30]. It was found that both continuous and discrete rating scales gave similar
performances in terms of inter-rater reliability. However, raters were found to prefer the
continuous scale. This is consistent with our work to efficiently classify and handle data
from echocardiogram reports using either continuous or qualitative rating scales, when
and where appropriate.

In relation to our NLP-system study, applying insights from the broader deep learning
domain’s debate on merging discrete and continuous processing has important impli-
cations, as indicated in [31]. The inherent role played by discrete symbols in human
communication coincides nicely with the language of medical reports and allows for nu-
anced comprehension of discrete outcome rating scales. The idea that discrete symbols
need context-expansion by incorporating continuous scale outcomes resonates with the ex-
planative nature of the latter type of data. This data framework of integrating discrete and
continuous data parallels the structured data generated from the NLP system in this study.

There are numerous methods to mix continuous and discrete processing in ways
that support gradient-based learning in addition to attention mechanisms. It is common
practise to use policy gradients [32], a technique for backpropagation through discrete
decisions [33]. A differentiable method for choosing distinct categories in a sampling setting
is provided by reparameterisation techniques such as the Gumbel–Softmax distribution [34].
Modelling a categorical probability distribution over the discrete elements, determined by
the continuous input, is also a popular technique for converting continuous representations
into discrete outputs (Bengio et al., 2003) [29,35]. Discrete elements (such as word tokens or
actions) can be transformed into continuous representations by locating the appropriate
token (feature) vector from its matrix embeddings using the corresponding token index.

It has also been suggested that composable neural module networks (NMN) might be
advantageous for combining continuous and discrete information [36,37]. These modules
can be combined into intricate networks according to the computations required to respond
to natural language queries. They are specialised for specific subtasks. By concentrating on
training component modules and learning how to combine them, this method minimises
the need to relearn for every type of issue. The JAPE rules as part of the JAVA interfacing
NLP system in this study have similarities in principle to the methodology for composing
NMNs modules [38], and may provide the basis for integrating neural based approaches to
TTE extraction systems in an interpretable manner. For studies have generally focusing on
image based problems, the attention module generally prefers the use of attention extracted
from Convolution Neural Networks [39,40]. Recurrent and Transformer Neural Networks
may be more suitable to model text and non-text based sequential interactions [41], with
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the latter able to excel in modelling long term dependencies, through parallel processing
and self-attention to capture relationship across input all input features simultaneously.

5.2. Relevance to Clinical Practice
5.2.1. Cardiac Surgery Perspective

In addition to its applications within the context of echocardiography reports, the NLP
system may have potential for broader clinical implications and research opportunities.
Preoperatively, the algorithm offers the possibility of identifying critical parameters from
echo data that could act as “red flags”, prompting surgeons to prioritise surgery for patients
with specific aortic diameters or valve haemodynamics. This functionality may assist
surgeons in managing surgery waiting lists more efficiently.

Following surgical interventions, the system’s functionalities may extend to the post-
operative phase, assisting clinicians to promptly identify issues related to structural valve
degeneration and adjust the frequency of monitoring accordingly. Furthermore, the algo-
rithm may play a potential role in addressing challenges like patient-prosthesis mismatch,
enabling clinicians to make informed decisions for clinical interventions and facilitating
audits for quality control purposes.

Increasingly, congenital heart disease (CHD) is diagnosed in the antenatal setting, with
foetal echocardiography commonplace. Extension of the system’s functionalities to antena-
tal ultrasound imaging modalities could aid antenatal risk modelling and prognostication,
facilitating improved surgical planning, perinatal and neonatal care.

The system’s applicability includes not only echocardiography report analysis but
also other types of investigative modalities. For instance, the system’s capabilities might
be increased to examine computer tomography (CT) results and aid in aortic surveillance
initiatives. Additionally, the system holds potential to integrate risk modelling approaches
with automated text extraction, while identifying risks that have the potential for advancing
research projects in cardiac care.

5.2.2. Cardiologist Perspective

The ability to extract echo data for reports using NLP would have significant benefits
to managing a range of patients, including those with valvular heart disease, heart failure
and ischaemic heart disease. As workflows in clinical practice become more automated, it
is crucial to be able to prioritise and manage referrals and outpatient waiting lists. Being
able to identify patients who have had a significant worsening of their valvular heart
disease or cardiac function in a way that does not increase the administrative burden of
reviewing every echo report would be extremely appealing to cardiologists. This tool also
has great potential for research and auditing. For instance, with the ability to track the rates
of change of aortic stenosis over time or monitoring aortic root dimensions. In addition, the
combination of this database with other biochemistry, chest imaging and electrocardiogram
datasets holds potential for the improved diagnosis of heart failure in patients.

This tool can integrate both the quantitative and qualitative data from an echo report,
which is crucial for the optimal management of these patients.

5.3. Limitations and Future Work

Future work shall investigate the comparison of ICD-10 diagnostic codes against
NLP for detecting cardiac diseases in the evaluation of this patient cohort [9]. Due to
the cost in terms of time and effort required for clinicians to manually annotate and
extract the validation labels, a limited number of evaluation samples were available. Thus,
future work should seek to obtain a larger sample of labelled validation samples from
the entire hospital extracted set. It would also be interesting to refine the categorisation
process to capture more nuanced information from echocardiography reports. This could
involve identifying and extracting specific details related to different cardiac conditions
e.g., heart failure. Future work should also further improve the NLP system compatibility
with existing electronic health record systems to seamlessly integrate with healthcare IT
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infrastructure for wider adoption, possibly with a web-based view of the extracted data
to enable echocardiographers or clinicians to perform quality inspections and manually
modify the extracted data. Since manual annotations by clinicians using Excel spreadsheets
were laborious, future work may consider the possibility of rapid annotation approaches
whereby the NLP pre-annotates the reports in the GUI environment to allow the clinicians to
only make minor corrections before curating a high fidelity dataset. This approach may also
help to rapidly generate large amounts of gold standard annotations for the evaluation of
newly developed transformer-based tools, or for the purpose of mechanistic clinical studies
on the high fidelity corrected dataset. The application of Cluto-based clustering using graph
representations is possible but was not investigated. This, and similar approaches, would be
interesting to analyse in future studies [16,42]. While the approach has also been developed
for extracting Magnetic Resonance Imaging (MRI) unstructured data, future work should
identify clinicians with expertise for curating the validation labels in this type of device.
Certain variables, such as LVOT Vmax, showed high R2 correlation but low ICC scores,
suggesting that the scalar value of the NLP system extraction is correct but potentially on a
different unit scale to that extracted by the clinician. Future work should aim to develop
a plugin to the existing system to convert the clinician extraction to the NLP system unit
scale. The mean values for some continuous outcomes extracted by the system were lower
than those by the cardiologists, suggesting that any differences are more likely due to false
negative than false positive findings. Although any improvements in extraction process
would still be limited by the accuracy of the initial report, standardising the reporting of
echocardiography across different vendors, national and international societies would be
beneficial. Future work should also aim to further develop the approach using hybrid
(machine learning plus rule-based) approaches to enhance existing variables with relatively
lower extraction performance. For example, the combination with NMN-based approaches
through reinforcement learning to select modules may encapsulate greater variations in
outcome terminologies across different hospital locations. As another possible direction for
future work, more advanced NLP models (e.g., BERT) could be utilised for the text analysis
task. BERT models offer the advantage of contextual understanding through embedding
representations, allowing them to capture intricate relationships within text and to enhance
the accuracy and depth of the analysis. It would also be interesting to incorporate fuzzy [10],
foundation learning and reinforcement based approaches on a larger local validation cohort
to further improve the modelling performance. Future work should also consider analysing
data extracted from echocardiography reports over time to track disease progression and
treatment outcomes. One should also aim to validate the NLP system’s performance in
diverse patient populations, to ensure that it can effectively handle variations in language
and medical terminology.

6. Conclusions

In summary, this study offers a novel application of the GATE-based system in the
extraction of echocardiogram report data to curate a moderate fidelity TTE database that
could be used for multi-fidelity data fusion. The study contributes to the understanding
of NLP in the context of echocardiography by addressing both approaches for discrete
and continuous outcomes. These findings emphasise the valuable contribution of NLP
in automating data extraction and improving clinical decision-making processes. By
bridging the gap between structured and semi-structured healthcare data, our approach
holds promise for advancing research, risk prediction and patient care in the realm of
echocardiography and beyond.

Guarantor TD.
Code Availability: Code for the system is available on GitHub: https://github.com/

s0810110/neoImage/tree/neoImage_v-1.1 (accessed on 2 August 2023) and validation:
https://github.com/s0810110/neoImageClinicalValidation (accessed on 1 November 2023);
access can be provided upon reasonable request with the main author. Analyses were
performed using JAVA.

https://github.com/s0810110/neoImage/tree/neoImage_v-1.1
https://github.com/s0810110/neoImage/tree/neoImage_v-1.1
https://github.com/s0810110/neoImageClinicalValidation
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