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Abstract
It is known that the study of the boundary behavior of (harmonic or) holomorphic
functions, to which N. Sibony has contributed with penetrating work, is linked to
the differentiation of integrals. In 1936, R. de Possel observed that, in the general
setting of a measure space with no metric structure, certain phenomena, relative to
the differentiation of integrals, which are familiar in the Euclidean setting precisely
because of the presence of a metric, are devoid of actual meaning. In the first part
of this work, we introduce the concept of functional convergence class that provides
a unifying framework for various limiting processes and enables us to establish a
hierarchy between them, and show that, within this hierarchy, the notion of filter
(introduced by H. Cartan just a year after De Possel’s contribution) occupies the
position of wider scope. In the second part of this work, we show how to reformulate
some of the contributions of de Possel in the language of filters.
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1 Introduction

In 1936, R. de Possel observed that, in the general setting of a measure space with no
metric structure, certain phenomena, relative to the differentiation of integrals, which
are familiar in the Euclidean setting precisely because of the presence of a metric, are
devoid of actual meaning. In his work, de Possel introduced an axiomatic approach
based on a limiting process centered on the preliminary choice of certain sequences
of sets. The notion of filter, due to Cartan [8], appeared 1 year after de Possel’s
work, and yields another limiting process, which, in the context of the problem of the
differentiation of integrals, turns out to be preferable, for specific reasons that will be
outlined momentarily.

The purpose of this paper is, first of all, to show that the language of filters yields
a notion of limiting process that has wider scope, with respect to other limiting pro-
cesses. On the basis of this preliminary groundwork, we show how to reinterpret in
the language of filters some of the contributions given by de Possel to the problem of
the differentiation of integrals in measure spaces.

In order to achieve the first goal, we introduce the concept of functional convergence
class and systematize the results on convergence along filters by using a topology
on the space of all filters. Moreover, we present a self-contained and fairly complete
treatment of the notions centered around the relation between filters andMoore–Smith
sequences, encompassing various results not all of which appear to be known, or as
well known as they ought to be.

1.1 Background

Let X ≡ (X,M, ω) be a measure space, where ω is a measure defined on a σ -algebra
M of subsets of X. The vector space of measurable real-valued functions defined a.e.
on X, whose p th-power is integrable (p > 0), is denoted by Lp(X). The quotient of
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Lp(X) under a.e. equality is denoted by Lp(X). The corresponding projection

Lp(X) � Lp(X)

maps f ∈ Lp(X) to the class of functions which are a.e. equal to f . We denote this
class by f (in bold font), and say that f ∈ Lp(X) is a representative of f ∈ Lp(X).
The spaces L∞(X) and L∞(X) are also defined in the familiar way [29, p. 244].

Similarly, the quotient of M under a.e. equality of measurable sets is denoted by
M and is called the measure algebra of (X,M, ω). The corresponding projection

π :M � M (1.1)

is called the canonical projection associated to (X,M, ω), and is a homomorphism
of Boolean algebras.

1.1.1 The Mean-Value Operator

Consider the subcollection of M defined as follows:

A(X)
def= {Q ∈M : 0 < ω(Q) < +∞}. (1.2)

The sets in (1.2) are called averageable, since for each f ∈ L1(X) and Q ∈ A(X) the
mean-value of f over Q may be defined in the familiar way, as follows:

fω[Q] def=
1

ω(Q)

∫
Q

f dω (1.3)

(where f ∈ L1(X) is any representative of f ). Hence (1.3) defines a function

fω : A(X)→ R. (1.4)

The mean-value operator for (X,M, ω) is the linear operator:

ω̃ : L1(X)→ homSet(A(X), R) (1.5)

defined by

ω̃( f )
def= fω

where homSet(A(X), R) is the collection of all functions from A(X) to R. If S ⊂ Q
then

1S : S→ {0, 1}

is the indicator function of S:1S(x) = 1 if x ∈ S and1S(x) = 0 otherwise. Recall that
the vertical bar notation is well established in probability theory to denote conditional
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expectation, of which (1.3) is a particular case. Indeed, if f is the indicator function
of R ∈ A(X), i.e., f = 1R , then 1R ∈ L1(X) and instead of (1R)ω[Q] we write
ω̃ (R|Q). Hence

ω̃ (R|Q) = ω(Q ∩ R)

ω(Q)
.

1.1.2 The Problem of the Differentiation of Integrals

The following preliminary observation will help us make a precise statement of the
problem.

(i) The function

fω ∈ homSet(A(X), R) (1.6)

defined in (1.3) encodes all the mean-values of f .
(ii) The Radon–Nykodim theorem says that f is uniquely determined by fω [29, p.

238].

Observe that fω : A(X)→ R is a bona fide function, defined onA(X), while f is an
equivalence class of functions, and that the values f (x) of a representative of f may
be recovered only up to a set of measure zero (called the exceptional set of f ).

The problem of the differentiation of integrals may be described in the following
terms:

Find a limiting process that enables us to recapture (a representative of) f ∈ L1(X)

from fω (i.e., from the mean-values of f ).

Observe that the notion of limiting process appears in the formulation of the problem
in an informal fashion. One of the goals of the present paper is to establish a formal
framework for the concept of “limiting process”: This will be achieved by means of
the notion of functional convergence class. Another goal, subordinate to the first one,
is to identify, within this framework, the notion of limiting process that has wider
scope: We will show that the concept of filter has precisely this property.

A solution to the problem of the differentiation of integrals is called a General-
ized Lebesgue Differentiation Theorem. Indeed, the Lebesgue differentiation theorem
solves the problem of the differentiation of integrals in the caseX = (R,M, ω), where
ω is Lebesgue measure and M is the σ -algebra of Lebesgue-measurable subsets of
R, and says that, if f ∈ L1(R), then, for a.e. x ∈ R, its value f (x) is approximately
equal to the mean-value of f over balls which are, in a certain sense, “close to” x . The
prototype result is that, for a.e. x ∈ R,

f (x) = lim
r→0

fω[Ix (r)], (1.7)

where Ix (r) is the open interval inR of center x and radius r . Observe that the limiting
process used in (1.7), to which the function fω is subject, rests on the metric structure
of R.
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Lebesgue himself has given deep generalizations of his one-dimensional results to
higher-dimensional Euclidean space R

n , where he considered mean-values fω[B] of
f over balls B ⊂ R

n which are not centered at x , or even balls which do not contain
the point x , provided the balls B get “close to” x in a certain manner (which may
be described as being of a “nontangential” nature; see [33]). Once more, the metric
structure of the ambient space is used to obtain a “limiting value” from the function
fω ∈ homSet(A(X), R) defined in (1.3).
In order to achieve his results, Lebesgue had to solve two problems. Firstly, he had

to describe what it means for a ball to be “close to” the point x . Secondly, he had to
understand which manners of approach of balls to x are compatible with the intended
convergence result. The first task, in the context of a metric measure space, such asR

n ,
is indeed not a difficult one, since the metric itself, which is used to define the balls,
endows the collection of all its nonempty subsets with a pseudometric: The Hausdorff
pseudometric. Indeed, in this context, we may say that a sequence

Q : N→ A(X)

converges to a point x ∈ X if, for each ball Bx (r) of center x and radius r > 0, the set
Q(n) is eventually contained in Bx (r). A similar approach may be adapted, at least
in principle, in the context of a topological measure space (X,M, ω,�) (where ω

is the measure, defined on a σ -algebra M of subsets of X, and � is a topology with
� ⊂M).

1.1.3 René de Possel’s Approach

If (X,M, ω) is a measure space with no further structure, then, although it makes
sense to consider mean values, as in (1.3), it does not seem possible to define, in this
degree of generality, what it means for a sequence Q : N → A(X) to converge to a
point x , especially if the sets Q(n) are not assumed to contain x . This difficulty was
perceived already in 1936 by René de Possel, who observed that only some of the main
properties of Lebesgue measure admit d’une manière évidente (in evident ways) an
extension to the case of an arbitrary measure space, but others semblent perdre toute
signification dès que l’espace n’est plus métrique (appear to lose their meaning as
soon as the space is not metric) [9]. Among the latter, he listed the properties related
to differentiation of integrals.

It is useful to present the particular solution devised by de Possel in the context
of the general underlying problem, which may be formulated by replacing the space
A(X) with a generic set A with no further structure. If homSet(A, R) denotes the
collection of all functions from A to R, then the general underlying problem is that of
finding the limiting processes to the which the elements ϕ of homSet(A, R) may be
subjected, which yield as a result a “limiting value” y ∈ R and enable us to write

y = lim ϕ, (1.8)

(where lim denotes the limiting process). Formally, whatever “limiting process” we
may be able to devise, its end result is the selection of a collection F of pairs (y, ϕ) ∈
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R× homSet(A, R), where

(y, ϕ) ∈ F if and only if (1.8) holds. (1.9)

The particular limiting process devised by de Possel is based on the choice of a
nonempty subset V of the collection homSet(N,A) of all A-valued sequences, i.e.,

V ⊂ homSet(N,A). (1.10)

The limiting process associated to the choice of V in (1.10) is then a natural one: to
wit, it is the convergence of ϕ to y along each sequence q in the collection, i.e.,

lim
n→+∞ϕ(q(n)) = y for each q ∈ V . (1.11)

The application of this limiting process to the case where A = A(X) led de Possel to
adopt an axiomatic approach based on the preliminary choice of a function V of the
following form:

X � x 	→ V(x) ⊂ homSet(N,A(X)), (1.12)

where homSet(N,A(X)) is the collection of all A(X)-valued sequences, with the
understanding that the sequences in the collection V(x) are axiomatically assumed
to be “convergent” to a given point x ∈ X. In this set-up, de Possel had to solve the
following problem: specify conditions on the function V in (1.12) which ensure that

f (x) = lim
n→+∞ fω[Q(n)] ∀Q ∈ V(x) (1.13)

for each f ∈R, where R ⊂ L1(X) is a specified class of functions, and a.e. x ∈ X.

1.1.4 Notation from Category Theory

Wefind it convenient to adapt to our needs the notation from category theory employed
in [17], and, whenever it is helpful, we append to an object or a morphism a subscript
that specifies in which category it is located. Hence if C is a given category, we
denote by homC(A, Z) the collection of morphisms in C from A to Z . For example,
homSet(A, Z) [resp. homBA(A, Z)] denotes the collection of functions from a set A
to a set Z (resp. the collection of Boolean algebra homomorphisms between Boolean
algebras A and Z ). Moreover, this subscript device will be used as a shorthand for
the so-called forgetful functors. For example, if A is a topological space, then ASet

denotes the underlying set. However, we will depart from strict observance of these
notational devices whenever they lead to unnecessary notational clutter. For example,
we find it useful to write, with a slight abuse of notation, homSet(A, Z) instead
of homSet(ASet, ZSet), whenever A and Z are objects in some concrete category
[recall that an object A ≡ (ASet, SA) in a concrete category is a set ASet, called the
underlying set, endowed with additional structure SA]. In the same vein, whenever the
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precise meaning can be gathered from context, the same symbol will denote an object
in a concrete category or its underlying set.

1.2 Foundational Results

The limiting process adopted by de Possel is but one ofmany that have been conceived.
Wehave alreadyobserved that every “limitingprocess” (1.8) yields, via (1.9),a relation
between R and homSet(A, R), i.e., a subset

F ⊂ R× homSet(A, R). (1.14)

1.2.1 Functional Convergence Classes

The first contribution of the present paper is the introduction of a set of axioms which
describe the propertieswhich a relationF betweenR andhomSet(A, R) should satisfy
in order to be the outcome of some “reasonable” limiting process which acts, so to say,
in the “background.” Indeed, one would hardly expect that every relation F between
R and homSet(A, R) as in (1.14) will be of interest.

A relation F between R and homSet(A, R) is called a functional convergence
class if it has some specific, natural properties, encoded in certain axioms, that will be
described momentarily. As far as we know, the notion of functional convergence class
is new, although it is inspired by the notion of convergence class [18, p. 73], which
has, however, a different character.

The output of a limiting process for real-valued functions is a subset

F ⊂ R× homSet(A, R), (1.15)

i.e., a collection of pairs (y, ϕ) ∈ R × homSet(A, R), where (y, ϕ) ∈ F precisely
if y = lim ϕ according to the limiting process acting on the background and encoded
in F . The aim of the abstract notion of functional convergence class is precisely to
recapture the natural properties that are expected from F .

The Filter of Neighborhoods of a Point in a Topological Space
Let A be a topological space. If x ∈ A, a neighborhood of x in A is a subset of

A which contains an open set containing x . The set of all neighborhoods of x in A is
denoted by

NA(x)
def= {Q : Q ⊂ A and Q is a neighborhood of x in A} . (1.16)

For example, NR(π) is the collection

{Q : Q ⊂ R and ∃ε > 0 such that (π − ε, π + ε) ⊂ Q} .

We define (with a slight abuse of language)

NR(+∞)
def= {Q : Q ⊂ R and ∃a ∈ R such that (a,+∞) ⊂ Q} (1.17)

123



On the Differentiation of Integrals in Measure Spaces Along Filters Page 9 of 81 29

and NR(−∞)
def= {Q : Q ⊂ R and ∃a ∈ R such that (−∞, a) ⊂ Q}.

Definition 1.1 If A is nonempty set, a functional convergence relation for real-valued
functions on A is a subset F of R× homSet(A, R) such that, for each y ∈ R,

ϕ ∈ homSet(A, R) and ϕ(x) = y for each x ∈ A⇒ (y, ϕ) ∈ F (1.18)

and

F � R× homSet(A, R). (1.19)

The meaning of (1.18) is that constant functions ought to converge to the constant.
The meaning of (1.19) is that it is meant to exclude that every function converges to
each value y ∈ R.

Definition 1.2 A functional convergence relation F for real-valued functions defined
on A is:

Translation invariant if, whenever (y, ϕ) ∈ F , for some (y, ϕ) ∈ R×homSet(A, R),
and r ∈ R, it follows that (r + y, r + ϕ) ∈ F , where r + ϕ ∈ homSet(A, R) is

defined “pointwise” by (r + ϕ)(x)
def= r + ϕ(x).

Local if, for each β ∈ homSet(A, R), if there exists y ∈ R such that the following
property holds

∀U ∈ NR(y) ∃V ∈ NR(y) ∃ϕ ∈ homSet(A, R), (y, ϕ) ∈ F and

ϕ(x) ∈ V ⇒ β(x) ∈ U (1.20)

then (y, β) ∈ F .
Hereditary if, whenever y ∈ R, (y, ϕ) ∈ F , and (y, β) ∈ F , if γ ∈ homSet(A, R)

and there exists U ∈ NR(y) such that

ϕ(x) ∈ U and β(x) ∈ U ⇒ γ (x) ∈ {ϕ(x), β(x)} (1.21)

then it follows that (y, γ ) ∈ F .

Definition 1.3 A functional convergence class for real-valued functions on A is a
functional convergence relation F ⊂ Y × homSet(A,Y) which is local, hereditary,
and translation invariant. The collection of all functional convergence classes for real-
valued functions on A is denoted by

FCC(A).

The following observations should help the reader to assess the meaning of the
axioms that describe the notion of functional convergence class.

(a) These axioms identify a class of subsets of R× homSet(A, R).
(b) As we shall see, each F in this class arises from a certain “limiting process,”

expressed in purely formal terms by (1.8).
(c) The link between the “limiting process” (acting on the background) and F is

given by (1.9).
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29 Page 10 of 81 F. Di Biase, S. G. Krantz

1.2.2 Examples of Functional Convergence Classes

The following examples will give a first bird’s eye view of the content of this paper
and help to clarify the picture. More precisely, we will show that each of the following
data entails a limiting process that yields a functional convergence class.

Example (i) The first example of a functional convergence class is the one induced
by the choice of a nonempty collection of A-valued sequences. In Theorem 3.33 we
show that, if V ⊂ homSet(N,A) is such a collection and we define FV by

FV
def=

{
(y, ϕ) ∈ R× homSet(A, R) : lim

n→+∞ϕ(q(n)) = y for each q ∈ V

}
,

[where limn→+∞ ϕ(q(n)) = y is the familiar notion of convergence for the sequence
ϕ ◦ q : N→ R] then FV is a functional convergence class.

Example (ii) The second example of a functional convergence class is the one induced
by the choice of a direction on A. In Theorem 3.24 we show that if R is a direction on
A (i.e., R is a preorder on A such that for each j, k ∈ A, there exists an element l ∈ A
such that jRl and kRl, as explained in Sect. 3.3) and we define FR by

FR
def=

{
(y, ϕ) ∈ R× homSet(A, R) : lim

(A,R)
ϕ = y

}
,

[where lim (A,R)ϕ = y denotes Moore–Smith convergence of ϕ : A→ R along the
direction R, defined in Sect. 3.4], then FR is a functional convergence class.

Example (iii) The third example of a functional convergence class is the one induced
by the choice of an A-valued Moore–Smith sequence. Theorem 3.33 implies that if q
is such a sequence (hence q is a function q : D→ A defined on a directed set, i.e., a
set D which is endowed with a direction R) and we define Fq by

Fq
def=

{
(y, ϕ) ∈ R× homSet(A, R) : lim

(D,R)
ϕ ◦ q = y

}
, (1.22)

[where lim (D,R)ϕ ◦ q = y denotes Moore–Smith convergence of ϕ ◦ q : D → R

along R], then Fq is a functional convergence class.

Example (iv) The fourth example of a functional convergence class is the one induced
by the choice of a nonempty collection of A-valued Moore–Smith sequences (where
different Moore–Smith sequences in the collection are possibly defined on different
directed sets). In Theorem 3.33 we show that if V is such a collection and we define
FV by

FV
def=

{
(y, ϕ) ∈ R× homSet(A, R) : lim

(Dq ,Rq )
ϕ ◦ q = y for each q ∈ V

}
,
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[where, for each q ∈ V , (Dq,Rq) is the domain of q, and lim (Dq ,Rq ) ϕ ◦ q = y
denotes Moore–Smith convergence of ϕ ◦ q : Dq → R along Rq] then FV is a
functional convergence class.

The fifth example of a functional convergence class is the one induced by the choice
of a filter on A.

1.2.3 The Notion of Filter

The notion of filter, due to Henri Cartan, is a tool that helps clarify topological phe-
nomena, and acts as a substitute, in case there is no topology; moreover, it is a precious
tool in several mathematical areas.

The key observations leading to the notion of filter are the following. Firstly, observe
that if A is a topological space and x ∈ A then the set NA(x), seen as a collection of
subset of A, has the following essential properties:

(F0) It does not contain the empty set.
(F1) It is closed under finite intersections.
(F2) It contains every superset of each of its elements.

Secondly, the familiar ε–δ description of the existence of a limiting value
limz→x ϕ(z), where ϕ belongs to homSet(A, R) shows that this notion only depends
on the values of ϕ on (set-theoretically) small sets in NA(x). In view of the following
definition, due to Cartan [8], NA(x) is called the neighborhood filter associated to A
at x .

Definition 1.4 If A is a set, a filter on A (or filter of subsets of A) is a collection of
subsets of A with the properties (F0), (F1) and (F2). The collection of all filters on A
is denoted byFFF (A).

Observe that (F1) is equivalent to the conjunction of the following two axioms:

(F1.a) The collection contains A.
(F1.b) The intersection of two sets in the collection belong to the collection.

There is no filter on the empty set. If Z ∈FFF (A) then A ∈ Z, ∅ /∈ Z, and, if b, c ∈ Z,
then b ∩ c �= ∅.
Definition 1.5 (Cartan) A filter Z ∈FFF (A) is an ultrafilter if W ∈FFF (A) and Z ⊂ W
implies Z = W. The collection of all ultrafilters on a set A is denoted byUUU (A).

1.2.4 The Category of Filtered Sets

Definition 1.6 A filtered set A = (ASet,ZA) is a set ASet endowed with a fil-
ter ZA ∈ FFF (A). The set ASet is called the total space of the filtered set A. A
filter-homomorphism f : A → A′ between the filtered set A and the filtered
set A′ is a function f : ASet → A′Set between the underlying sets such that
{x ∈ A : f (x) ∈ b} ∈ ZA for each b ∈ Z′A.
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Filtered sets form the objects of a category, denoted FSet, where morphisms
are filter-homomorphisms. We will return momentarily to the notion of filter-
homomorphism, in order to achieve a better understanding of its meaning.

Localization We will see that the seemingly simple hypothesis that a certain set
belongs to a given filter has great import, and we use the expression the filter Z
is localized in K , where K ⊂ A, as synonym for the set K belongs to the filter
Z ∈FFF (A).

Definition 1.7 If K ⊂ A, a filter Z ∈FFF (A) is weakly localized in K if �K /∈ Z. We
let

wloc(Z)
def= {K : K ⊂ A, Z is weakly localized in K } . (1.23)

Observe that

Z ⊂ wloc(Z) (1.24)

and

wloc(Z) satisfies (F2).

Hence if a filter is localized in K then it is weakly localized in K . The converse
implication does not hold, unless the given filter is an ultrafilter, as we will see in
Lemma 4.26. Indeed, we will see that a filter is an ultrafilter if and only if equality
holds in (1.24).

Example 1.8 If A is a topological space and x ∈ A then (A,NA(x)) is a filtered set.

Example 1.9 The collection

fN
def= {b ⊂ N : b is not empty, N \ b is finite} (1.25)

is a filter on N, called the Fréchet filter on N.

Example 1.10 If A is a nonempty set then {A} ∈FFF (A).

Example 1.11 If (X,M, ω) is a complete probability space then the collection MF
ω

of measurable sets of full measure in X is a filter on X.

1.2.5 Limiting Values Along a Filter

Observe that the familiar ε–δ description of the existence of a limiting value
limz→x ϕ(z), in the case of a real-valued function ϕ defined on a topological space A,
may be immediately adapted to the case where ϕ is defined on the underlying set of a
filtered set A.
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Definition 1.12 If A is a filtered set, Y is a topological space, ϕ ∈ homSet(A,Y), and
y ∈ Y, we say that y is the limiting value of ϕ along the filter Z, and write

lim
Z

ϕ = y (1.26)

if ϕ : A→ (Y,NY(y)) is a filter-homomorphism.

The meaning of the condition that ϕ : A→ (Y,NY(y)) is a filter-homomorphism
is that for each U ∈ NY(y), the set {x ∈ A : ϕ(x) ∈ U } belongs to Z.

Definition 1.13 If ϕ : A → R is real-valued, we say that limZ ϕ = ±∞ if ϕ : A →
(R,NR(±∞)) is a filter-homomorphism.

1.2.6 The Functional Convergence Class Induced by a Filter

Example (v) The fifth example of a functional convergence class is the one induced
by the choice of a filter on A. In Theorem 3.2 we show that if Z is a filter on A and we
define cA(Z) by

cA(Z)
def=

{
(y, ϕ) ∈ R× homSet(A, R) : lim

Z
ϕ = y

}
, (1.27)

(where limZϕ = y denotes convergence of ϕ : A→ R along the filter Z, defined in
Sect. 1.2.5), then cA(Z) is a functional convergence class.

1.3 A Hierarchy of Limiting Processes

The second contribution of this paper is the clarification of the hierarchical relations
between the limiting processes described in Examples (i)–(v). More precisely, we
will prove the following results.
(Theorem 3.7) Each functional convergence class may be uniquely represented in
the form (v). In other words, the limiting process associated to filters recaptures the
abstract notion of functional convergence class.
(Theorem 3.34) Each functional convergence class may be represented in the form
(iv), albeit not uniquely.
(Theorem 3.37) Each functional convergence class may be represented in the form
(iii), albeit not uniquely.
(Theorem 3.36) Not every functional convergence class may be represented in the
form (i).
(Theorem 3.29) Not every functional convergence class may be represented in the
form (ii). For example, nontangential convergence, that plays a leading role in the
study of the boundary behavior of harmonic functions, cannot be represented in this
form.
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1.4 Applications to the Problem of the Differentiation of Integrals (I)

Weare now ready to give a second bird’s eye viewof the content of this paper, wherewe
present a reformulation of de Possel’s approach in terms of filters. This reformulation
is inspired by the following three implications of the results described in Sect. 1.2.
(A) The lack of uniqueness in Theorem 3.37 means that it is preferable to represent
a given functional convergence class in terms of convergence along a filter, as in
Sect. 1.2.6 [Example (v)], rather than in terms of convergence along a Moore–Smith
sequence, as in (1.22) [Example (iii)], since the exceptional set in the Generalized
Lebesgue Differentiation Theorem should not depend on the particular representation
(i.e., on the particular Moore–Smith sequence) chosen.
(B) There is no gain in generality in the limiting process described in Example (iv),
with respect to the one in Example (iii).
(C) The limiting process produced by filters, described in Example (v), has wider
scope than the one produced by collections of sequences, described in Example (i).

The following set-up is based on these implications.

1.4.1 The Set-Up Based on Filters

Since the phenomena of interest in the present work are invariant under rescaling,
the results we obtain for complete probability spaces also hold for complete measure
spaces endowed with a finite measure (see Sect. 2). Hence, unless otherwise stated,
we assume that (X,M, ω) is a complete probability space.

Denote byFFF (A(X)) the collection of all filters on A(X).

Definition 1.14 A family of differentiation filters (based on X) is a function

G : X→FFF (A(X)) (1.28)

which associates to each x ∈ X a filter G(x) ∈FFF (A(X)).

Definition 1.15 We say that a family of differentiation filters (1.28) differentiates a
function f ∈ L1(X) at x ∈ X if

f (x) = lim
G(x)

fω. (1.29)

A family of differentiation filtersG as in (1.28) differentiates f ∈ L1(X) if the limiting
value

lim
G(x)

fω

exists for a.e. x ∈ X and yields a representative of f . If R ⊂ L1(X), we say that G
differentiates R if G differentiates f for each f ∈R.
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1.4.2 On the Differentiation of the Class of All Measurable Sets (I)

Perhaps the simplest class of integrable functions is given by the following one, asso-
ciated to the σ -algebra of measurable sets:

{1R : R ∈M} . (1.30)

If R ∈M has measure zero, then every family of differentiation filters (1.28) differ-
entiates 1R . Hence it suffices to restrict attention to {1R : R ∈ A(X)}.
Definition 1.16 If G is a family of differentiation filters, as in (1.28), we say that G
differentiates all measurable sets if, for each R ∈ A(X), G differentiates 1R .

Definition 1.17 A lifting of (X,M, ω) is a Boolean homomorphism θ : M → M
which is a right inverse of the canonical projection of M onto M, described in (1.1).

Hence a lifting θ : M→M of (X,M, ω) amounts to the choice of a representative
of the measure class π(Q), for each Q ∈M, which preserves the Boolean structure
of M, and hence establishes a Boolean isomorphism between the measure algebra of
(X,M, ω) and some subalgebra of M.

The problem of the differentiation of the class of all integrable functions is clarified
by the following result, whose proof may be obtained by adapting the techniques used
in [20].

Theorem 1.18 If (X,M, ω) is a complete probability space, then a necessary and
sufficient condition for the existence of a family of differentiation filters G : X →
FFF (A(X)), which differentiates all integrable functions, is the existence of a lifting of
(X,M, ω).

The following result, coupledwith Theorem1.18, shows that there exists a family of
differentiation filtersG : X→FFF (A(X))which differentiates all integrable functions.

Theorem 1.19 (VonNeumann–Maharam)Every complete probability space (X,M, ω)

admits a lifting.

Theorem 1.19 has a “curious history,” as Fremlin puts it, which is recounted in [15,
pp. 162–174], where a proof is given. The proof of Theorem 1.19 must necessarily
involve the Axiom of Choice [6].

1.4.3 Measurability Issues (I)

In dealing with a general family of differentiation filters G : X→FFF (A(X)), we are
faced with certain measurability issues, as we will see in more detail in Sect. 13. We
will treat these difficulties using the same devices which de Possel used in his work.

For the collection of all subsets of a set A we use the standard notation

P(A)
def= {b : b ⊂ A} .
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In the study of filters the empty set is a nuisance, and in order to simplify many
statementswhich otherwisewould be too involved,we introduce the followingnotation
for the collection of nonempty subsets of a given set:

P•(A)
def= {b ∈ P(A) : b �= ∅} . (1.31)

Definition 1.20 If (X,M, ω) is a probability space, the outer measure induced by ω

is defined by

ω∗ : P(X)→ [0, 1],

where, if Q ∈ P(X), then

ω∗(Q)
def= inf{ω(R) : R ⊃ Q, R ∈M}.

The following result is well known.

Lemma 1.21 For each Q ∈ P(X) there exists a set R ∈ M such that Q ⊂ R and
ω∗(Q) = ω(R).

Definition 1.22 If Q ∈ P(X) and R has the property described in Lemma 1.21, we
say that R is a measurable representative of Q, and write

M[Q] def= {R ∈M : R is a measurable representative of Q} .

Definition 1.23

A∗(X)
def= {

Q ∈ P•(X) : ω∗(Q) > 0
}

and if Q ∈ A∗(X) then

A∗(Q)
def= {

R ∈ P•(Q) : ω∗(R) > 0
}
.

1.4.4 A Criterion for the Differentiation of Integrable Functions

Assume that G : X → FFF (A(X)) is a family of differentiation filters, f ∈ L1(X),
α ∈ R, and Q ∈ A∗(X).

Definition 1.24 We say that G is adapted to f on Q above α (resp. below α) if

∀x ∈ Q ∀b ∈ G(x) ∃R ∈ b fω[R] > α [resp. fω[R] < α] (1.32)

Definition 1.25 We say that the mean-value of f over Q lies above α (resp. below α)
if there exists Q′ ∈M[Q] such that fω[Q′] > α [resp. fω[Q′] < α].

Definition 1.26 We say that G : X→FFF (A(X)) and f ∈ L1(X) are compatible if
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(a) for all Q ∈ A∗(X) and for all α ∈ R, if G is adapted to f on Q above α, then
the mean-value of f on Q lies above α,

(b) for all Q ∈ A∗(X) and for all α ∈ R, if G is adapted to f on Q below α, then
the mean-value of f on Q lies below α.

Theorem 1.27 If G : X → FFF (A(X)) and f ∈ L1(X) are compatible then G differ-
entiates f .

Proof The proof is given in Sect. 13. ��

1.4.5 On the Differentiation of the Class of All Measurable Sets (II)

The following theorem is akin to a result due to Busemann and Feller in the context
of the so-called differentiation bases [7].

Theorem 1.28 If G : X → FFF (A(X)) is a family of differentiation filters, then the
following conditions are equivalent:

(i) G differentiates L∞(X).
(ii) G differentiates all measurable sets.
(iii) ∀R ∈ A(X), for a.e. x ∈ R, for each ε ∈ (0, 1) there exists b ∈ G(x) such that

ε < ω̃ (R|Q) for each Q ∈ b.

Proof The proof is based on Theorem 1.27 and on an appropriate adaptation of a
covering result due to de Possel. Details are omitted. ��

2 Notation

The sets A, B overlap if A ∩ B �= ∅. We let B \ A def= {x : x ∈ B, x /∈ A} and �A def=
X \A. The notation A ⊂ B (for sets A, B, with A, B ⊂ X) means that, for all x ∈ X,
x ∈ A⇒ x ∈ B.

The identity function IX : X→ X is defined by IX(x)
def= x for all x ∈ X.

The extended real line R ≡ [−∞,+∞] is defined in the familiar way [4, IV.13].
It is a compact topological space which contains R as an open subset.

2.1 Sets, Collections, and Families

Since filters are elements of P•(P•(A)), in order to avoid confusion between the
different levels in the hierarchy of powersets, we find it useful to reserve the term set
(of points) to a generic element ofP(A), and call collection (of sets) a generic element
of P(P(A)); an element of P(P(P(A))) is called a family (of collections). We only
deal with sets A for which x, r ∈ A⇒ x /∈ r .
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2.1.1 Direct Image and Inverse Image Notation

We also find it useful, for the sake of clarity, to adopt the following notation from [22,
p. 154], and write, if f ∈ homSet(A, Z), B ∈ P(A), and C ∈ P(Z),

f∗(B)
def= {z ∈ Z : ∃b ∈ B, z = f (b)} and f ∗(C)

def= {a ∈ A : f (a) ∈ C} .

In particular, f∗ : P(A) → P(Z) and, by the same token, ( f∗)∗ : P(P(A)) →
P(P(Z)). The restriction of f∗ : P(A)→ P(Z) to P•(A) will also be denoted by f∗
(with a slight abuse of language). Hence

f∗ : P•(A)→ P•(Z). (2.1)

2.2 Measure-Theoretic Notation

A measure space (X,M, ω) is a nonempty set X endowed with a σ -algebra M ⊂
P(X) of subsets and a set-function (called a measure) ω :M → [0,+∞] which is
countably additive and whose value at ∅ is zero [29, p. 217]. The measure ω is said to
be finite if ω(Q) ∈ [0,+∞) for all Q ∈M. A probability space is a measure space
(X,M, ω) with ω(X) = 1.

2.2.1 Null Sets and Derived Notions

A null set in a measure space (X,M, ω) is a set Q ∈M such that ω(Q) = 0. The
measure space (X,M, ω) is complete if each subset of a null set is also a null set.

In a complete probability space (X,M, ω), the σ -ideal of null subsets is the col-
lection

N
def= {R : R ∈M, ω(R) = 0} . (2.2)

The collection N is called a σ -ideal because it has the following properties: (i) it
contains the empty set; (ii) if Q ∈ N and R ⊂ Q then R ∈ N ; (iii) it is closed under
countable unions [14, p. 16].

It is useful to introduce the binary relations “⊂ω” and ω= between subsets of a
measure space, which are obtained from the inclusion relations “⊂” and “=” by
replacing the empty set with null sets. If Q, R ⊂ X, we say that Q is a.e. contained in
R, and write Q ⊂ω R if Q \ R ∈ N : This means that almost all of Q is a subset of R.
We say that the sets Q, R are almost everywhere equal, and write Q ω= R if Q ⊂ω R
and R ⊂ω Q. Observe that ω= is an equivalence relation on M and that Q ω= R if and

only if the symmetric difference Q � R
def= (Q \ R) ∪ (R \ Q) is a null set. We say

that R is a.e. disjoint from Q if Q ∩ R ω= ∅, i.e., if Q ∩ R is a null set.
A set Q ⊂ X has full measure if �Q is a null set. A property holds a.e. (almost

everywhere) if it holds on a set of full measure. A set Q ⊂ R has full measure in R if
Q ∪ �R has full measure.
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In a complete probability space (X,M, ω), the collection of measurable sets of full
measure is defined as follows:

MF
ω

def= {
F : F ∈M, ω(�F) = 0

}
. (2.3)

The collection MF
ω is a filter on X. Observe that if Q, R ∈ M, then Q ω= R if and

only if there exists F ∈MF
ω such that F ∩ Q = F ∩ R.

3 Functional Convergence Classes

The goal of this section is to provide some of the proofs of results concerning the
abstract notion of functional convergence class, introduced in Sect. 1.2 and show why
a priori it is preferable to rephrase the work of R. de Possel in terms of filters rather
than in terms of the choice of collections of sequences given in (1.12), as in the original
approach by R. de Possel. We will also show that an approach based on the notion of
filters appears to be preferable also with respect to a variant of (1.12) where instead of
sequences one uses Moore–Smith sequences. Indeed, the lack of a uniqueness (in the
representation of a given functional convergence class in terms of convergence along
a Moore–Smith sequence) gives rise to ambiguities in the notion of exceptional set.

3.1 Functional Convergence Classes

We now show that the notion of limiting value along a filter on A yields a functional
convergence class on A.

Definition 3.1 If A is a nonempty set and Z ∈FFF (A), define cA(Z) as in (1.27).

Theorem 3.2 If Z ∈ FFF (A) then cA(Z) is a functional convergence class, and
hence (1.27) defines a map

cA :FFF (A)→ FCC(A). (3.1)

Proof If ϕ ∈ homSet(A, R) is identically equal to y ∈ R, then ϕ∗(U ) ≡ A for
each U ∈ NR(y), hence limZϕ = y, i.e., (y, ϕ) ∈ cA(Z). If y ∈ R, define ϕ ∈
homSet(A, R) by ϕ(x)

def= y+1 for each x ∈ A. Observe that ifU
def= (

y − 1
2 , y + 1

2

)
then U ∈ NR(y) and (ϕ)∗(U ) = ∅, thus limZϕ = y does not hold, hence (y, ϕ) /∈
cA(Z). We have proved that cA(Z) is a functional convergence relation.

If (y, ϕ) ∈ cA(Z), i.e., limZϕ = y, and r ∈ R, let β
def= r + ϕ, andU ∈ NR(r + y).

Define U − r
def= {x − r : x ∈ U }. Then U − r ∈ NR(y). Observe that β∗(U ) =

ϕ∗(U − r), since β(x) = r +ϕ(x) ∈ U if and only if ϕ(x) ∈ U − r . Then limZϕ = y
implies that ϕ∗(U −r) ∈ Z, and since β∗(U ) = ϕ∗(U −r), it follows that β∗(U ) ∈ Z.
SinceU ∈ NR(r+y) is arbitrary, it follows that limZβ = r+y, i.e., cA(Z) is translation
invariant.
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Let β ∈ homSet(A, R) and assume that, for each U ∈ NR(y), there exists V ∈
NR(y) andϕ ∈ homSet(A, R) such that (y, ϕ) ∈ cA(Z) andϕ∗(V ) ⊂ β∗(U ). Observe
that ϕ∗(V ) ∈ Z, since limZϕ = y, and hence β∗(U ) ∈ Z. Thus we have proved that
β∗(U ) ∈ Z for each U ∈ NR(y), and this means that limZβ = y, i.e., (y, β) ∈ cA(Z).
Hence cA(Z) is local.

Assume that y ∈ R, limZϕ = y, limZβ = y, and γ ∈ homSet(A, R). Suppose
that γ has the property that, for some U ∈ NR(y), γ (x) ∈ {ϕ(x), β(x)} for each
x ∈ ϕ∗(U ) ∩ β∗(U ). Let V ∈ NR(y). Then

γ ∗(V ) ⊃ γ ∗(V ∩U ) ⊃ ϕ∗(V ∩U ) ∩ β∗(V ∩U )

and since ϕ∗(V ∩U ) and ϕ∗(V ∩U ) both belong to Z, and Z is a filter, it follows that
γ ∗(V ) ∈ Z. Since V ∈ NR(y) is arbitrary, it follows that limZγ = y. Hence cA(Z) is
hereditary. ��

In the following section, we will show that the map cA in (3.1) is one-to-one and
onto.

3.2 A Representation Theorem for Functional Convergence Classes

Definition 3.3 If A is a nonempty set and F ∈ FCC(A), then define by

sA(F)
def= {

b : b ⊂ A, ∃U ∈ NR(0), ∃(0, ϕ) ∈ F such that b = ϕ∗(U )
}

. (3.2)

Lemma 3.4 If F ∈ FCC(A) then sA(F) is a filter on A, and (3.2) defines a function

sA : FCC(A)→FFF (A). (3.3)

Proof It suffices to show that sA(F) is afilter. LetF(0)
def= {ϕ∈homSet(A, R) : (0, ϕ)∈F}.

Observe thatF(0) is not empty, since it contain at least the constant function identically
equal to 0. Observe that sA(F) = {ϕ∗(U ) : U ∈ NR(0), ϕ ∈ F(0)}.

Firstly, observe that sA(F) is not empty, since it contains A, becauseF(0) contains
the constant function identically equal to 0.

Secondly, we show that ∅ /∈ sA(F). We proceed by contradiction and assume that
there exists V ∈ NR(0) and ϕ ∈ F(0) such that (ϕ)∗(V ) = ∅. Let β ∈ homSet(A, R)

and observe that (1.20) holds for y = 0. Since F is local, it follows that β ∈ F(0).
Hence we have proved that homSet(A, R) = F(0). Since F is translation invariant,
it follows that F = R× homSet(A, R), a contradiction.

We now show that

if b ∈ sA(F) and c � b then c ∈ sA(F). (3.4)
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Indeed, if b ∈ sA(F), there exists V ∈ NR(0) and ϕ ∈ F(0) and b = ϕ∗(V ). Observe
that, under these hypotheses, V � R. Choose z ∈ R \ V . Define β ∈ homSet(A, R)

as follows: If x ∈ c then β(x)
def= 0; if x ∈ A \c then β(x)

def= z. Then β∗(U ) is either
equal to c or it is equal to A. In either case, β∗(U ) contains b = ϕ∗(V ). Since F is
local, it follows that (0, β) ∈ F . Observe that β∗(V ) = c. Hence c ∈ sA(F), and the
proof of (3.4) is complete.

Now, assume that U ∈ NR(0). We claim that

if ϕ, β ∈ F(0) then ϕ∗(U ) ∩ β∗(U ) ∈ sA(F). (3.5)

Indeed, ifU = R thenϕ∗(U ) = β∗(U ) = A, henceϕ∗(U )∩β∗(U ) = A andwe know
already that A ∈ sA(F). If U � R, let z ∈ R \ U and define γ ∈ homSet(A, R) as

follows: If x ∈ ϕ∗(U )∩ β∗(U ) then γ (x)
def= β(x); if x ∈ A \ (ϕ∗(U ) ∩ β∗(U )) then

γ (x)
def= z. Observe that γ ∗(U ) = ϕ∗(U )∩ β∗(U ). Moreover, if x ∈ ϕ∗(U )∩ β∗(U )

then γ (x) ∈ {ϕ(x), β(x)}, hence γ ∈ F(0), since F is hereditary. It follows that
ϕ∗(U ) ∩ β∗(U ) ∈ sA(F).

Finally, we prove that

if b, c ∈ sA(F) then b ∩ c ∈ sA(F). (3.6)

Indeed, if b, c ∈ sA(F) then there exists U , V ∈ NR(0) and ϕ, β ∈ F(0) such that
b = ϕ∗(U ) and c = β∗(V ). Then

b ∩ c = ϕ∗(U ) ∩ β∗(V ) ⊃ ϕ∗(U ∩ V ) ∩ β∗(U ∩ V ) and U ∩ V ∈ NR(0).

Hence (3.6) follows from (3.4) and (3.5). The proof that sA(F) is a filter is complete.
��

Lemma 3.5 The map (3.3) is a left inverse of (3.1).

Proof We have to show that if Z ∈FFF (A) then

Z = sA(cA(Z)). (3.7)

If b ∈ Z define ϕ ∈ homSet(A, R) as follows: if x ∈ b then ϕ(x)
def= 0; if x ∈ A \b

then ϕ(x)
def= 1. Observe that limZϕ = 0. Indeed, if U ∈ NR(0) then ϕ∗(U ) is either

b or A, and hence it belongs to Z. It follows that (0, ϕ) ∈ cA(Z). Now observe that
b = ϕ∗(−1/2, 1/2), thus b ∈ sA(cA(Z)). Hence we have proved that Z ⊂ sA(cA(Z)).
Now assume that b ∈ sA(cA(Z)). Then there exists ϕ and U , where (0, ϕ) ∈ cA(Z)

and U ∈ NR(0), such that b = ϕ∗(U ). The fact that (0, ϕ) ∈ cA(Z) implies that
limZϕ = 0, hence it implies that ϕ∗(U ) ∈ Z, and thus b ∈ Z. Hence we have proved
that Z ⊃ sA(cA(Z)), and the proof is complete. ��
Lemma 3.6 The map (3.3) is a right inverse of (3.1).
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Proof We have to show that if F ∈ FCC(A) then

F = cA(sA(F)).

We claim that

(0, ϕ) ∈ F ⇒ (0, ϕ) ∈ cA(sA(F)). (3.8)

Indeed, if (0, ϕ) ∈ F then, for eachU ∈ NR(0), it follows that ϕ∗(U ) ∈ sA(F), hence
limsA(F) ϕ = 0 and thus (0, ϕ) ∈ cA(sA(F)), hence (3.8) holds. Now, if (y, ϕ) ∈
F then (0, ϕ − y) ∈ F , since F is translation invariant, hence (3.8) implies that
(0, ϕ − y) ∈ cA(sA(F)), and since cA(sA(F)) is translation invariant, it follows that
(y, ϕ) ∈ cA(sA(F)). Hence we have proved that F ⊂ cA(sA(F)).

Assume that (y, β) ∈ cA(sA(F)). Then limsA(F) β = y. Hence β∗(U ) ∈ sA(F)

for each U ∈ NR(y). This means that for each U ∈ NR(y) there exists W ∈ NR(0)
and γ ∈ homSet(A, R) such that (0, γ ) ∈ F and γ ∗(W ) = β∗(U ). Since F is
translation invariant, it follows that for each U ∈ NR(y) there exists V ∈ NR(y) and
ϕ ∈ homSet(A, R) such that (y, ϕ) ∈ F and ϕ∗(V ) = β∗(U ). Since F is local, it
follows that (y, β) ∈ F . Hence we have proved that cA(sA(F)) ⊂ F , and the proof
is complete. ��
Theorem 3.7 If F ∈ FCC(A) then there exists a unique Z ∈FFF (A) such that cA(Z) =
F .

Proof It suffices to apply Lemmas 3.5 and 3.6. ��

3.3 Moore–Smith Sequences

In 1915 and 1922 Eliakim Hastings Moore and Herman Lyle Smith attempted to sub-
sume different limiting processes under the same notion [23, 24]. Theyweremotivated
by the following heuristic principle:

The existence of analogies between central features of various theories implies
the existence of a more fundamental general theory embracing the special the-
ories as particular instances and unifying them as to those central features. [23,
p. 628]

We now present a list of examples which Moore and Smith had in mind, or which
one should keep in mind in order to gain a better appreciation of their contribution. In
these examples, marked with their initials, ϕ denotes a function A→ R.
(ExampleMS1)A = N, henceϕ is a sequence of real numbers, and limn→+∞ ϕ(n) =
y in the usual sense.
(Example MS 2) A = (−∞, a)∪ (a,+∞), with a ∈ R, and limx→a ϕ(x) = y in the
usual sense
(Example MS 3) A is the collection of tagged partitions of the interval [0, 1], ϕ

encodes the Riemann sums of a given function f : [0, 1] → R, and the limiting
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process to which ϕ is subject yields as a limiting value the Riemann integral of f , i.e.,
lim ϕ = ∫ 1

0 f (x) dx .
In their work, they created the notion of Moore–Smith sequence (see below), and,

in so doing, they introduced the notion of a direction. As is customary, if R is a binary
relation on a set S, i.e., a subset of S × S, we write jRk instead of ( j, k) ∈ R.

Definition 3.8 A preorder R on a nonempty set S is a reflexive and transitive binary
relation on S, i.e., a subset of S × S with the following properties:

(R) jR j for each j ∈ S (reflexivity);
(T) if jRk and kRl then jRl (transitivity).

A preordered set A ≡ (ASet,RA) is a set ASet endowed with a preorder RA.

Definition 3.9 A partial order R on a nonempty set S is a preorder R on S which also
satisfies the following condition:

(A) if jRk and kR j then j = k (antisymmetry).

A poset A is a set ASet endowed with a partial order RA.

Example 3.10 P(A) is a poset under set inclusion. Every subset of a poset is a poset
under the restriction of the binary relation.

Definition 3.11 If A is a preordered set and x ∈ A, the tail in A from x is the set

tailA(x)
def= {r ∈ A : x RAr} . (3.9)

A subset T ⊂ A is called a tail in A if T = tailA(x) for some x ∈ A.

Definition 3.12 A subset T ⊂ A is called final in A if it contains some tail, and the
collection of all final sets in A is

Fin[A] def= {b ∈ P•(A) : ∃x ∈ A, tailA(x) ⊂ b} . (3.10)

We may write Fin[R] instead of Fin[A] in case we need to emphasize the role of the
direction R.

The notion of tail, and the associated notion of final set, display their full power
only if some other assumptions are made on the preorder.

Definition 3.13 A direction on a set S is a preorder R on S such that, for each j, k ∈ S,
there exists an element l ∈ S such that jRl and kRl. We define

dir(S)
def= {R ∈ P•(S × S) : R is a direction on S} . (3.11)

A directed set A = (ASet,RA) is a set ASet endowed with a direction RA on ASet.

We will see that A is a directed set if and only if Fin[A] is a filter on A.
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Example 3.14 N is a directed set under the natural order: j ≤ k if k − j ≥ 0.

The following result shows that reverse inclusion in a filter is a direction.

Example 3.15 If Z ∈FFF (A), then reverse inclusion between sets (⊃) is a direction on
Z. In particular, if � is a topology on A and x ∈ A, then (N�(x),⊃) is a directed set.

Directed sets serve as domains of definition ofMoore–Smith sequences. It is useful
to emphasize the role of the codomain, as in the following definition.

Definition 3.16 If Y is a nonempty set, we define

S ( )Y
def= {w : ∃ a directed set A,w ∈ homSet(A,Y)} (3.12)

The elements ofS (Y) are called Y-valued Moore–Smith sequences. The directed set
which appears in (3.12) is called (with slight abuse of language) the direction of w.

Observe that

Y ↪→ homSet(N,Y) and homSet(N,Y) ⊂ S (Y) (3.13)

i.e., each element of Y may be seen as a constant sequence, and each sequence is a
Moore–Smith sequence.

Lemma 3.17 The map Y 	→ S (Y) is the object function of a functor S : Set →
Set. The mapping function of S maps f ∈ homSet(Y,Y′), where Y,Y′ are two
sets, to the function f◦ : S (Y)→ S (Y′) which maps w ∈ S (Y) to f ◦w ∈ S (Y′),
where f ◦ w is the composition of functions.

Proof The proof follows at once from the fact that the composition of functions is
associative whenever defined, and IY ◦ w = w. For background, see [22, p. 501]. ��

Observe that a direction is not necessarily a partial order, since antisymmetry may
fail. An antisymmetric direction on a set A is a direction R on A for which if jRk and
kR j then j = k.

3.4 LimitingValues of Moore–Smith Sequences

Definition 3.18 If w is a Y-valued Moore–Smith sequence, � is a topology on Y, A
is the direction of w, and y ∈ Y, we say that y is the limiting value of. w along A, and
write

limw = y (3.14)

if, for each O ∈ N�(y), w∗(O) is final in A.

Example 3.19 On R the preorder ≤ [resp. the preorder ≥] yield the familiar notions
limr→+∞ w(r) [resp. limr→−∞ w(r)] for a Y-valued Moore–Smith sequence w :
R→ Y.

123



On the Differentiation of Integrals in Measure Spaces Along Filters Page 25 of 81 29

If we need to emphasize more explicitly the preorder R or the direction A, we write

lim
R
w = z or lim

A
w = z

instead of (3.14).

Definition 3.20 If w ∈ S (R) and A is the direction of w, we say that lim A w = +∞
if for each r ∈ R the set {x ∈ A : w(x) > r} is final in A. We say that lim A w = −∞
if lim A(−w) = +∞

The following elementary remark is useful in topological spaces where points are
not necessarily separated. We will see that the setFFF (A) is endowed with a topology
of this kind. Indeed, we will see thatFFF (A) is compact but not Hausdorff, whileUUU (A)

is compact and Hausdorff.

Lemma 3.21 If z,w ∈ Y and � is a topology on Y, then the following conditions are
equivalent:

(1) z ∈ {w},
(2) z = limw.

Remark 3.22 Of course the statement is interesting only if z �= w. Observe that {w} is
the closure in the given topology, and that (2) rests on the fact that, according to (3.13),
we may identify w with the constant sequence w identically equal to w, and indeed
(2) says that z is the limiting value of this sequence.

Proof Definew : N→ A byw(k)
def= w for eachw. Thenw∗(O) is equal toN for each

O ∈ N�(z), since z ∈ {w}, hence z = limw, and (2) follows from the identification
of w with w in (3.13). ��

Lemma 3.21 is a special case of the following, more general, result, due to Garrett
Birkhoff [3]. Observe that ifW ⊂ Y then eachW -valuedMoore–Smith sequence may
be seen as a Y-valued Moore–Smith sequence:

S (W ) ↪→ S (Y).

Lemma 3.23 ([3]) If (Y,�) is a topological space, W ⊂ Y, and z ∈ Y then the
following conditions are equivalent.

(1) z ∈ W ,

(2) there exists w ∈ S (W ) such that z = limw.

Proof If (1) holds, then b∩W �= ∅ for each b ∈ N�(z), hence there exists a function
w : N�(z)→ W such that w(b) ∈ b ∩W for each b ∈ N�(z), and w is a generalized
sequence, by Example 3.15. Let O ∈ N�(z) . If U ∈ N�(z) and O ⊃ U then
w(U ) ∈ U ⊂ O hencew(U ) ∈ O . HencetailN�(z)(O) ⊂ w∗(O). Thus z = limw.
If (2) holds then for eachO ∈ N�(z) there exists x ∈ Asuch thattailA(x) ⊂ w∗(O),
thus O ∩W contains w(r) for any r ∈ tailA(x). Hence O ∩W is not empty and (1)
holds. ��
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Remark on notation In order to facilitate the distinction between the setting of filters
and the setting of Moore–Smith sequences, and also to gain a better appreciation of
the connection between the two viewpoints, we use bold Sans Serif font to denote
limiting notions pertaining to filters, such as lim, cluster, liminf, limsup, and Type-
writer font to denote notions pertaining to Moore–Smith sequences, such as lim
and ClusterSet. Indeed, it seems to us that if we used the same notation for the
different notions then the connection between the two viewpoints would be obscured
by the uniform notation.

3.5 The Functional Convergence Class Associated to a Direction

The following result says that convergence along a direction, described in Defini-
tion 3.18, is a limiting process that yields a functional convergence class, just as the
limiting process of convergence along a filter does. However, we will see that the
limiting process of convergence along a filter on A, described in Definition 1.12, has
wider scope and higher synthetic power than the limiting process of convergence along
a direction on A, described in Definition 3.18.

Theorem 3.24 If R ∈ dir(A) then

FR
def=

{
(y, ϕ) ∈ R× homSet(A, R) : lim

R
ϕ = y

}
(3.15)

is a functional convergence class on A.

Proof The proof will be given in Sect. 3.6. ��

3.6 A Comparison of the Two Notions

In 1938, Herman Lyle Smith considered the following notion of limiting value, due to
Arnaud Denjoy [10, p. 165], [32], [13, p. 158]. We say that ϕ has approximate limiting
value equal to y at x0 if the following condition holds.
(Example MS 4) ϕ : R→ R is measurable, x0 ∈ R, y ∈ R, and for each ε > 0 the
set

{x ∈ R : |ϕ(x)− y| < ε}

has density equal to 1 at x0.
H. L. Smith observed that the limiting notion in (Example MS 4) may be readily

subsumed under Definition 1.12 but that it cannot be covered by Definition 3.18
“without a somewhat artificial transformation.”

Observe that the collection of final sets in a directed set is a filter. For example, the
filter generated by the natural order onN is the Fréchet filter (see Example 1.9). Indeed,

we now show that every directed set A yields a filtered set AFSet
def= (ASet, Fin[A]),

whose underlying set is the underlying set of A and whose filter is the one generated
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by the given direction on A. In other words, we define a map

dir(A)→FFF (A). (3.16)

Lemma 3.25 If A is a directed set, then the collection Fin[A] of final sets in A is a
filter on A, called the filter generated by (the tails of) R.

Proof If b1,b2 ∈ Fin[A] then there exist x1, x2 ∈ A with tailA(x1) ⊂ b1 and
tailA(x2) ⊂ b2, and there exists a majorant x of x1, x2, and therefore tailA(x) ⊂
tailA(x1) ∩ tailA(x2) ⊂ b1 ∩ b2. Hence b1 ∩ b2 ∈ Fin[A]. ��

Lemma 3.25 enables us to subsume Definition 3.18 under Definition 1.12.

Lemma 3.26 If w is a Y-valued Moore–Smith sequence, � is a topology on Y, A is
the direction of w, and y ∈ Y, then the following conditions are equivalent

(Definition 3.18) lim A w = y,
(Definition 1.12) limFin[A] w = y.

Proof Definition 3.18 says precisely that w : (A, Fin[A]) → (Y,N�(y)) is a filter-
homomorphism. ��
Proof of Theorem 3.24 Lemma 3.26 says that

{
(y, ϕ) ∈ R× homSet(A, R) : lim

R
ϕ = y

}

=
{
(y, ϕ) ∈ R× homSet(A, R) : lim

Fin[A]
ϕ = y

}
(3.17)

and we know from Theorem 3.2 that the right-hand side of (3.17) is a functional
convergence class, since Fin[A] is a filter on A. ��

Hence (3.15) and Theorem 3.24 yield a map

dir(A)→ FCC(A). (3.18)

Moreover, the following result also follows immediately from Theorem 3.24.

Theorem 3.27 If A is a nonempty set, then the following diagram is commutative

dir A FFF (A)

FCC(A)

cA (3.19)

where the map on the top is the one given in (3.16) and the diagonal map is the one
given in (3.18).
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Proof The result follows immediately from Lemma 3.26. ��
Recall that Theorem 3.7 says that cA in (3.19) is 1–1 and onto, and this means

that every functional convergence class on A is associated to a unique filter. One may
wonder whether the diagonal map in (3.19) is also onto, i.e., whether every functional
convergence class is associated to a direction on A. As far as we know, the following
result is new.

Theorem 3.28 If A is equal to the unit disc in C, then the diagonal map in (3.19) is
not onto. Indeed, the functional convergence class associated to nontangential con-
vergence is not associated to any direction.

Proof We now show that Theorem 3.28 may be reduced to Theorem 3.29, to be stated

momentarily. Recall that if D
def= {z : z ∈ C, |z| < 1} is the unit disc in C, then there

exists a filter S ∈FFF (D), called the nontangential filter on D ending at 1 (see [11, 12,
33], for background), such that the following result holds.
(Example MS 5) For each ϕ : D → R and each z ∈ [−∞,+∞], limS ϕ = z if
and only if limt�z→x ϕ(z) = z for each open Euclidean triangle t contained in D and
having 1 as a vertex.

A precise definition of the nontangential filter S will be given in Sect. 5.
Theorem 3.28 follows at once from the following result.

Theorem 3.29 The nontangential filter S on D is not equal to the filter of tails of any
direction on D.

The proof of Theorem 3.29 will be given in Sect. 5. ��
Remark 3.30 We do not knowwhether an intrinsic characterization of the image of the
map (3.16) is known, i.e., whether it is possible to give an intrinsic characterization
of those filters which are generated by a direction.

Remark 3.31 Lemma3.25 shows that every directed setA yields afiltered setAFSet
def=

(ASet, Fin[A]), whose underlying set is the underlying set of A and whose filter is the
filter of tails of the given direction on A. We will look at DSet as a full subcategory
of FSet, i.e., we will declare that DSet-homomorphisms from A to A′, where A
and A′ are directed sets, are precisely the FSet-homomorphisms from AFSet to
A′FSet. However, we will not base the notion of Moore–Smith subsequence on this
identification, since it would lead to “irregularities” [1, p. 285] and make the subject
somewhat “contentious,” as Saitulaa Naranong puts it in Translating between Nets and
Filters (2010) (unpublished). We will return to this theme in Sect. 12.

Directed sets form a proper subclass of the objects of the category FSet of filtered
sets, since
(Lemma 3.26) the relevant data in a directed set is the filter of tails of the given
direction, and
(Theorem 3.29) The map (3.18) is not necessarily onto.

In his work, R. de Possel used sequences of measurable sets. One may be tempted
to employ insteadMoore–Smith sequences, and we will do so in Sect. 3.7, but we will
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see that filters appear to be more flexible and direct. This conclusion may appear to
be counterintuitive, since convergence phenomena are based on an idea of movement,
andMoore–Smith sequences appear to be especially suited to represent them, because
a “dynamic” is encoded in the directed set which acts as their basis, while filters are
seemingly “static” objects, in the sense that there is no apparent “sense of direction”
in them. In Sect. 9, we will show that this impression is erroneous, since the collection
of all filters on a given nonempty set is endowed with a natural topology, which
is especially suited to be used in the study of convergence phenomena. Hence, the
advantage of filters is that there is no need to rest on the additional structure of a
directed set, since a “sense of direction” is encoded in their intrinsic structure.

3.7 The Functional Convergence Class Associated to a Family of Moore–Smith
Sequences

We now introduce another method for constructing functional convergence classes.

Definition 3.32 If A is a nonempty set and a nonempty set V ⊂ S (A) is given, then
define

FV
def= {(y, ϕ) ∈ R× homSet(A, R) : ∀w ∈ V , limϕ ◦ w = y} (3.20)

Theorem 3.33 If A is a nonempty set and a nonempty set V ⊂ S (A) is given, then
FV , defined in (3.20), is a functional convergence class.

Proof The proof will be given in Sect. 7. ��

Theorem 3.34 If Z ∈ FFF (A) then there exists V ⊂ S (A) such that, for each topo-
logical space (Y,�), every y ∈ Y, and each function ϕ : A → Y, the following
conditions are equivalent:

(1) limZ ϕ = y,
(2) for each t ∈ V , limϕ ◦ t = y.

Proof Define

S
def= {t : Z→ A, t (b) ∈ b for each b ∈ Z : .}

Observe that Z is a directed set, by Example 3.15, and hence S ⊂ S (A). Let (Y,�)

be a topological space, ϕ : A → Y, and y ∈ Y, and assume that (1) holds. If
U ∈ N�(y) then there exists b ≡ bU ∈ Z such that b = ϕ∗(U ). Let t ∈ S and
consider ϕ ◦ t : Z→ A, where Z is seen as a directed set, as in Example 3.15. If d ∈ Z
and b ⊃ d, then (ϕ ◦ t)(d) = ϕ(t(d)), t(d) ∈ d, d ⊂ b, and b = ϕ∗(U ) imply that
(ϕ ◦ t ) (d) ∈ U . Since U ∈ N�(y) is arbitrary, it follows that limϕ ◦ t = y, and
since t ∈ S is arbitrary, it follows that (2) holds. If (1) does not hold, then there exists
U ∈ N�(y) such that ϕ∗(U ) /∈ Z. Hence for each b ∈ Z it is not true that b ⊂ ϕ∗(U )
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(for otherwise it would follow that ϕ∗(U ) ∈ Z, since Z is a filter). Hence for each
b ∈ Z there exists xb ∈ b such that xb /∈ ϕ∗(U ), i.e., ϕ(xb) /∈ U . Define

w : Z→ A

by letting w(b)
def= xb. Then w ∈ S but it is not true that lim f ◦ w = y, hence (2)

does not hold. ��
Theorem 3.35 If A is a nonempty set, then every functional convergence class on A
is equal to FV , defined in (3.20), for some nonempty V ⊂ S (A).

Proof This result follows at once from Theorems 3.7 and 3.34. ��
We have thus seen that a functional convergence class on A may be represented in

terms of a unique filter, or in terms of a family V , as in Theorem 3.33. The advantage of
the representation in termsoffilters is precisely givenbyuniqueness. Indeed, the lackof
uniqueness would cause some difficulties in the determination of the exceptional set
for a.e. convergence. Hence the approach based on the notion of filter has higher
synthetic power and flexibility.

Theorem 3.34 shows that the functional convergence class cA(Z) of a given filter Z
onAmay be described asFV , in terms of a set V ofA-valuedMoore–Smith sequences.
One may wonder whether it is possible to choose as V a set of A-valued sequences,
and whether it is possible to choose as V as set consisting of just one Moore–Smith
sequence. We will see that the answer to the first question is in the negative, and that
the answer to the second question is in the positive.

Theorem 3.36 There exists a nonempty set A and a functional convergence class F
on A such that F cannot be represented in the form FV where V is a collection of
A-valued sequences.

Proof Let A = N and let Z ∈FFF (N) be an ultrafilter on N which contains the Fréchet
filter. ��
Theorem 3.37 For every nonempty setA and each functional convergence classF on
A there exists an A-valued Moore–Smith sequence q such that F = Fq .

Proof The proof will be given in Sect. 8. ��

4 Preliminary Results on Filters

The goal of this section is to give a self-contained presentation of the basic results on
filters.

4.1 Basic Lattice-Theoretic Properties ofFFF (A)

Apreliminary examination of some lattice-theoretic properties ofFFF (A)will be useful,
as we will see, in order to gain a better understanding of the topological implications
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of the notion of filter. Recall that if C is a family of filters, i.e., if C ⊂FFF (A), then

⋂
C def= {b ∈ P•(A) : b ∈ Z for each Z ∈ C}

Lemma 4.1 (Cartan [8]) The intersection
⋂ C of any nonempty family C of filters on

a set is not empty and is a filter.

Proof If C ⊂FFF (A) then A ∈ ⋂ C, hence ⋂ C �= ∅. If b1,b2 ∈ ⋂ C then b1,b2 ∈ Z
for each Z ∈ C, hence b1 ∩ b2 ∈ Z for each Z ∈ C, hence b1 ∩ b2 ∈ ⋂ C. If b ∈ ⋂ C
and b ⊂ d, then b ∈ Z hence d ∈ Z for each Z ∈ C, thus d ∈ C. ��

Observe that P(X) is a poset, henceFFF (A) is a poset under set inclusion (Exam-
ple 3.10).

Definition 4.2 If x, y are elements of a poset (X,R), then an element l ∈ X is called a
lower bound for x and y in X if lRx and lRy. An element l ∈ X of a poset X is called
a meet of x and y, or greatest lower bound (g.l.b.) of x and y, if (i) l is a lower bound
of x and y, and (ii) if b is any other lower bound of x and y, then bRl. If it exists, a
meet of x and y in a poset X is denoted by x ∧ y.

Observe that antisymmetry of R implies that, in a poset, a meet of x and y, if it exists,
is unique.

The notion of greatest lower bound of a subset S of a poset X is defined in a natural
way, to wit: If it exists, it is an element l ∈ X such that (i) l is a lower bound of S
(i.e., lRa for each a ∈ S), and (ii) if b is a lower bound of S, then bRl; If it exists, it is
unique. If it exists, the greatest lower bound of a subset S is denoted by

∧
s∈S s.

Proposition 4.3 (Cartan [8]) The infimum (greatest lower bound)
∧

Z∈C Z of any

nonempty family C of filters on A exists in FFF (A). It is the intersection of all the
filters in the family.

Proof The statement follows at once from Lemma 4.1. ��
Definition 4.4 If x, y are elements of a poset (X,R), an element l ∈ X is called a
upper bound for x and y in X if xRl and yRl. An element l ∈ X of a poset X is called
a join of x and y, or least upper bound (l.u.b.) of x and y, if (i) l is an upper bound of
x and y, and (ii) if u is any other upper bound of x and y, then lRu. If it exists, a join
of x and y in a poset X is denoted by x ∨ y.

Antisymmetry implies that, in a poset, a join of x and y, if it exists, is unique. In
Sect. 9.2 we will see that the existence of the join of two filters is more delicate.

4.2 The OperatorA↑

In order to present a basic technique for the construction of filters and exhibit more
examples of filters, we introduce an operator A↑ associated to every nonempty set.
This operator is actually implicit in the definition of the notion of filter, so it is not
surprising that it serves as a useful tool to construct new ones.
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The basic building block for the operator A↑ is contained in the following observa-
tion, which shows thatFFF (A) contains a copy ofP•(A). Indeed, consider the following
diagram

P•(P•(A))

P•(A) P•(P•(A))

A•

ı

A↑ (4.1)

where the function ı : P•(A) → P•(P•(A)) is defined by ı(b)
def= {b}, for each

b ∈ P•(A), and the functions A• and A↑ will be defined momentarily.

Lemma 4.5 If b ∈ P•(A) then the collection

Ab
def= {c ∈ P•(A) : b ⊂ c} (4.2)

is a filter which contains b as an element: it is the smallest filter on A which contains
b as an element, and is called the principal filter generated by b on A.

Proof (F 0) b �= ∅ ⇒ ∅ /∈ Ab. (F1.a) b ⊂ A ⇒ A ∈ Ab. (F1.b) b1,b2 ∈ Ab ⇒
b ⊂ b1 and b ⊂ b2, hence b ⊂ b1 ∩b2, thus b1 ∩b2 ∈ Ab. (F2) If c ∈ Ab and c ⊂ d
then b ⊂ c ⊂ d, hence b ⊂ d, i.e., d ∈ Ab. Let C be the family of filters on A which
contains b as an element. If Z ∈ C and c ∈ Ab then c ∈ Z, since b ∈ Z and Z is a filter.
Hence Ab ⊂ Z. The conclusion follows from the fact that Ab ∈ C. ��
Definition 4.6 Define A• : P•(A) → P•(P•(A)) by A•(b)

def= Ab, for each b ∈
P•(A).

The map A↑ is designed to make the diagram (4.1) commutative (i.e., to extend A•
to P•(P•(A))) and to commute with the union of collections.

Definition 4.7 A map

ϕ : P•(P•(A))→ P•(P•(A))

commutes with the union of collections if

ϕ

(⋃
α∈I

Zα

)
=

⋃
α∈I

ϕ(Zα) (4.3)

for each indexed family of collections {Zα}α∈I , where Zα ∈ P•(P•(A)) and I is a
nonempty set of indexes.

Lemma 4.8 In diagram (4.1) there exists a unique map A↑ (dotted arrow) that makes
the diagram commute, and which commutes with the union of collections.

Proof We define the map as follows:

A↑[W]
def= {c ∈ P•(A) : c ⊃ b for some b ∈ W} . (4.4)
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Observe that ifW = {b} where b ∈ P•(A) then A↑[W] = Ab, hence (4.1) commutes.
We now show that A↑ commutes with the union of collections. Indeed, the statement
that b ∈ A↑

[⋃
α∈I Zα

]
means that there exists α ∈ I and c ∈ Zα such that b ⊃ c, and

this means precisely that b ∈⋃
α∈I A↑[Zα]. In order to show uniqueness, it suffices

to observe that W =⋃
b∈W{b} =

⋃
b∈W ı(b) for each W ∈ P•(P•(A)). ��

Lemma 4.9 If W ∈ P•(P•(A)) then

A ⊂ A↑[W] . (4.5)

Proof If b ∈ W then b ⊂ b, hence b ∈ A↑[W]. ��
Lemma 4.10 IfW ∈ P•(P•(A)) then

A↑
[
A↑[W]

]
= A↑[W] . (4.6)

Proof If b ∈ A↑
[
A↑[W]

]
then b ⊃ c for some c ∈ A↑[W], i.e., c ⊃ d for some d ∈ W.

Hence b ⊃ d, i.e., b ∈ A↑[W]. We have thus proved that A↑
[
A↑[W]

] ⊂ A↑[W]. The
conclusion follows from Lemma 4.9. ��

4.3 Bases and Subbases

Observe thatW ∈ P•(P•(A)) satisfies (F2) in the axioms of a filter (Sect. 1.2.3) if and
only if A↑[W] = W. Lemma 4.10 then says that A↑[W] satisfies (F2). Lemma 4.5 says
that the image of A• in (4.1) is contained inFFF (A). The same result does not hold for
the map A↑. Indeed, if W ∈ P•(P•(A)) then the collection A↑[W], defined in (4.4),
satisfies (F0) (since A ∈ A↑[W]) and (F2) (by Lemma 4.10) but not necessarily (F1)
in the definition of filter. For example, if W = {b1,b2} where b1,b2 ∈ P•(A) are
disjoint, then A↑[W] is not a filter, since a filter cannot contain disjoint sets.

Lemma 4.11 (Cartan [8]) IfW ∈ P•(P•(A)) then the following conditions are equiv-
alent:

(1) A↑[W] is a filter on A.
(2) For each b, c ∈ W, there exists d ∈ W such that d ⊂ b ∩ c.

Proof If (1) holds and b, c ∈ W, then b ∩ c ∈ A↑[W], hence there exists d ∈ W such
that b ∩ c ∈ Ad, i.e., d ⊂ b ∩ c. If (2) holds and b, c ∈ A↑[W], then there exist
b′, c′ ∈ W such that b′ ⊂ b and c′ ⊂ c. Hence there exists d ∈ W with d ⊂ b′ ∩ c′.
Thus d ⊂ b ∩ c, i.e., b ∩ c ∈ A↑[W]. ��
Definition 4.12 IfW ∈ P•(P•(A))has oneof the equivalent properties inLemma4.11,
we then say that W is a filter base on A; the filter A↑[W] defined in (4.4) is the filter
generated by W on A.
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Example 4.13 The collection W
def= {

(−x2, 0) : x ∈ R, x > 0
}
is a filter base on R.

Example 4.14 The collection W
def= {

(−∞, x2, ) ∪ (x2,+∞) : x ∈ R, x > 0
}
is a fil-

ter base on R.

Lemma 4.15 A preorder R on a set A is a direction on A if and only if the collection
of tails in (A,R) is a filter base.

Proof If the collection of tails in (A,R) is a filter base on A then, given x, r ∈ A, there
exists p ∈ A such that tailA(p) ⊂ tailA(x) ∩ tailA(r), hence p is a majorant
of {x, r}. In Lemma 3.26 we proved the converse. ��
Lemma 4.16 If Z ∈ FFF (A) and f ∈ homSet(A,Y), then ( f∗)∗(Z) is a filter base on
Y.

Proof Recall that ( f∗)∗ : P(P(A)) → P(P(Y )) and observe that ( f∗)∗(Z) =
{ f∗(b) : b ∈ Z} ⊂ P•(Y). If b1,b2 ∈ Z then b1 ∩ b2 ∈ Z (since Z is a filter) and
f∗(b1 ∩ b2) ⊂ f∗(b1) ∩ f∗(b2), hence (2) in Lemma 4.11 holds. ��

4.3.1 Generating Bases for a Filter

Lemma 4.17 If Z ∈FFF (A), W ⊂ Z, and the following condition holds:

Z ⊂ A↑[W] (4.7)

then W is a filter base on A and A↑[W] = Z.

Proof W ⊂ Z⇒ A↑[W] ⊂ A↑[Z]. Since Z ∈FFF (A), A↑[Z] = Z, hence A↑[W] ⊂ Z.
On the other hand, (4.7) and Lemma 4.10 imply that A↑[Z] ⊂ A↑

[
A↑[W]

] = A↑[W],
hence Z ⊂ A↑[W]. ��
Definition 4.18 IfZ ∈FFF (A),W ⊂ Z, and (4.7) holds, thenwe say thatW is generating
basis for Z.

Example 4.19 ThecollectionW
def= {b ∈ P•(N) : ∃n ∈ N such that b = {k ∈ N : k ≥ n}}

is a generating basis for the Fréchet filter fN on N, introduced in Example 1.9. Indeed,
fN = N

↑[W].

Observe that (4.7) says that for each b ∈ Z there exists c ∈ W such that c ⊂ b.

Corollary 4.20 If W and Y in P•(P•(A)) are filter bases on A, then the following
conditions are equivalent:

(1) A↑[W] = A↑[Y] ,
(2) W ⊂ A↑[Y] and Y ⊂ A↑[W] .

If any of these equivalent conditions holds, we say that W and Y are equivalent.
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4.3.2 Filter Subbases

Observe that ifW ∈ P•(P•(A)) then the collection

W∩ def= {Q ∈ P(A) : ∃C ⊂ W,C is finite and nonempty, Q = ∩C} (4.8)

satisfies Condition (2) in Lemma 4.11 but it is not necessarily true that W∩ ∈
P•(P•(A)), since it may happen that ∅ ∈ W∩. However, we have the following result,
stated in terms of (4.8).

Lemma 4.21 (Cartan [8]) IfW ∈ P•(P•(A)) then a necessary and sufficient condition
for the existence of a filter on A which contains W is that ∅ /∈ W∩. If ∅ /∈ W∩, then
W∩ is a filter base on A, and the filter A↑

[
W∩]

is said to be generated by the subbase
W.

Proof If Y ∈FFF (A) with W ⊂ Y and {b1, . . . ,bn} ⊂ W, n ∈ N, then {b1, . . . ,bn} ⊂
Y, hence

⋂n
j=1 b j ∈ Y and thus

⋂n
j=1 b j �= ∅. If ∅ /∈ W∩ then W∩ ∈ P•(P•(A)).

Condition (2) in Lemma 4.11 holds for W∩ by its very construction, and A↑
[
W∩]

is
a filter which contains W. ��
Definition 4.22 If W ∈ P•(P•(A)) and ∅ /∈ W∩, then we then say that W is a filter
subbase on A, and A↑

[
W∩]

is the filter generated by the subbase W on A: It is the
broadest filter which contains W.

4.4 Ultrafilters and Compactness

If Z ∈FFF (A), then Z ⊂ P•(A), and, in particular, if b ∈ Z, then b ⊂ A. Thus

FFF (A) ⊂ P•(P•(A)). (4.9)

HenceFFF (A) inherits fromP•(P•(A)) the partial order given by inclusion. The notion
of ultrafilter, due to H. Cartan, introduced in Definition 1.5, is useful in several areas:
topology, functional analysis, mathematical logic, among many others.

Observe that a filter on A is an ultrafilter if it is a maximal element ofFFF (A) under
inclusion.

Lemma 4.23 If b ∈ P•(A) then the principal filter Ab is an ultrafilter if and only if b
is a singleton.

Proof If b = {x}, x ∈ A, Z ∈FFF (A), Ab ⊂ Z, and c ∈ Z, then b ∩ c �= ∅, thus x ∈ c,
hence c ∈ Ab. If b is not a singleton, let x ∈ b. Then Ab � A{x} since {x} ∈ A{x} \Ab,
hence Ab is not an ultrafilter. ��
Lemma 4.24 The collection FFF (A) is inductive with respect to the partial order
induced by P•(P•(A)).

Proof If L ⊂FFF (A) is linearly ordered andW
def= {b : b ∈ P•(A), ∃Z ∈ L,b ∈ Z} then

W∩ in (4.8) does not contain the empty set, and the filter generated by the subbaseW
is an upper bound of L. ��
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Theorem 4.25 If Z ∈FFF (A) then there exists W ∈UUU (A) such that Z ⊂ W.

Proof Apply Zorn’s lemma and Lemma 4.24. ��
Lemma 4.26 IfA �= ∅ thenUUU (A) = {

Z ∈FFF (A) : ∀b ∈ P(A) either b ∈ Z or �b ∈ Z
}
.

Proof If Z ∈UUU (A), b ∈ P(A), and b /∈ Z, then Z � Z∪{b}, and Z∪{b} is not a filter
subbase on A, i.e., there exists c ∈ Z with c ∩ b = ∅. Hence c ⊂ �b, thus �b ∈ Z.
If Z ∈ FFF (A) \UUU (A), then there exists b ∈ P•(A) \ Z such that Z ∪ {b} is a filter
subbase; hence b ∩ c �= ∅ for each c ∈ Z, thus �b /∈ Z. ��
Corollary 4.27 If A �= ∅ thenUUU (A) = {

Z ∈FFF (A) : Z = wloc(Z)
}
.

Lemma 4.28 If Z ∈UUU (b), b ∈ Z, and c ⊂ b, then either c ∈ Z or b \ c ∈ Z.

Proof If c /∈ Z then Z ∪ {c} is not a filter subbase, hence there exists d ∈ Z with
d ∩ c = ∅. Hence b ∩ d ⊂ b \ c. Thus b \ c ∈ Z, since b ∩ d ∈ Z. ��

Observe that, if T ∈ P(P(A)) is an open cover of K ⊂ A, then for each x ∈ K
there exists O ∈ T with x ∈ O , and K ⊂ O ∪ �O .

Lemma 4.29 If T ∈ P(P(A)) is an open cover of K ⊂ A, then the collection

WT
K

def=
{
b ∈ P(b) : ∃ finite T0 ⊂ T such that K ⊂

⋃
T0 ∪ b

}
(4.10)

is a filter if and only if T has no finite subcover of K .

Proof Observe that ∅ ∈ WT
K if and only if T has a finite subcover of K , hence it

suffices to observe that (i) A ∈ WT
K ; (ii) b, c ∈ WT

K ⇒ b∩ c ∈ WT
K ; (iii) b ∈ WT

K and
b ⊂ c⇒ c ∈ WT

K . ��
The following characterization of compactness is useful.

Lemma 4.30 (Cartan [8]) Assume that (A,�) is a topological space and that K ⊂ A.
Then the following conditions are equivalent:

• K is compact.
• For each Z ∈ UUU (A), if Z is localized in K , then there exists x ∈ K such that
N�(x) ⊂ Z.

Proof If K is not compact, then there exists T ⊂ � which is an open cover of K with
no finite subcover. ThenWT

K in (4.10) is a filter. Observe that K ∈ WT
K . Theorem 4.25

yields Z ∈ UUU (A) with WT
K ⊂ Z. Since T is an open cover of K , for each x ∈ K

there exists O ∈ T with x ∈ O . We claim that O /∈ Z. Indeed, K ⊂ O ∪ �O yields
�O ∈ WT

K , hence �O ∈ Z, thus O /∈ Z.

If K is compact, Z ∈ UUU (A), and K ∈ Z, define �Z ⊂ � by �Z
def={

b ∈ � : �b ∈ Z
}
. We claim that �Z does not cover K , and hence there exists x ∈ K
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with x /∈ ⋃
�Z. If U ∈ � and x ∈ U then U /∈ �Z, and thus �U /∈ Z, hence U ∈ Z,

by Lemma 4.26. Hence N�(x) ⊂ Z.
We now prove the claim. If �Z covers K , then a finite subcover of �Z covers K ,

and since �Z is closed under finite unions, K is contained in one of the sets in �Z,
hence �K ∈ Z, which is impossible since K ∈ Z. ��

4.5 Functorial Properties of Direct Images and Application to LimitingValues

Recall from Lemma 4.16 that if Z ∈FFF (A) and f ∈ homSet(A,Y), then ( f∗)∗(Z) is
a filter base on Y.

Definition 4.31 If Z ∈ FFF (A) and f ∈ homSet(A,Y), then the filter generated by
( f∗)∗(Z) on Y is denoted by f�(Z) and is called the image of Z by f . Hence

f�(Z)
def= Y↑

[
( f∗)∗(Z)

] = {c ∈ P•(Y) : ∃b ∈ Z, f∗(b) ⊂ c} ∈FFF (Y). (4.11)

Lemma 4.32 If Z ∈FFF (A), and f ∈ homSet(A,Y), then

f�(Z) = {
c ∈ P•(Y) : f ∗(c) ∈ Z

}
.

Proof If c ∈ f�(Z) then there exists b ∈ Z with f∗(b) ⊂ c, hence b ⊂ f ∗( f∗(b)) ⊂
f ∗(c), thus f ∗(c) ∈ Z. If c ∈ P•(Y) then f∗( f ∗(c)) ⊂ c, and if f ∗(c) ∈ Z then
c ∈ f�(Z). ��
Proposition 4.33 Assume that A and Y are filtered spaces, and f ∈ homSet(A,Y).
Then f is a filter-homomorphism if and only if

ZY ⊂ f�(ZA).

Proof f is a filter-homomorphism iff b ∈ ZY ⇒ f ∗(b) ∈ ZA, and Lemma 4.32 says
that this is the same as asking that b ∈ ZY⇒ b ∈ f�(ZA), i.e., that ZY ⊂ f�(ZA). ��
Corollary 4.34 If (A,Z) is a filtered set, (Y,�) is a topological space, f : A→ Y is
a function, and y ∈ Y, then the following conditions are equivalent:

(1) limZ f = y,
(2) N�(y) ⊂ f�(Z).

Proof The result follows at once from Proposition 4.33 and Definition 1.12. ��
Corollary 4.35 If Z ∈UUU (A) and f ∈ homSet(A,Y), then f�(Z) ∈UUU (Y).
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Proof Since Z ∈UUU (A), Lemma 4.26 implies that if c ∈ P•(Y) then either f ∗(c) ∈ Z
or � f ∗(c) ∈ Z, and thus, by Lemma 4.32, either c ∈ f�(Z) or c /∈ f�(Z). Hence
f�(Z) ∈UUU (Y) by Lemma 4.26. ��
Given a function f : A→ Y we have thus defined the map

f� :FFF (A)→FFF (Y). (4.12)

Observe that if Z1,Z2 ∈ FFF (A) and Z1 ⊂ Z2 then f�(Z1) ⊂ f�(Z2). Hence we have
almost completely proved the following result.

Lemma 4.36 The assignment A 	→FFF (A) is the object function of a functor from the
category of sets to the category of posets. The associated arrow function assigns to
each function f : A→ Y the order-preserving function f� :FFF (A)→FFF (Y).

Proof If Z ∈ FFF (A) then c ∈ g�( f�(Z)) ⇔ g∗(c) ∈ f�(Z) ⇔ (g ◦ f )∗(c) =
f ∗(g∗(c)) ∈ Z for each c ∈ P•(A′′), by Lemma 4.32 hence g�( f�(Z)) = (g ◦ f )�(Z).

��

4.6 Extension of Filters from a Subset and Restriction to a Subset

If Ω � A and ı : Ω → A is the standard injection, defined by ı(x)
def= x , then the

associated map

ı� :FFF (Ω)→FFF (A) (4.13)

is injective, as we will see in Lemma 4.38, but this does not mean that if Z ∈FFF (Ω)

then Z ∈FFF (A). The following result clarifies this point.

Lemma 4.37 If Ω � A and Z ∈FFF (Ω) then Z /∈FFF (A).

Proof Observe that Z only contains subsets of Ω , and Z ∈FFF (A)⇒ A ∈ Z, which is
impossible. ��
A precise description of the map (4.13) will now be given.

Lemma 4.38 If Ω � A and Z ∈FFF (Ω) then Z is a filter base on A,

A↑[Z] = ı�(Z) = {b ∈ P•(A) : ∃c ∈ Z, ∃d ∈ P(A \Ω), b = c ∪ d} (4.14)

and

Z ⊂ ı�(Z). (4.15)

Proof The fact that Z is a filter base on A follows at once from Z ∈ FFF (Ω). If b ∈
A↑[Z] and b ∈ Ad for some d ∈ Z, then d ⊂ Ω , d ⊂ b, hence b ∩ Ω ∈ Z. Thus
b = [b ∩Ω] ∪ [b ∩ (A \Ω)] with b ∩Ω ∈ Z since d ⊂ b ∩Ω ⊂ Ω and d ∈ Z. If
b = c ∪ d, c ∈ Z, and d ∈ P(A \Ω), then b ∈ Ac thus b ∈ A↑[Z]. The fact that ı� is
injective follows at once from (4.14). Finally, (4.15) follows at once from (4.14). ��
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Definition 4.39 If Ω � A and Z is a filter on Ω then the filter in (4.14) is a filter on A
called the extension of Z from Ω to A.

Proposition 4.40 IfW ∈FFF (A) and Ω ⊂ A, then the following conditions are equiv-
alent:

(1) W is weakly localized in Ω

(2) For each d ∈ W, Ω ∩ d �= ∅.
(3) There exists a filter W̃ ⊃ W which is localized in Ω .
(4) The following collection is a filter on Ω

Z
def= {Ω ∩ b : b ∈ W} . (4.16)

Proof Let Y
def= {b}∪W. SinceW is a filter, then ∅ /∈ Y∩ means that b∩d �= ∅ for each

d ∈ W. The equivalence between (2) and (3) then follows at once from Lemma 4.21.
Wenowshow that (1) and (2) are equivalent. If (2)does not hold then there existsd ∈ W
such that b∩d = ∅, and this means that d ⊂ �b, hence �b ∈ W, i.e., (1) does not hold.
If (1) does not hold then �b ∈ W, hence b∩�b = ∅, hence (2) does not hold. Observe
that (4) implies (2) at once, since no set in a filter can be empty. We now show that (2)
implies (4). If b1 ∈ W and b2 ∈ W then (Ω ∩ b1) ∩ (Ω ∩ b2) = Ω ∩ (b1 ∩ b2) ∈ Z.
Moreover, if b ∈ W and Ω ∩b ⊂ d ⊂ Ω then b∪d ⊃ b, hence b∪d ∈ W, and since
d = Ω ∩ (b ∪ d), it follows that d ∈ Z. ��
Definition 4.41 If Ω � A, andW is a filter on A which is weakly localized in Ω , then
the filter in (4.16) is a filter on Ω called the restriction of Z from A to Ω .

Theorem 4.42 IfΩ � A andW ∈FFF (A) then the following conditions are equivalent:

(1) There exists Z ∈FFF (Ω) such that ı�(Z) = W.

(2) W is localized in Ω.

Proof Assume that (1) holds, and observe that Ω = Ω ∪ ∅ and Ω ∈ Z. Hence (4.14)
implies that Ω ∈ W. Assume that (2) holds. Then W is weakly localized in Ω , and
Proposition 4.40 implies that the collection in (4.16) is a filter on Ω . We claim that
ı�(Z) = W. Let d ∈ ı�(Z). Then there exists b ∈ W and c ∈ P(A \Ω) such that
d = (Ω ∩ b) ∪ c. Since Ω ∈ W, it follows that Ω ∩ b ∈ W and hence d ∈ W. Hence
we have proved that ı�(Z) ⊂ W. Now let d ∈ W. Observe that d = (Ω ∩d)∪ (d \Ω).

Let c
def= Ω ∩ d. Then c ∈ Z and d = c ∪ (d \Ω) with c ∈ Z and d \Ω ∈ P(A \Ω).

Hence (4.14) implies that d ∈ ı�(Z). Hence we have proved that ı�(Z) ⊃ W, and the
proof is concluded. ��

4.7 Separable Filters

Definition 4.43 If there exists a countable generating basis for a filter Z ∈FFF (Y), we
say that Z is separable.

In other words, Z is separable if there exists a countable subcollection W ⊂ Z such
that Z ⊂ A↑[W].
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Lemma 4.44 If Z ∈ FFF (A), B ⊂ Z and C ⊂ Z are generating bases for Z, and C
is countable, then there exists a countable subcollection G ⊂ B such that G is a
generating basis for Z.

Proof Corollary 4.20 implies that C ⊂ A↑[B], hence there is a map β : C→ B such

that, for each c ∈ C, c ⊃ β(c). DefineG
def= β∗(C). ThenG is a countable subcollection

of B. Let b ∈ Z. Since C is a generating basis for Z, there exists c ∈ C such that b ⊃ c.
Since c ⊃ β(c), it follows that b ⊃ β(c). Since β(c) ∈ G and b ∈ Z is arbitrary, we
have proved that Z ⊂ A↑[G]. Hence G is a generating basis for Z. ��

5 Proof of Theorem 3.29

If we specialize (3.11) to D we obtain the following:

dir(D) = {R : R is a direction on D} .

The goal of this section is to prove Theorem 3.29, a result which deals with the
collection dir(D) of all directions on D. In Lemma 3.25 we have defined a function
R 	→ Fin[R]

Fin : dir(D)→FFF (D) (5.1)

which maps every direction R on D to the filter of tails of R, denoted by Fin[R]. Recall
that there exists S ∈FFF (D), called the nontangential filter on D ending at 1, which has
the following property

(∗) For each w : D→ R and each z ∈ R, limS w = z if and only if, for each open
Euclidean triangle t contained inD and having 1 as a vertex, limt�z→x w(z) = z.

See [11, 12, 33], for background. It is convenient to replace the openEuclidean triangles
which appear in (∗) with the more symmetrical nontangential approach regions in D

at 1, as follows. For � > 0, let

D[�] def= {z ∈ C : |z − 1| < �}

be the open disc in C of center 1 and radius 1.

Definition 5.1 If α > 1 define

Γα
def=

{
z ∈ D : |z − 1|

1− |z| ≤ α

}
∩ D[1]. (5.2)

Remark If we used strict inequality in (5.2) (instead of the nonstrict inequality which
appears inside the curly brackets) and if we were to omit the intersection with D[1],
then we would obtain the same filter, and hence the same notion of convergence, but
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the proof would become a bit more involved. Indeed, observe that Γα contains the
following set, which will be useful in the proof:

∂Γα
def=

{
z ∈ D : |z − 1|

1− |z| = α

}
∩ D[1]. (5.3)

The nontangential filter S may now be defined as follows. Choose, once and for all, a
bijective function

α : N→ (1,+∞) ∩Q (5.4)

and let Q+
def= (0,+∞)∩Q. The set homSet(N, Q+) parametrizes a filter base on D

as follows: For r ∈ homSet(N, Q+), let

Q(r)
def=

⋃
n∈N

Γα(n) ∩ D[r(n)]. (5.5)

Observe that Q(r) ⊂ D. Now define

B
def= {Q(r) : r ∈ homSet(N, Q+)} . (5.6)

Lemma 5.2 The collection B is a filter base on D.

Proof If r, s ∈ homSet(N, Q+), define p ∈ homSet(N, Q+) by setting p(n)
def=

r(n)∧s(n). Observe that Q( p) ⊂ Q(r)∩Q(s). Lemma 4.11 implies that the collection
B is a filter base on D. ��
Definition 5.3 The nontangential filter on D ending at 1 is the filter generated by B on

D, i.e., S
def= D

↑[B].

Our goal is to prove the following statement.

(♠) There exists no direction R on D such that the filter of tails of R is equal to the
nontangential filter S.

Indeed, we will prove that S does not belong to the image of the map (5.1). In other
words, we will prove that the following set is empty:

Fin∗(S) def= {R ∈ dir(D) : Fin[R] = S} .

The following useful criterion follows at once from Lemma 3.26.

Lemma 5.4 If R ∈ Fin∗(S), w : D → [−∞,+∞], and z ∈ [−∞,+∞], then the
following conditions are equivalent.

(1) limS w = z,
(2) lim Rw = z.

123



29 Page 42 of 81 F. Di Biase, S. G. Krantz

The nontangential filter is related to the nontangential approach regions described
in (5.2) as follows.

(∗∗) For each w : D → R and each z ∈ [−∞,+∞], limS w = z if and only if
limΓ j�z→x w(z) = z for each j ≥ 1.

Remark The fact that (∗∗) holds implies that the choice made in (5.4) does not change
the resulting filter. See [11].

If R is a direction on D and x ∈ D, the R-tail in D from x ∈ D is defined just as
in (3.9), with an emphasis on the direction rather than on the directed set:

tailR(x)
def= {z ∈ D : xRz} .

We will also need the following notion.

Definition 5.5 If Q ∈ P•(D), we write Q → 1 if 1 belongs to the topological closure
of Q in R

2.

Lemma 5.6 If Q → 1 then there exists f : Q → R such that limQ�x→1 f (x) does
not exist.

Proof Since Q → 1, it is possible to define a sequence
{
r j > 0

}
j≥0 in such a way

that 2 = r0 > r1 > · · · > r j > r j+1 for each j ≥ 0, lim j→+∞ r j = 0, and

Q j
def= Q ∩ (

D[r j ] \ D[r j+1]
) �= ∅ for each j . The function f : Q → R defined by

setting f (x) = (−1) j if x ∈ Q j has the required property. ��
Lemma 5.7 If R ∈ Fin∗(S), x ∈ D, α > 1, Q ⊂ Γα, and Q → 1, then Q ∩
tailR(x) �= ∅.
Proof Assume thatR ∈ dir(D), x ∈ D,α > 1, Q ⊂ Γα , Q → 1, and Q∩tailR(x) =
∅. Define w : D→ R as a function that vanishes identically on D\Q and which on Q
is equal to the function described in Lemma 5.6. Then limS w does not exist, by (∗∗),
but lim Rw exists. Indeed, lim Rw = 0, since for each ε > 0 the values of w on the
R-tail from x all lie in (−ε, ε). Lemma 5.4 then implies that R /∈ Fin∗(S). ��
Lemma 5.8 If R ∈ Fin∗(S), then Fin[R] is separable.

Proof Let qn
def= 1 − 1

n , for each n ∈ N with n ≥ 1 and let Q
def=

{qn : n ∈ N, n ≥ 1}. Then Q → 1 and Q ⊂ Γα for each α > 1. Let C
def=

{b ∈ P•(D) : b = tailR(qn) for some
n ∈ N}. Observe that C is countable and C ⊂ Fin[R]. Lemma 5.7 implies that for each
x ∈ D there exists n ∈ N such that qn ∈ tailR(x), i.e., tailR(x) ⊃ tailR(qn),
and this means that Fin[R] ⊂ D

↑[C]. Hence C is a countable generating set for Fin[R].
��

Lemma 5.9 If G ⊂ B and G is countable, then S �⊂ D
↑[G].
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Proof Let r1, r2, . . . , rk, . . . be a sequence of elements of homSet(N, Q+) such that
G = {Q(rk) : k ∈ N}. We claim that there exists s ∈ homSet(N, Q+) such that

for each k ∈ N, Q(rk) \ Q(s) �= ∅. (5.7)

Hence Q(s) �⊃ Q(rk) for each k ∈ N, and since Q(s) ∈ S, this means that S �⊂ D
↑[G].

We will construct s ∈ homSet(N, Q+) and a sequence z1, z2, . . . , zk, . . . of points in
D in such a way that, for each k ∈ N,

zk ∈ Q(rk) (5.8)

and

zk /∈ Q(s). (5.9)

Since Q(s) =⋃
n∈N Γα(n)∩D[s(n)], in order to ensure that (5.9) holds it is necessary

that, for each n ∈ N,

zk /∈ Γα(n) ∩ D[s(n)]. (5.10)

Recall that α : N→ (0,+∞) ∩ Q is an enumeration of the positive rationals larger
than 1 chosen in (5.4) once and for all. For k = 1, 2, . . ., define an increasing sequence
{nk} of positive integers with the following property: α(n1) = 2, α(n2) > 2α(n1),
and α(nk+1) > 2α(nk) for each k ≥ 1. Then define

I1
def= {n ∈ N : 1 < α(n) < α(n1)}

and, for each integer j ≥ 2, define

I j
def= {

n ∈ N : α(n j−1) ≤ α(n) < α(n j )
}
.

Then N =⋃+∞
j=1 N j . Define s ∈ homSet(N, Q+) in such a way that

the restriction of s to I j is constant and equal to c j and the sequence {c j }
is decreasing (5.11)

The values c j will be specified momentarily. Define

�1
def= r1(n1) ∧ 1

and, for each k ≥ 2,

�k
def= rk(nk) ∧ �k−1. (5.12)

123



29 Page 44 of 81 F. Di Biase, S. G. Krantz

Choose

z1 ∈ ∂Γα(n1) ∩ D[�1] and then define c2
def= |1− z1|/2 (5.13)

and, for each k ≥ 1,

zk ∈ ∂Γα(nk ) ∩ D[�k] and then define ck+1
def= |1− zk |

2
∧ ck . (5.14)

Define c1 = |1− z1|. Observe that (5.12) implies that, for each k ∈ N,

zk ∈ ∂Γα(nk ) ∩ D[�k] ⊂ Γα(nk ) ∩ D[rk(nk)] ⊂ Q(rk).

Hence (5.8) holds for each k ≥ 1.
In order to show that (5.10) holds for k = 1 and each n ≥ 1, observe that if n ∈ I1

then α(n) < α(n1), hence (5.13) implies that z1 /∈ Γα(n), hence (5.10) holds for these
values of n. If n ∈ I2∪ I3∪· · · then (5.11) and (5.13) imply that s(n) ≤ c2 < |1− z1|,
thus z1 /∈ D[s(n)], hence (5.10) holds also for these values of n.

Now we show that (5.10) holds if k = 2 for all n ∈ N. If n ∈ I1 ∪ I2 then
α(n) < α(n2), and hence (5.14) with k = 2 implies (5.10) for these values of n. If
n ∈ I3 ∪ I4 ∪ · · · then (5.11) implies that s(n) ≤ c3, and since (5.14) implies that
c3 < |1 − z2|, it follows that s(n) < |1 − z2|, hence z2 /∈ D[s(n)], and (5.10) holds
also for these values of n.

The proof of (5.10) for a generic value of k is similar, and is achieved by first
showing that it holds if n ∈ I1 ∪ I2 ∪ · · · Ik , and then by showing that it holds for
n ∈ Ik ∪ Ik+1 ∪ · · · Indeed, in the first case, observe that α(n) < α(nk). Thus (5.14)
implies that zk /∈ Γα(n), hence (5.10) holds. In the second case, (5.11) and (5.14) imply
that s(n) ≤ ck+1 < |1− zk | hence zk /∈ D[s(n)], and (5.10) holds also for these values
of n.

��
Proposition 5.10 The nontangential filter on D ending at 1 is not separable.

Proof Recall that the collection B, defined in (5.6), is a generating basis for S. Let us
assume that S is separable. Then Lemma 4.44 implies that there exists a countable
subcollection G ⊂ B which is a generating basis for S, but this is impossible by
Lemma 5.9. ��
Proof of Theorem 3.29 Assume that the set Fin∗(S) is not empty, and let R ∈ Fin∗(S).
Then Lemma 5.8 implies that Fin[R] is separable. Now R ∈ Fin∗(S) means that
Fin[R] = S, hence it follows that S is separable, in contradiction with Proposition 5.10.

6 Applications to Set-ValuedMoore–Smith Sequences

The goal of this section is to apply the results presented so far to Moore–Smith
sequences of nonempty subsets of a given topological space. It seems to us that the
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topic has an interest of its own, even though its application to the main task of this
paper appears to be limited, both because of a lack of a topology, and for the reasons
illustrated in Sect. 3.

Since Moore–Smith sequences of points are a special case of Moore–Smith
sequences of nonempty subsets of the given topological space, we find it useful to
begin with the former case.

6.1 Functorial Properties of the Filter of Tails

The convergence properties of a Moore–Smith sequence are entirely determined by
the associated filter of tails, which is encoded in the operator

S (Y)

FFF (Y)

tY (6.1)

In Lemma 6.5 we will see that the map Y 	→ tY : S (Y) → FFF (Y) a natural
transformation between two functors. Recall that, if A is a directed set, then Fin[A] is
the filter of tails of A, described in Lemma 3.26.

Definition 6.1 If w is a Y-valued Moore–Smith sequence and A is the direction of w,
then the filter of tails of w is the filter on Y defined by

tY[w] def= w�(Fin[A]). (6.2)

It follows that a filter base of tY[w] is {w∗(tailA(x)) : x ∈ ASet}, i.e., the collec-
tion

{{w(r) : xRr} : x ∈ A} .

The following result says that the convergence properties of a Moore–Smith sequence
are entirely determined by the associated filter of tails.

Theorem 6.2 If w ∈ S (Y) is a Y-valued Moore–Smith sequence, � is a topology on
Y, and y ∈ Y, the following conditions are equivalent

• limw = y,
• tY[w] ⊃ N�(y).

Proof It suffices to apply Lemma 3.26 and Corollary 4.34. ��
In the following result, due to Bruns and Schmidt [5, p. 171], we show that the

map (6.1) is onto, i.e., that for each Z ∈ FFF (Y) there exists w ∈ S (Y) such that
tY[w] = Z.
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Lemma 6.3 If Y is a nonempty set, then every filter Z on Y is the filter of tails of a
Y-valued Moore–Smith sequence w.

Proof Given a filter Z on Y, define

A
def= {(b, x) : b ∈ Z, x ∈ b} , (6.3)

consider the direction R on A defined by

(b1, x1)R (b2, x2) if and only if b1 ⊃ b2,

and define

w : A→ Y

by w(b, x)
def= x for each (b, x) ∈ A. If x ∈ A, i.e., x ≡ (b, x), for some b ∈ Z and

some x ∈ b, then

{w(r) : xRr} = {
w(b′, x ′) : (b, x)R (b′, x ′)

} = {
x ′ : (b, x)R (b′, x ′)

} = b

hence tY[w] = Z. ��

Lemma 6.3 may be strengthened so as to yield the following result, due to Bruns
and Schmidt [5].

Lemma 6.4 If Y is a nonempty set, then every filter Z on Y is the filter of tails of a
Y-valued Moore–Smith sequence w such that the direction of w is antisymmetric.

Proof Instead of (6.3), define

A
def= {(b, n, x) : b ∈ Z, n ∈ N, x ∈ b} ,

endowed with the lexicographic partial order R defined by (b1, n1, x1)R (b2, n2, x2)
if and only if

b1 � b2 or b1 = b2, n1 < n2 or b1 = b2, n1 = n2, x1 = x2.

Observe that R is an antisymmetric direction. Define the Moore–Smith sequence w on

A by w(b, n, x)
def= x for each (b, n, x) ∈ A. Then tY[w] = Z. ��

We now show that the function which associates to each nonempty set A the map
in (6.1) is a natural transformation between the functor in Lemma 3.17 and the one in
Lemma 4.36 (see [21] for background on categorical language).
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Lemma 6.5 For each pair of nonempty sets Y and X and every f : Y → X, the
diagram (6.4) is commutative.

S (Y) S (X)

FFF (Y) FFF (X)

f◦
tY tX

f�

(6.4)

Proof If w ∈ S (Y) and d ∈ tX[ f◦(w)], then there exists x ∈ ASet such that d ⊃
( f◦(w))∗(tailA(x)), and ( f◦(w))∗(tailA(x)) = ( f ◦ w)∗(tailA(x)) = ( f∗ ◦
w∗)(tailA(x)) = f∗(w∗(tailA(x))). It follows that w∗(tailA(x)) ∈ tY[w] and
d ⊃ f∗(w∗(tailA(x))), and this means that d ∈ f�(tY[w]). We have thus proved
that f�(tY[w]) ⊃ tX[ f◦(w)]. In order to prove that f�(TY[w]) ⊂ tX[ f◦(w)], it suffices
to follow these steps backwards. ��

6.2 Set-ValuedMoore–Smith Sequences

We will examine not only Y-valued Moore–Smith sequences (where Y is a given
topological space) but also P•(Y)-valued Moore–Smith sequences, and show that the
latter category ofMoore–Smith sequences enjoys properties that are more streamlined
with respect to the Y-valued Moore–Smith sequences. We now show that the second
class of Moore–Smith sequences includes the first one.

Definition 6.6 The injective function

S (Y) ↪→ S (P•(Y)) (6.5)

maps w : A→ Y to the function A→ P•(Y) (still denoted by w) which maps k ∈ A
to {w(k)} ∈ P•(Y).

Observe that the injective map (6.5) is obtained by composition ofw : A→ Ywith

the natural injection ıY : Y→ P•(Y) given by ıY(x)
def= {x}. Hence we will think of

S (Y) as a subset of S (P•(Y)), i.e., we will identify w : A→ Y with ıY ◦ w.
Lemma 6.7 The assignment Y 	→ S (P•(Y)) is the object function of a functor from
the category of sets to the category of sets. The associated arrow function assigns to
each function f : Y → X the function f◦ : S (P•(Y)) → S (P•(X)) which maps
w ∈ S (P•(Y)) to f∗ ◦ w ∈ S (P•(X)).

Proof The proof follows at once from the fact that the composition of functions is
associative. ��

The function f◦ : S (P•(Y)) → S (P•(X)), restricted to S (Y), recaptures the
function described in Lemma 3.17. For this reason, it is denoted by the same symbol.
Recall that in Sect. 6.1 the map

tY : S (Y)→FFF (Y) (6.6)
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has been defined, which associates to each w ∈ S (Y) the filter tY[w] ∈FFF (Y), called
the filter of tails of w, and recall the natural injection (6.5)

S (Y) ↪→ S (P•(Y)).

In Lemma 6.9 we show that the dotted arrow in the following diagram may be defined
so as to make it commutative:

S (Y) S (P•(Y))

FFF (Y)
tY

TY (6.7)

Definition 6.8 If w is a P•(Y)-valued Moore–Smith sequence, then a tail of w is a
subset of Y of the form

Tail j [w] def= {x ∈ Y : x ∈ w(k) for some k ∈ ASet with jRk} , (6.8)

where A is the direction of w and j ∈ ASet. The collection

TY[w] def= {Q ∈ P•(Y) : Q is a superset of some tail of w} (6.9)

is called the filter on Y generated by the tails of w. This terminology is justified by
the following result.

Lemma 6.9 If w is a P•(Y)-valued Moore–Smith sequence, then the collection TY[w]
defined in (6.9) is a filter on X, and the map w ∈ S (P•(Y)) 	→ TY[w] ∈ FFF (Y)

makes the diagram (6.7) commutative.

Proof The first statement follows from the fact that the collection of tails, defined
in (6.8), forms a filter base. Indeed, given j1, j2 ∈ ASet, there exists j3 ∈ ASet such
that j1R j3 and j2R j3, and then it follows that Tail j3[w] ⊂ Tail j1[w]∩Tail j2 [w].
The second statement follows at once from the identification of w ∈ S (Y) with the
element of S (P•(Y)) described in Definition (6.6). ��

Hence, for every nonempty set Y, we have defined a map

TY : S (P•(Y))→FFF (Y). (6.10)

Consider the following diagram:

S (P•(Y)) S (P•(X))

FFF (Y) FFF (X)

f◦
TY TX

f�

(6.11)
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Lemma 6.10 For each nonempty sets Y and X and every f : Y → X, (6.11) is
commutative.

Proof It suffices to prove that f�(TY[w]) = TX[ f◦(w)] for each w ∈ S (P•(Y)). Let
b ∈ f�(TY[w]). Then there exists Q ∈ P•(Y) such that Q ∈ TY[w] and f∗(Q) ⊂ b.
Hence there exists j ∈ ASet, where A is the direction ofw, such that Tail j [w] ⊂ Q.
We claim that Tail j [ f◦(w)] ⊂ b, and hence b ∈ TX[ f◦(w)]. In order to prove
the claim, observe that if x ∈ Tail j [ f◦(w)] then x ∈ ( f◦(w))(k) = f∗[w(k)] for
some k ∈ ASet with jRk. Hence there exists y ∈ w(k) such that f (y) = x . Thus
y ∈ Tail j [w] (since jRk) and y ∈ Q (since Tail j [w] ⊂ Q), hence x = f (y) ∈ b
(since f∗(Q) ⊂ b).

If b ∈ TX[ f◦(w)] then there exists j ∈ ASet such that Tail j [ f◦(w)] ⊂ b. We
claim that f∗(Tail j [w]) ⊂ b, and hence b ∈ f�(TY[w]). In order to prove the claim,
let y ∈ Tail j [w] and x = f (y). Then y ∈ w(k) for some k ∈ ASet with jRk. Then
x = f (y) ∈ f∗(w(k)) = ( f◦(w))(k) ⊂ Tail j [ f◦(w)] ⊂ b. ��

Observe that Lemma6.10 says that the assignmentY 	→ TY : S (P•(Y))→FFF (Y)

is a natural transformation from the functor A 	→ S (P•(Y)), f 	→ f◦ to the functor
Y 	→FFF (Y), f 	→ f�.

Definition 6.11 If Z ∈ FFF (Y), w ∈ S (P•(Y)), and TY[w] = Z then we say that Z is
represented by w.

We now show that every filter onY is the filter generated by the tails of a generalized
sequence of nonempty subsets of Y.

Definition 6.12 From Example 3.15 we obtain a map

FFF (Y)→ S (P•(Y)) (6.12)

as follows: If Z ∈FFF (Y), then the natural injection

sZ : Z→ P•(Y) (6.13)

defined, for each b ∈ Z, by sZ(b)
def= b, is a P•(Y)-valued Moore–Smith sequence.

The proof of the following result is independent of Lemma 6.3.

Lemma 6.13 If Z ∈FFF (Y) then TY[sZ] = Z, hence the map TY : S (P•(Y))→FFF (Y)

is onto.

Proof If Z ∈ FFF (Y) consider sZ : Z → P•(Y) described in Definition 6.12, where
(Z,⊃) is directed by reverse set inclusion. Then sZ is a P•(Y)-valued Moore–Smith
sequence. Observe that if c ∈ Z then

Tailc[sZ] = c

hence TY[sZ] = Z. ��
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Lemma 6.13 says that a filter Z is represented by the generalized sequence sZ : Z→
P•(Y). The following result follows at once from Lemmas 6.10 and 6.13.

Corollary 6.14 If f : Y→ X is a function and Z ∈FFF (Y) then

f�(Z) = TY[ f◦(sZ)].

7 Proof of Theorem 3.33

Assume that V = {wα}α∈I , where I is a set of indices and wα : Dα → A, where Dα

is a directed set. Consider the filter

Z
def=

∧
α∈I

(wα)�(Fin[Dα]).

Now observe that FV , defined in (3.20), is equal to cA(Z), and apply Theorem 3.2.
��

8 Proof of Theorem 3.37

Let F be a functional convergence class on A. Theorem 3.7 implies that there exists
a filter Z on A such that F = cA(Z). Lemma 6.3 implies that there exists a Moore–
Smith sequence w : D → A, where D is a directed set, such that Z = tY[w]. Recall
that tY[w] = w�(Fin[D]). Let ϕ ∈ homSet(A, R) and y ∈ R. Then (y, ϕ) ∈ F if
and only if limZϕ = y (since F = cA(Z)). Corollary 4.34 implies that limZϕ =
y if and only if NR(y) ⊂ ϕ�(Z). Since Z = tY[w] = w�(Fin[D]), it follows that
NR(y) ⊂ ϕ�(Z) if and only if NR(y) ⊂ ϕ�(w�(Fin[D])). Lemma 4.36 implies that
ϕ�(w�(Fin[D])) = (ϕ ◦ w)�(Fin[D]). Hence (y, ϕ) ∈ F if and only if NR(y) ⊂
(ϕ ◦ w)�(Fin[D]). Theorem 6.2 implies that NR(y) ⊂ (ϕ ◦ w)�(Fin[D]) if and only if
limϕ ◦ w = y. Hence (y, ϕ) ∈ F if and only if limϕ ◦ w = y. ��

9 A Natural Topology on the Collection of Filters

The goal of this section is to show that the collection FFF (A) of all filters on a given
set A is naturally endowed with a topology. This result, among many others, indicates
that filters are intrinsically associated to the notion of convergence.

9.1 Topological Preliminaries

Observe that, if � is a topology on a nonempty set X, then (1.16) defines a function

N� : X→FFF (X) (9.1)
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called the family of (neighborhood) filters associated to �. Observe that the map
� 	→ N� is injective, i.e., � may be recaptured from N�. Indeed, Q ∈ � if and only
if for each x ∈ Q there exists U ∈ N�(x) such that x ∈ U ⊂ Q.

Definition 9.1 A function N : X→ FFF (X) is called a family of filters on X based on
X.

We now list some properties that a map ϕ : P(X)→ P(X) may have.

Definition 9.2 A map ϕ : P(X) → P(X) may have one or more of the following
properties.

(pas) (ϕ preserves the ambient space) ϕ(X) = X.
(pfi) (ϕ preserves finite intersections)ϕ(Q∩R) = ϕ(Q)∩ϕ(R) for all Q, R ∈ P(X).
(c) (ϕ is a contraction) ϕ(Q) ⊂ Q for each Q ∈ P(X).
(idem) (ϕ is idempotent) ϕ(ϕ(Q)) = ϕ(Q) for each Q ∈ P(X).
(mi) (ϕ is monotone increasing) Q ⊂ R �⇒ ϕ(Q) ⊂ ϕ(R) for all Q, R ∈ P(X).
(d) (ϕ is deflating) ϕ(ϕ(Q)) ⊂ ϕ(Q) for each Q ∈ P(X).
(i) (ϕ is inflating) ϕ(Q) ⊂ ϕ(ϕ(Q)) for each Q ∈ P(X).
(pfu) (ϕ preserves finite unions) ϕ(Q ∪ R) = ϕ(Q) ∪ ϕ(R) for all Q, R ∈ P(X).

A map ϕ : P(X)→ P(X) is called regular if it preserves the ambient space and finite
intersections, and is an idempotent contraction. Observe that (pas) and (pfi) say that
ϕ is a homomorphism of the multiplicative semigroup of P(X) as a Boolean algebra
(see Sect. 9.3).

Observe that

(pfi)⇒ (mi); (c) & (pfi)⇒ (d); (c)& (mi)& (i)⇒ (idem). (9.2)

Indeed, Q ⊂ R ⇒ ϕ(Q) = ϕ(Q ∩ R)
(pfi)= ϕ(Q) ∩ ϕ(R) ⊂ ϕ(R), while (ϕ(Q)

(c)⊂
Q)

(mi)⇒ ϕ(ϕ(Q)) ⊂ ϕ(Q).

Lemma 9.3 If � is a topology onX, then the associated topological interior operator

I� : P(X)→ P(X), defined by I�(Q)
def= {x : x ∈ Q, ∃U ∈ �, x ∈ U ⊂ Q} , is a

regular map. The map � 	→ I� is injective since Q ∈ � if and only if I�(Q) = Q.

Proof We omit the proof, which follows immediately from the notion of topology. ��
Proposition 9.4 ([19]) Every regular map I : P(X) → P(X) is the topological
interior operator associated to a (unique) topology.

Proof Define �I
def= {Q ∈ P(X) : Q = I(Q)}. Then �I is a topology on X and

I = I�I . ��
To every map N : X→FFF (X), we associate the map

N̊ : P(X)→ P(X)
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defined by N̊(Q)
def= {x ∈ X : Q ∈ N(x)}. Wemay write N◦ instead of N̊ for typograph-

ical reasons (for example, we do it in the proof of Theorem 9.7). Observe that the map
N 	→ N̊ is injective, i.e., N may be recaptured from N̊. Indeed

N(x) = {
Q ∈ P(X) : x ∈ N̊(Q)

}
.

Observe that

if N̊ = I� for some topology � then N = N� (9.3)

and that, if � is a topology on X, then

I� = (N�)◦. (9.4)

Corollary 9.5 For each map N : X→ P(X) the following conditions are equivalent.

(t) N : X→ P(X) is the family of filters associated to a topology
(r) N̊ : P(X)→ P(X) is a regular map.

Proof t ⇒ r follows from (9.4) and Lemma 9.3; r ⇒ t follows from (9.3) and Propo-
sition 9.4. ��
Lemma 9.6 For each map N : X→FFF (X), N̊ preserves the ambient space and finite
intersections.

Proof The result follows at once from the properties of filters. ��
Theorem 9.7 ([8]) For each map N : X → FFF (X), the following conditions are
equivalent:

(t) N is the family of neighborhood filters associated to some topology on X.
(r) N̊ : P(X)→ P(X) is an inflating contraction.

Proof If N = N� for a topology N, then (9.4) implies that I� = (N�)◦ = N̊, hence
Lemma 9.3 yields the result. If N̊ : P(X) → P(X) is an inflating contraction, then
it is a regular map by (9.2) and Lemma 9.6. Proposition 9.4 then implies that N̊ is
the topological interior operator of some topology, say �. Hence (9.3) implies that
N = N�. ��
We now wish to express Condition (r) in Theorem 9.7 directly in terms of N.

Proposition 9.8 For each map N : X→FFF (X), the following conditions are equiva-
lent:

(t) N is the family of neighborhood filters associated to some topology on X.
(r) N̊ is an inflating contraction
(r′) x ∈ X, Q ∈ N(x)⇒ x ∈ Q and ∃ R ∈ N(x) such that y ∈ R⇒ Q ∈ N(y).
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Observe that the set R is necessarily contained in Q.

Proof In Theorem 9.7 we proved that (t) and (r) are equivalent, hence it suffices to
show that (r) and (r′) are equivalent. Assume that (r) holds. Then N̊ is regular [by

Lemma 9.6 and (9.2)]. Hence if x ∈ X and Q ∈ N(x) then x ∈ N̊(Q)
(c)⊂ Q, hence

x ∈ Q; moreover x ∈ N̊(Q)
(idem)= N̊(N̊(Q))⇒ x ∈ N̊(N̊(Q))⇒ N̊(Q) ∈ N(x) and if

y ∈ N̊(Q) then Q ∈ N(y), hence R
def= N̊(Q) has the property in (r′). Assume that (r′)

holds. Then Q ⊂ X & x ∈ N̊(Q)⇒ Q ∈ N(x)
(r′)⇒ x ∈ Q, hence N̊(Q) ⊂ Q, i.e., N̊

is a contraction. If x ∈ N̊(Q) then Q ∈ N(x) and thus by (r′) there exists R ∈ N(x)
with y ∈ R ⇒ Q ∈ N(y), i.e., y ∈ R ⇒ y ∈ N̊(Q), i.e., R ⊂ N̊(Q), and since
R ∈ N(x) and N(x) is a filter on X it follows that N̊(Q) ∈ N(x), i.e., x ∈ N̊(N̊(Q)).
Hence x ∈ N̊(Q)⇒ x ∈ N̊(N̊(Q)), i.e., N̊ is inflating. ��

Hence in order to describe a topology on FFF (A), it suffices to describe a map
N : FFF (A) → FFF (FFF (A)) such that N̊ : P(FFF (A)) → P(FFF (A)) is an inflating
contraction. We first need some more preliminary work.

9.2 Further Lattice-Theoretic Properties ofFFF (A)

We now go back to a question that was left open in Sect. 4.1, to wit: the existence
in FFF (A), seen as a poset, of the l.u.b. of two given filters Z1,Z2 ∈ FFF (A). Recall
from Sect. 4.1 that the l.u.b. of Z1,Z2 ∈ FFF (A) (called the join of Z1 and Z2), if it
exists, is denoted Z1 ∨ Z2 and has the following two properties: (i) Z1 ⊂ Z1 ∨ Z2 and
Z2 ⊂ Z1 ∨ Z2, and (ii) if W ∈ FFF (A), Z1 ⊂ W and Z2 ⊂ W, then Z1 ∨ Z2 ⊂ W.
We now show that the obstruction to the existence of the join of two filter lies in the
existence of a filter which contains both. The following result follows at once from
Lemma 4.21. However, it is instructive to provide a direct proof.

Lemma 9.9 If b, c ∈ P•(A) and b∩ c = ∅ then there is no filter on A which contains
both Ab and Ac.

Proof If Z ∈ FFF (A), Ab ⊂ Z, and Ac ⊂ Z, then b, c ∈ Z and b ∩ c = ∅, which is
impossible. ��
These lattice-theoretic issues are actually useful in order to gain a better understanding
of the topological implications of the notion of filter, as we will see.

Definition 9.10 If Z,W ∈FFF (A) and Z ∨W exists, we write

Z �� W. (9.5)

We read “Z �� W” as “Z and W intertwine.” If b ∈ P•(A) and Ab �� Z [where Ab is
the principal filter generated by b over A, defined in (4.2)] then we write b �� Z.

Observe that Z �� W if and only if, for each b ∈ Z, b �� W.
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Definition 9.11 If Z,W ∈FFF (A) and Z ∨W does not exist, we write

Z � �W. (9.6)

We read “Z � �W” as “Z and W are eventually disjoint.”

See [11] for the motivation behind this terminology. In order to clarify this termi-
nology and its meaning, observe that (4.2) defines an injective map

εA : P•(A) ↪→FFF (A). (9.7)

HenceFFF (A) contains a copy of P•(A).
If A is a nonempty set and if f : A→ Y is a function, then we have the following

diagram, where εA and εY are given in (9.7), f∗ is given in (2.1), and f� in (4.12)

FFF (A) FFF (Y)

P•(A) P•(Y)

f�
εA

f∗

εY (9.8)

The following result says that the map A 	→ εA is a natural transformation from the
functor

A 	→ P•(A), f 	→ f∗

to the functor

A 	→FFF (A), f 	→ f�.

Lemma 9.12 For each nonempty set A and Y and every f : A → Y, the diagram
(9.8) is commutative.

Proof If c ∈ f�(Ab) where b ∈ P•(A), then there exists d ∈ Ab and f∗(d) ⊂ c. Thus
b ⊂ d, hence f∗(b) ⊂ f∗(d), so f∗(b) ⊂ c, i.e., c ∈ A f∗(b). Hence f�(Ab) ⊂ A f∗(b).
If c ∈ A f∗(b) then f∗(b) ⊂ c. Since b ∈ Ab, it follows that c ∈ f�(Ab). Hence
f�(Ab) = A f∗(b). ��
Consider also the natural injection

ıA : A→ P•(A), (9.9)

given by ıA(x)
def= {x}. Lemma 4.23 says that the composition of (9.9) with (9.7) yields

the injection

A ↪→FFF (A) (9.10)

which maps x ∈ A to the principal ultrafilter generated by x over A.
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Lemma 9.13 The injective map (9.7) is order reversing. That is, if b1,b2 ∈ P•(A)

then

Ab1 ∧Ab2 = Ab1∪b2 . (9.11)

Proof The fact that if b ⊂ c then Ab ⊃ Ac follows at once from transitivity of
inclusion. Observe that b1 ∪ b2 ⊂ c if and only if b1 ⊂ c and b2 ⊂ c, hence (9.11)
follows at once. ��
Lemma 9.14 If b1,b2 ∈ P•(A) then the following conditions are equivalent:

(1) Ab1 �� Ab2 ,

(2) b1 and b2 overlap (as sets).

If any of these conditions hold, then

Ab1 ∨Ab2 = Ab1∩b2 .

Proof It suffices to apply Lemma 4.21 ��
The following result also follows from Lemma 4.21.

Lemma 9.15 If Z1,Z2 ∈FFF (A) then the following conditions are equivalent:

(1) Z1 �� Z2,
(2) b1 ∩ b2 �= ∅ for each b1 ∈ Z1 and each b2 ∈ Z2.

Proof If (1) holds thenZ1∨Z2 is a filterwhich contains bothZ1 andZ2, hence ifb1 ∈ Z1
and b2 ∈ Z2 then both b1 and b2 belong to Z1 ∨ Z2 and therefore their intersection
cannot be empty. If (2) holds, then Z1∪Z2 is a filter subbase, and Lemma 4.21 implies
that there exists a filter Z which contains Z1 ∪ Z2. ��

Lemma 9.15 says that b and Z intertwine if and only if b and c overlap for each
c ∈ Z. This result implies at once the following one.

Corollary 9.16 The filters Z1,Z2 ∈ FFF (A) are eventually disjoint if and only if there
exist sets b1 ∈ Z1 and b2 ∈ Z2 such that b1 ∩ b2 = ∅.

9.3 Boolean Algebras

In this section, we prove some useful results which highlight the connection between
filters (ultrafilters) and the algebraic structure of a Boolean algebra.

Definition 9.17 A Boolean algebra is a ring R with unity where a2 = a for each
a ∈ R. A function f : R1 → R2 between Boolean algebras R1 and R2 is called a
Boolean algebra homomorphism if f (a+b) = f (a)+ f (b) and f (b·c) = f (b)· f (c)
for all b, c ∈ R1.

The collection of Boolean algebra homomorphisms from a Boolean algebra R1 to
a Boolean algebra R2 is denoted by homBA(R1, R2). The collection of nonzero ele-
ments of homBA(R, Z2) [resp. homSet(R, Z2)] is denoted by hom∗BA(R, Z2) [resp.
hom∗Set(R, Z2)].
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Lemma 9.18 EveryBooleanalgebra R is commutative,anda+a = 0 holds identically
for each a ∈ R.

Proof See [15]. ��

9.3.1 Examples of Boolean Algebras

The simplest example of a Boolean algebra is {0, 1} = Z2, endowed with the usual
ring operations of Z2 ≡ Z/2. In order to avoid ambiguities, the sum of a, b ∈ Z2 is
denoted by a+2 b.

A large class of Boolean algebras may be constructed as follows. If S is a set
then homSet(S, Z2) inherits the algebraic structure from Z2 by the familiar pro-
cedure of having the operations performed “pointwise.” See [22] for this general
technique. Indeed, if f , g ∈ homSet(S, Z2), we define f + g and f · g as elements of

homSet(S, Z2) defined by ( f +2 g)(s)
def= f (s)+2 g(s) and ( f ·g)(s) def= f (s) ·g(s),

s ∈ S. Hence homSet(S, Z2) inherits from Z2 a Boolean algebra structure.
Since a natural identification of P(A) with homSet(A, Z2) is established by the

map

Q ∈ P(A) 	→ 1Q ∈ homSet(A, Z2)

it follows that P(A) inherits the Boolean algebra structure from homSet(A, Z2).
Observe that, under this identification, the symmetric difference of two elementsb1,b2
of P(A) corresponds to the sum 1b1 +2 1b2 in homSet(A, Z2), and the intersection
of b1 and b2 corresponds to the product 1b1 · 1b2 .

9.3.2 Filters, Ultrafilters, and Boolean Algebras

Lemma 9.19 IfA is not empty, σ ∈ hom∗Set(P(A), Z2), and Zσ
def= {b ∈ P(A) : σ(b)

= 1} then
(1) Zσ is a filter on A if and only if σ(b ∩ c) = σ(b)σ (c) and σ(∅) = 0 for all

b, c ∈ P(A).
(2) Zσ is an ultrafilter on A if and only if σ ∈ hom∗BA(P(A), Z2).

Proof (1) (⇒) If Zσ is a filter then σ(∅) = 0 (since a filter does not contain the empty
set). Moreover, if b ∩ c /∈ Zσ then at least one of the sets b, c does not belong to Zσ ,
hence σ(b ∩ c) = σ(b)σ (c).

(1) (⇐) If b, c ∈ Zσ then σ(b∩ c) = 1, hence b∩ c ∈ Zσ . The empty set does not
belong to Zσ , since σ(∅) = 0. If b ⊂ c and b ∈ Zσ then σ(b) = σ(b∩c) = σ(b)σ (c),
hence 1 = 1 · σ(c) = σ(c), i.e., c ∈ Zσ .

(2) (⇒) Observe that Lemma 4.28 says that if σ(e) = 1 and d ⊂ e, then 1 =
σ(d) +2 σ(e \ d) (where +2 denotes sum in Z2), hence if σ(b � c) = 1 then
(σ (b \ c), σ (c \b)) is equal to (1, 0) or (0, 1), and by symmetry it suffices to treat the
first case. Hence σ(b) = 1 (since b\c ⊂ b) and σ(c) = 0 (since a filter cannot contain
disjoint sets) and thus σ(b � c) = σ(b) +2 σ(c). If σ(b � c) = 0 and σ(b) = 1
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then (σ (b \ c), σ (b ∩ c)) equals (1, 0) or (0, 1). The first case is impossible, since
σ(b\ c) = 1⇒ σ(b � c) = 1. If instead (σ (b\ c), σ (b∩ c)) = (0, 1), then σ(c) = 1
(since b∩ c ⊂ c), and thus σ(b � c) = σ(b)+2 σ(c). The case where σ(b � c) = 0,
σ(b) = 0, and σ(c) = 1 is treated by symmetry. If σ(b � c) = 0, σ(b) = 0, and
σ(c) = 0 then the conclusion is immediate. Hence σ(b � c) = σ(b) +2 σ(c) holds
for all b, c.

(2) (⇐) We know from (1) that Zσ is a filter. Let b ⊂ A, assume that b /∈ Zσ , and
observe that A = b � �b. The hypotheses imply that 1 = σ(b) +2 σ(�b), hence
σ(�b) = 1, i.e., �b ∈ Zσ . Hence Zσ is an ultrafilter by Lemma 4.26. ��

9.4 The Natural Topology onFFF (A)

We are now ready to apply Theorem 9.7 and define a map

N :FFF (A)→FFF (FFF (A))

which satisfies the compatibility condition described in (r) in Theorem 9.7.

Definition 9.20 If b ∈ P(A) and Q ⊂FFF (A) define

Fb(A)
def= {

Z : Z ∈FFF (A),b ∈ Z
} ⊂FFF (A)

and

TA(Q)
def= {b ∈ P•(A) : Fb(A) ⊂ Q} ⊂ P•(A).

Lemma 9.21 If Z ∈FFF (A) then

Z!
def= {Fb(A) : b ∈ Z}

is a filter base onFFF (A).

Proof If b1,b2 ∈ Z let b3
def= b1 ∩b2. Then b3 ∈ Z. Observe that Fb3(A) = Fb1(A)∩

Fb2(A). ��
Definition 9.22 If Z ∈ FFF (A), let N(Z) be the filter on FFF (A) generated by the filter
base Z!, i.e.,

N(Z)
def= 〈Z!〉FFF (A). (9.12)

Theorem 9.23 The map N defined above satisfies the regularity conditions in Theo-
rem 9.7.

Proof If Z ∈ FFF (A) and Q ∈ N(Z) then ∃b ∈ Z such that Fb(A) ⊂ Q. Observe that

b ∈ Z implies that Z ∈ Fb(A). Hence Z ∈ Q. Now let R
def= Fb(A) and observe that if

Y ∈ R then b ∈ Y, hence Fb(A) ∈ Y!, and from Fb(A) ⊂ Q it follows that Q ∈ N(Y).
Hence (r′) in Proposition 9.8 is satisfied. ��
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Definition 9.24 If A is a nonempty set, then the topology onFFF (A) associated to the
map N defined above is called the natural topology onFFF (A).

Lemma 9.25 If Q ⊂FFF (A) and N :FFF (A)→FFF (FFF (A)) is the map defined in (9.12)
then

N̊(Q) = {
Z ∈FFF (A) : Z ∩ TA(Q) �= ∅} .

Proof Z ∈ N̊(Q) ⇔ Q ∈ N(Z) ⇔ ∃ b ∈ Z with Fb(A) ⊂ Q ⇔ ∃ b ∈ Z with
b ∈ TA(Q). ��
Corollary 9.26 A set Q ⊂FFF (A) is open in the natural topology if and only if

if Z ∈ Q then there exists b ∈ P•(A) such that Z ∈ Fb(A) ⊂ Q.

Proof It suffices to apply Lemmas 9.3 and 9.25. ��
The following examples are meant to illustrate these ideas.

Example 9.27 The only open set in the natural topology inFFF (A) which contains {A}
isFFF (A).

Indeed, if {A} ∈ Fb(A) then b ∈ {A}, hence b = A, thus Fb(A) =FFF (A).

Example 9.28 The set Q
def= {

Z ∈FFF (R) : ∃(α, β) ⊂ (0, 1) such that R(α,β) ⊂ Z
}
is

open inFFF (R) and is not equal toFFF (R).
Indeed, if Z ∈ Q, then there exists (α, β) ⊂ (0, 1) such that R(α,β) ⊂ Z. In

particular, (α, β) ∈ Z. If W ∈ F(α,β)(R) then (α, β) ∈ W hence R(α,β) ⊂ W and
thus W ∈ Q. Thus F(α,β)(R) ⊂ Q and (α, β) ∈ Z ∩ TR(Q), i.e., Z ∈ N̊(Q). We
have proved that Q ⊂ N̊(Q), hence Q is open. Observe that R(2,3) /∈ Q, since a filter
cannot contain disjoint sets, hence Q �=FFF (R).

Example 9.29 For each x ∈ A, the set U
def= {A{x}} is open inFFF (A).

Indeed, if {x} ∈ Z and Z ∈FFF (A), then A{x} ⊂ Z and thus A{x} = Z, since A{x} is
an ultrafilter. Hence F{x}(A) ⊂ U , i.e., {x} ∈ TA(U ). Since {x} ∈ A{x} it follows that
A{x} ∩ TA(U ) �= ∅, i.e., A{x} ∈ N̊(U ).

Example 9.30 The set Q
def= {R{1,2}} is not open inFFF (R).

Indeed, Theorem 4.25 implies that for each b ⊂ R with {1, 2} ⊂ b, there exists an
ultrafilter Z ∈ FFF (R) with Z ⊃ Rb. Hence Z /∈ Q, since Rb is not an ultrafilter, and
this means that Fb(R) �⊂ Q, i.e., R{1,2} ∩ TR(Q) = ∅. Hence R{1,2} /∈ N̊(Q).

9.5 Basic Properties of the Natural Topology onFFF (A)

Lemma 9.31 The assignment A 	→FFF (A) is the object function of a functor from the
category of sets to the category of topological spaces,whereFFF (A) is endowedwith the
natural topology. The associated arrow function assigns to each function f : A→ Y
the continuous function f� :FFF (A)→FFF (Y).
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Proof It suffices to prove that f� :FFF (A)→FFF (Y) is continuous with respect to the
natural topologies ofFFF (A) andFFF (Y), since the other statements have been proved

in Lemma 4.36. Let Z ∈FFF (A), W
def= f�(Z), and let Q ⊂FFF (Y) be a neighborhood

ofW in the natural topology ofFFF (Y). Then there exists b ∈ W such that Fb(Y) ⊂ Q.

SinceW
def= f�(Z), b ∈ W implies that there exists c ∈ Z such that f∗(c) ⊂ b. Observe

that Fc(A) is a neighborhood of Z in the natural topology ofFFF (A). If V ∈ Fc(A) then
c ∈ V, and since f∗(c) ⊂ b, it follows that b ∈ f�(V), i.e., f�(V) ∈ Fb(Y), and thus
f�(V) ∈ Q. Hence we have proved that V ∈ Fc(A)⇒ f�(V) ∈ Q. ��
Proposition 9.32 If (A,�) is a topological space and FFF (A) is endowed with the
natural topology, then the function N� : A→FFF (A) is continuous.

Proof Let x ∈ A and let U ∈ NFFF (A)(N�(x)). Then there exists b ∈ N�(x) such that
Fb(A) ⊂ U . Since b ∈ N�(x), there exists an open set c ∈ � such that x ∈ c ⊂ b.
Let z ∈ c. Since c ∈ � and c ⊂ b, then b ∈ N�(z), hence N�(z) ∈ Fb(A), thus
N�(z) ∈ U . Hence we have proved that if z ∈ c then N�(z) ∈ U , i.e., the function N�

is continuous at x . Since x is arbitrary, the proof of continuity of N� is complete. ��
Observe that if (A,�) is Hausdorff then N� : A→FFF (A) is injective.
The following result will be better appreciated by keeping in mind Lemma 3.21.

Lemma 9.33 If Z,W ∈FFF (A) then the following conditions are equivalent:

(1) Z ⊂ W.

(2) Z ∈ {W}, where {W} is the closure inFFF (A).
(3) limW = Z.

Proof If Z ⊂ W and U is an open set in FFF (A) which contains Z, then there exists
b ∈ P(A) such that Z ∈ Fb(A) ⊂ U . Then b ∈ Z, hence b ∈ W, thus W ∈ Fb(A).
Therefore W ∈ U . These steps are reversible, hence the other implication follows.
Hence (1) is equivalent to (2). Recall from Lemma 3.21 that the meaning of (3) is that
if we denote by w the constant sequence w : N → FFF (A) which is identically equal
to W then limw = Z in the topology ofFFF (A). Hence (2) and (3) are equivalent, by
Lemma 3.23. ��
Lemma 9.34 If A �= ∅, then the following conditions are equivalent.

(1) A contains only one point.
(2) UUU (A) is closed inFFF (A).
(3) FFF (A) is Hausdorff.

Proof If (1) holds thenFFF (A) =UUU (A) = {A}, hence (2) and (3) follow. If A contains
more than one point, then {A} ∈FFF (A) \UUU (A) and by Example 9.27 the only open
set inFFF (A) which contains {A} isFFF (A), which is not contained inFFF (A) \UUU (A).
Hence (2)⇒ (1). Lemma 9.33 implies that (3)⇒ (1). ��
Proposition 9.35 If Ω � A then ı� :FFF (Ω)→FFF (A) is continuous.
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Proof Let Z0 ∈ FFF (Ω) and let W0
def= ı�(Z0) ∈ FFF (A). Let U ∈ NFFF (A)(W0). Then

W0 ∈ Fb(A) ⊂ U for some b ∈ W0. Hence b = d ∪ c for some d ∈ Z0 and some
c ∈ P(A \Ω). We claim that if Z ∈ Fd(Ω) then ı�(Z) ∈ U , and this will prove
continuity at Z0, and since Z0 is arbitrary, it will prove continuity. Let Z ∈ Fd(Ω).
Then Z ∈ FFF (Ω) and d ∈ Z. Since b = d ∪ c and d ∈ Z, it follows that b ∈ ı�(Z)

hence ı�(Z) ∈ Fb(A), and since Fb(A) ⊂ U , it follows that ı�(Z) ∈ U . ��

9.6 Compactness Properties of the Natural Topology

Theorem 9.36 If A �= ∅ then
(1) FFF (A) is compact and, for each d ∈ P•(A), Fd(A) is compact inFFF (A).
(2) UUU (A) is compact and Hausdorff.
(3) FFF (A) has a basis of open compact sets.UUU (A) has a basis of closed and open

compact sets.

Proof (1). SinceFFF (A) = FA(A), it suffices to show that, for each d ∈ P•(A), Fd(A)

is compact. Let d ∈ P•(A), W ∈UUU (FFF (A)) with Fd(A) ∈W , and define

W∗ : P(A)→ Z2 (9.13)

by

W∗(b)
def= 1W (Fb(A)),

where b ∈ P(A). We claim that

W∗(b1 ∩ b2) =W∗(b1)W∗(b2), for all b1,b2 ∈ P(A) (9.14)

and

W∗(∅) = 0. (9.15)

Hence Lemma 9.19 implies that

ZW
def= {

b ∈ P(A) :W∗(b) = 1
}

(9.16)

is a filter on A. Now observe that Fd(A) ∈ W ⇒ W∗(d) = 1 ⇒ d ∈ ZW ⇒
ZW ∈ Fd(A). Moreover,

Fb(A) ∈ NFFF (A)(ZW )⇒ ZW ∈ Fb(A)⇒ b ∈ ZW ⇒W∗(b) = 1

⇒ Fb(A) ∈W,

(9.17)

i.e., NFFF (A)(ZW ) ⊂W . Lemma 4.30 implies that Fd(A) is compact.

123



On the Differentiation of Integrals in Measure Spaces Along Filters Page 61 of 81 29

We now prove the claim. Observe thatW∗(∅) = 1W (F∅(A)) = 1W (∅) = 0, since
a filter cannot contain the empty set. In order to prove (9.14), observe that

Fb1(A) ∩ Fb2(A) = Fb1∩b2(A). (9.18)

Let v = (W∗(b1),W∗(b2)). If v = (1, 1) then (9.14) is immediate, since Fb1∩b2(A) ∈
W by (9.18). Observe that Fb1∩b2(A) ⊂ Fb1(A), hence Fb1∩b2(A) ∈W ⇒ Fb1(A) ∈
W . ThusW∗(b1) = 0 implies that Fb1∩b2(A) /∈W , and then both members of (9.14)
are equal to 0. A similar result follows if W∗(b2) = 0.

(2). LetW ∈UUU (FFF (A))withUUU (A) ∈W .Weclaim thatW∗ ∈ Boole∗(P(A), Z2).
Lemma 9.19 then implies that ZW , defined in (9.16), belongs to UUU (A), and (9.17)
says that NFFF (A)(ZW ) ⊂ W , and the proof is concluded by Lemma 4.30. In order to
prove that

W∗(b1 � b2) =W∗(b1)+2 W∗(b2) (9.19)

let v = (W∗(b1),W∗(b2)). If v = (1, 1) then Fbk (A) ∈ W (for k = 1, 2), hence
Fb1(A)∩Fb2(A) ∈W , thus Fb1∩b2(A) ∈W , by (9.18), and, in particular, b1∩b2 �= ∅.
Since Fb1�b2(A)∩Fb1∩b2(A) = ∅, it follows that Fb1�b2(A) /∈W , hence (9.19) holds.

If v = (0, 1) then Fb1(A) /∈W and Fb2(A) ∈W , and, since W is an ultrafilter on
FFF (A), �(Fb1(A)) ∈W .

Let us assume that Fb2\b1(A) /∈ W . Since W is an ultrafilter onFFF (A), it follows
that �(Fb2\b1(A)) ∈W and thus, sinceUUU (A) ∈W ,

�(Fb1(A)) ∩ Fb2(A) ∩ �(Fb2\b1(A)) ∩ UUU (A) ∈W.

Hence there exists an ultrafilter Y on A such that

b1 /∈ Y, b2 ∈ Y, b2 \ b1 /∈ Y.

Since Y is an ultrafilter on A, Lemma 4.26 implies that

�b1 ∈ Y, b2 ∈ Y, �(b2 \ b1) ∈ Y,

thus ∅ = b2 ∩ �(b2 \ b1) ∈ Y, which is impossible. It follows that Fb2\b1(A) ∈ W ,
and since Fb2\b1(A) ⊂ Fb1�b2(A), it follows that Fb1�b2(A) ∈W . Thus, if v = (0, 1),
both sides of (9.19) are equal to 1. Since the case v = (1, 0) is symmetric, the proof
is concluded if we show that (9.19) holds if v = (0, 0). In this case, Fb1(A) /∈ W
and Fb2(A) /∈ W . Since W is an ultrafilter on FFF (A), it follows that �Fb1(A) ∈ W
and �Fb2(A) ∈ W . Assume that Fb1�b2(A) ∈ W . Since Fb1�b2(A) ⊂ Fb1∪b2(A), it
follows that Fb1∪b2(A) ∈W . SinceUUU (A) ∈W , it follows that

�(Fb1(A)) ∩ �Fb2(A) ∩ (Fb2∪b1(A)) ∩ UUU (A) ∈W.

Hence there exists an ultrafilter Y on A such that

b1 /∈ Y, b2 /∈ Y, b2 ∪ b1 ∈ Y,
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and since Y is an ultrafilter on A, Lemma 4.26 implies that

�b1 ∈ Y, �b2 ∈ Y, (b2 ∪ b1) ∈ Y.

Thus ∅ = �b1 ∩ �b2 ∩ (b1 ∪ b2) ∈ Y, which is impossible. Hence Fb1�b2(A) /∈W ,
and both sides of (9.19) are equal to 0. HenceUUU (A) is compact. In order to show that
it is Hausdorff, let Z1,Z2 ∈UUU (A), with Z1 �= Z2. Then there exists b1 ∈ Z1 \ Z2 and
there exists b2 ∈ W2. We claim that b2 \ b1 ∈ W. Indeed, Lemma 4.28 and b2 ∈ Z2
imply that either b1 ∩ b2 ∈ Z2, or b2 \ b1 ∈ Z2 but the first possibility is impossible
since it implies that b1 ∈ Z2. Hence Z1 ∈ Fb1(A) ∩UUU (A), Z2 ∈ Fb2\b1(A) ∩UUU (A),
Fb1(A) ∩ Fb2\b1(A) ∩UUU (A) = ∅.

(3). The sets Fb(A), for b ∈ P•(A), are open, compact, and are a basis for the
topology ofFFF (A). The sets Fb(A)∩UUU (A) are compact, and sinceUUU (A) is Hausdorff,
are closed. Since they are also open inUUU (A), the proof is complete. ��

9.7 Other Properties of the Natural Topology

We now show that filters have a dual character. On the one hand, a filterW on A may
be seen as a “static” object, i.e., as an element of FFF (A), which is endowed, as we
have seen, with a natural topology. On the other hand, we may look at W in various
other ways which bring to the forelight a certain dynamic character that is encoded
in the intrinsic structure of a filter. Recall from Example 3.15 that ifW is a filter on a
nonempty set A, then (W,⊃) is a directed set, where ⊃ is reverse inclusion between
sets.

The following commutative diagram displays the functions which appear in Propo-
sition 9.37.

FFF (A)

A P•(A) WıA

δA εA

sW

wW (9.20)

Recall from Definition 6.12 that sW (and hence wW) may be seen as generalized
sequences, since W is directed by reverse set inclusion. Also recall that εA has been
defined in (9.7), and ıA in (9.9). The maps δA and wW are defined by composition:
δA = εA ◦ ıA and wW = εA ◦ sW.
Proposition 9.37 If Z,W ∈FFF (A), then the following conditions are equivalent.

(1) limW δA = Z.

(2) limı�(W) εA = Z.

(3) limwW = Z.
(4) limW = Z.
(5) Z ⊂ W.
(6) Z ∈ {W}.
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Proof In Lemmas 9.33 and 3.21, we have shown that (4), (5), and (6) are equivalent
to each other. Observe that Corollary 4.34 says that (1) amounts to asking that

NFFF (A)(Z) ⊂ (δA)�(W) (9.21)

and this means that ∀b ∈ Z ∃d ∈ W such that (δA)∗(d) ⊂ Fb(A). Observe that
(δA)∗(d) ⊂ Fb(A) means that ∀x ∈ d, Ax ∈ Fb(A), i.e., b ∈ Ax , i.e., x ∈ b. Hence
(δA)∗(d) ⊂ Fb(A) means that d ⊂ b. Thus (1) says that ∀b ∈ Z, ∃d ∈ W such that
d ⊂ b, and this condition is equivalent to (5). The diagram on the left side of (9.20)
commutes, i.e., δA = εA ◦ ıA, and thus the functoriality properties established in
Lemma 4.36 imply that

(δA)�(W) = (εA)�((ıA)�(W)).

Hence (1) and (2) are equivalent to each other. Observe that (3) amounts to saying that
∀d ∈ Z ∃b ∈ W such that c ∈ W and c ⊂ b implies that Ac ∈ Fd(A). The condition
Ac ∈ Fd(A) means that d ∈ Ac, i.e., c ⊂ d. Hence (3) says that ∀d ∈ Z ∃b ∈ W such
that c ∈ W and c ⊂ b implies that c ⊂ d, and this means that ∀d ∈ Z ∃b ∈ W such
that b ⊂ d, which is equivalent to (5). ��
Proposition 9.38 If (A,Z) is a filtered set, (Y,�) is a topological space, w : A→ Y
is a function, and y ∈ Y, then the following conditions are equivalent:

• limZ w = y,
• limw�(Z) = N�(y).

Proof The result follows at once from Corollary 4.34 and Lemma 9.33. ��
The meaning of Proposition 9.38 is that the limiting behavior of a function f along

a filter Z is completely determined by the behavior of f�(Z). Lemma 9.33 enables us
to reformulate Theorem 6.2 as follows.

Corollary 9.39 If w ∈ S (Y) is a Y-valued Moore–Smith sequence, � is a topology
on Y, and y ∈ Y, then the following conditions are equivalent:

• limw = y,
• lim tY[w] = N�(y).

In all these results the same underlying idea emerges, to wit: It is useful to interpret
everything in terms of filters and then exploit the natural topology on FFF (Y). For
example, if� is a topology on Y, it is customary to say that y is a point of convergence
for W ∈FFF (Y) if limW = N�(y) in the natural topology of Y. We will study other
useful applications of this idea in the following sections.

10 Applications of the Natural Topology to Cluster Points of Filters

In this section, we apply the natural topology ofFFF (A) to the study of the notion of
cluster point of a filter.
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Lemma 10.1 If Z1,Z2 ∈FFF (A), then the following conditions are equivalent:

(1) Z1 �� Z2,
(2) There exists W ∈FFF (A) such that limW = Z1 and limW = Z2.

Proof The result follows at once from Lemma 9.33. ��
Lemma 10.2 The collection

CA def= {
(Z,W) ∈FFF (A)×FFF (A) : Z �� W}

(10.1)

is closed in the product topology ofFFF (A)×FFF (A).

Proof If (Z,W) /∈ CA, then there exist b ∈ Z and c ∈ W such that b ∩ c = ∅, by
Lemma 9.15. Observe that Z ∈ Fb(A), W ∈ Fc(A), and Fb(A) and Fc(A) are disjoint
open neighborhoods of Z andW. Moreover, if (Z′,W′) ∈ Fb(A)×Fc(A) then Z′ ��W′
hence (Z′,W′) /∈ CA, hence �CA is open inFFF (A)×FFF (A). ��
Definition 10.3 If � is a topology on Y, the filter W ∈ FFF (Y) clusters at x ∈ Y if
W �� N�(x). The cluster set of W on Y is the following subset of Y:

Cluster[W,�] def= {x ∈ Y : W �� N�(x)} . (10.2)

The following result says that the search for points of convergence of a filter should
be restricted to the cluster set of the filter.

Lemma 10.4 If a filter W converges to N�(x) then it clusters at x.

Proof If N�(x) ⊂ W then N�(x) ∨W = W, hence N�(x) ∨W exists. ��
Lemma 10.5 Let W ∈ FFF (Y) and let � be a topology on Y. Then Cluster[W,�] is
closed.

Proof If y /∈ Cluster[W,�] then O ∩ b = ∅ for some O ∈ N�(y) and b ∈ W,
and there exists an open set O ′ ⊂ O such that y ∈ O ′ ⊂ O . Now observe that
O ′ ⊂ Cluster[W,�], hence �(Cluster[W,�]) is open. ��

10.1 Application to Compactness

We are now ready to obtain a more flexible version of Lemma 4.30.

Proposition 10.6 ([8]) If A is endowed with a topology � and K ⊂ A, then the
following conditions are equivalent:

(1) K is compact.
(2) For each ultrafilter on A which is localized in K there exists x ∈ K such that

limW = N�(x).
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(3) For each filter Z on A which is localized in K , K ∩ Cluster[Z,�] �= ∅.

Proof It suffices to prove that (2) and (3) are equivalent, since in Lemma 4.30 we
have proved that (1) and (2) are equivalent. Assume that (2) holds, and let Z ∈FFF (A)

with K ∈ W. Theorem 4.25 implies that there exists W ∈ UUU (A) such that Z ⊂ W.
Hence (2) implies that there exists x ∈ K such that N�(x) ⊂ W. It follows that
N�(x) ∨ Z exists, i.e., x ∈ Cluster[Z,�]. Assume that (3) holds, and letW ∈UUU (A)

with K ∈ W. Then there exists x ∈ K such that N�(x) �� W, i.e., there exists a filter
Z such that N�(x) ⊂ Z and W ⊂ Z. Since W is an ultrafilter, it follows that Z = W,
hence N�(x) ⊂ W. ��

The following result follows at once from Lemma 10.5 and Proposition 10.6.

Corollary 10.7 If (A,�) is a compact topological space and W ∈ FFF (A) then
Cluster[W,�] is a nonempty compact subset of A.
Lemma 10.8 If (A,�) is a Hausdorff topological space, s, y ∈ A, and N�(s) ��
N�(y), then s = y.

Proof If s �= y, there exists U ∈ N�(s) and V ∈ N�(y) such that U ∩ V = ∅. Hence
N�(s) � �N�(y). ��
Theorem 10.9 If (A,�) is a compact Hausdorff topological space, Z ∈ FFF (A), and
y ∈ A, then the following conditions are equivalent:

(1) lim Z = N�(y),
(2) Cluster[Z,�] = {y}.

Proof If (1) holds, then Z ⊃ N�(y), hence y ∈ Cluster[Z,�]. We now show that
Cluster[Z,�] does not contain other points. Indeed, if s ∈ Cluster[Z,�] thenN�(s)∨
Z exists and, since Z ⊃ N�(y), it follows thatN�(s)∨N�(y) exists. Then Lemma 10.8
implies that s = y. Hence (2) holds.

If (1) does not hold, then there exists an open set Q ⊂ A such that y ∈ Q and
Q /∈ Z. Hence Z is weakly localized in �Q, and Proposition 4.40 then implies that
there exists a filter W on A which is localized in �Q and such that Z ⊂ W. Since
Q is open and A compact, it follows that �Q is compact. Hence Proposition 10.6
implies that there exists r ∈ �Q such that r ∈ Cluster[W,�]. Since Z ⊂ W, it follows
that r ∈ Cluster[Z,�]. Since r ∈ �Q and y ∈ Q, it follows that r �= y. Hence
Cluster[Z,�] contains more than one point, i.e., (2) does not hold. ��

11 Filters on the Real Line

The goal of this section is to develop appropriate machinery for the study of conver-
gence properties of filters on R, since, in view of Corollary 4.34, these filters control
the convergence properties of real-valued functions defined on a filtered set.
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11.1 The Structure of the Cluster Set of Filters on the Real Line (I)

Themain application of the notionof cluster set of afilter, introduced inDefinition10.3,
is linked to Lemma 10.4 and Theorem 10.9, which imply that, in order to understand
whether a given filter on a compact topological space converges, it suffices to control
its cluster set. However, real-valued functions or sequences may very well diverge to
+∞ or −∞, and indeed, if Z ∈ FFF (R), then the statement that lim Z = NR(+∞)

means that NR(+∞) ⊂ Z, but then Cluster[Z, R] = ∅. In particular, in this situation,
the setCluster[Z, R] does not fully reflect the convergence properties of Z ∈FFF (R). In
order to obtain uniform results, which are useful in dealing with pointwise estimates,
as we will see, we set as ambient space the extended real line R ≡ [−∞,+∞], a
compact space which allows us to apply Theorem 10.9. Accordingly, we enlarge the
ambient space which hosts the filters used in the notion of cluster set. In other words,
we move fromFFF (R) toFFF (R).

If we specialize Definition 10.3 to R ≡ [−∞,+∞] we obtain, for W ∈FFF (R)

Cluster[W, R] def= {
x ∈ [−∞,+∞]: W �� N

R
(x)

}
. (11.1)

With this definition, if lim Z = NR(+∞) then Cluster[Z, R] = {+∞}, as one would
expect.

Observe the difference between the neighborhood filter of +∞ which appears
in (11.1), to wit:

N
R
(+∞)

def= {Q ⊂ [−∞,+∞]: Q ⊃ (a,+∞] for some a ∈ R} (11.2)

and the filter N+∞(R) defined in (1.17). Indeed, on the one hand,
NR(+∞) ∈FFF (R) \FFF (R) while, on the other hand, N

R
(+∞) ∈FFF (R) \FFF (R). We

will deal with this difference momentarily.
Recall that closed nonempty intervals in [−∞,+∞] have the form [a, b] where

a, b ∈ R and a ≤ b (hence possibly a = b). In particular, {+∞} ≡ [+∞,+∞]
and {−∞} ≡ [−∞,−∞] are closed nonempty intervals in [−∞,+∞]. Similarly,
[0,+∞] is a closed nonempty interval in [−∞,+∞].
Theorem 11.1 If W ∈FFF (R), then Cluster[W, R] is a nonempty compact interval of
[−∞,+∞].
Proof Corollary 10.7 says that Cluster[W, R] is a nonempty compact subset of R.
In order to show that it is an interval, assume that r , s ∈ Cluster[W, R], r < s, and
u ∈ (r , s). We claim that u ∈ Cluster[W, R]. Seeking a contradiction, assume that
u /∈ Cluster[W, R]. Then there exists an open interval (α, β) ⊂ R and an element of
b ∈ W, with r < α < u < β < s and (α, β) ∩ b = ∅. Then either (i) b ⊂ [β,+∞]
or (ii) b ⊂ [−∞, α]. If (i) holds then there exists an open neighborhood of r which is
disjoint from b, hence r /∈ Cluster[W, R]. If (ii) holds then a symmetrical reasoning
shows that s /∈ Cluster[W, R]. ��

Given Z ∈ FFF (R), in order to be able to apply Corollary 10.7, it is necessary to
consider the extension of Z from R to R, described in Sect. 4.6 and denoted by Z′.
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Indeed, since Z′ ∈FFF (R), Theorem 11.1 implies that

Cluster[Z′, R] is a nonempty compact interval of [−∞,+∞].

We now go back to the difference between the neighborhood filter of +∞ which
appears in (11.1) and the filter N+∞(R) defined in (1.17). Since the starting datum is
a real filter, i.e., an element Z ∈ FFF (R), it would be desirable to express the cluster
set of the extension of Z directly in terms of Z. This task is achieved by the following
definition, where we introduce the “extended real cluster set.”

Definition 11.2 If Z ∈ FFF (R), the extended cluster set of Z in [−∞,+∞] is the
following subset of [−∞,+∞]

clusterset(Z, R)
def= {r ∈ [−∞,+∞]: Z �� NR(r)} . (11.3)

Observe that all filters which appear in (11.3) are filters on R. However, (11.3) has
a slightly spurious appearance, since Z is a filter on R, but the resulting cluster set lies
inside R. Indeed, the advantage of Definition (11.2) is that the cluster set is expressed
directly in terms of the original filter Z ∈FFF (R) and, moreover, the simpler filter (1.17)
(a filter on R) is used instead of (11.2) (a filter on R). This technical convenience has
no serious side effects, as shown in the following result.

Lemma 11.3 If Z ∈FFF (R) then

Cluster[Z′, R] = clusterset(Z, R). (11.4)

Proof (Proof ofCluster[Z′, R] ⊂ clusterset(Z, R)). Assume that x ∈ Cluster[Z′, R]
and x ∈ R. Then Z′ �� N

R
(x) and, for each ε > 0 and each b′ ∈ Z′, the intersection

(x−ε, x+ε)∩b′ is not empty. Ifb ∈ Z thenb ∈ Z′ (by Lemma 4.38) and it follows that
(x−ε, x+ε)∩b �= ∅. Thus x ∈ clusterset(Z, R). Assume that+∞ ∈ Cluster[Z′, R].
Then Z′ �� N

R
(+∞). Let b ∈ Z. Since Z ∈FFF (R), it follows that b ⊂ R. Moreover,

b ∈ Z′ (by Lemma 4.38). Let a ∈ R. Then b ∩ (a,+∞] �= ∅ (since Z′ �� N
R
(+∞)).

Since b ⊂ R, it follows that b ∩ (a,+∞) �= ∅. Since b ∈ Z and a ∈ R are arbitrary,
it follows that Z �� NR(+∞). Hence +∞ ∈ clusterset(Z, R). The proof that if
−∞ ∈ Cluster[Z′, R] then−∞ ∈ clusterset(Z, R) follows by symmetry. Hence we
have proved that Cluster[Z′, R] ⊂ clusterset(Z, R).

(Proof of Cluster[Z′, R] ⊃ clusterset(Z, R)). Assume that x ∈ clusterset(Z, R)

and x ∈ R. Hence Z �� NR(x). This means that for each ε > 0 and each b ∈ Z,
b ∩ (x − ε, x + ε) �= ∅. Now let b′ ∈ Z and U ∈ N

R
(x). Then there exists ε > 0,

b ∈ Z and I ⊂ {+∞,−∞} such that U ⊃ (x − ε, x + ε) and b′ = I ∪ b. Then
b ∩ (x − ε, x + ε) �= ∅ implies that b′ ∩ U �= ∅. Since b′ ∈ Z and U ∈ N

R
(x)

are arbitrary, it follows that Z′ �� N
R
(x), hence x ∈ Cluster[Z′, R]. Assume that

+∞ ∈ clusterset(Z, R). Then Z �� NR(+∞). This means that, if b ∈ Z and a ∈ R,
then b ∩ (a,+∞) �= ∅. Now let b′ ∈ Z′ and U ∈ N

R
(+∞). Then there exists b ∈ Z

and I ⊂ {+∞,−∞} such that b′ = I ∪ b. Moreover, there exists a ∈ R such that
U ⊃ (a,+∞]. Since b ∩ (a,+∞) �= ∅, it follows that b′ ∩ U �= ∅. Hence Z′ ��
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N
R
(+∞), and thus +∞ ∈ Cluster[Z′, R]. The proof that if −∞ ∈ clusterset(Z, R)

then −∞ ∈ Cluster[Z′, R] follows by symmetry. ��

11.2 Cluster Set and Limiting Points

In order to a apply the previous results to Z ∈FFF (R), the following idea is useful.

Lemma 11.4 If Z ∈ FFF (R) and y ∈ [−∞,+∞], and Z′ is the extension of Z from R

to R, then the following conditions are equivalent:

(1) lim Z′ = N
R
(y),

(2) lim Z = NR(y).

Proof (1)⇒ (2) If y ∈ R, let ε > 0 and let I
def= (y − ε, y + ε). Then I ∈ N

R
(y),

hence I ∈ Z′. Since Z′ = ı�(Z), where ı : R→ R is the natural injection, Lemma 4.38
implies that I ∈ Z. If y = {+∞}, then let U ∈ NR(+∞). Then there exists a ∈ R

such that (a,+∞) ⊂ U . Observe that (a,+∞] ∈ N
R
(+∞), hence (a,+∞] ∈ Z′.

Since (a,+∞] = (a,+∞) ∪ {+∞}, Lemma 4.38 implies that (a,+∞) ∈ Z, hence
U ∈ Z. The case y = −∞ is similar.

(2)⇒ (1) If y ∈ R, letU ∈ N
R
(y). Then there exists ε > 0 such that (y−ε, y+ε) ⊂

U . Hence (y − ε, y + ε) ∈ Z, and then (4.15) implies that (y − ε, y + ε) ∈ Z′, hence
U ∈ Z′. If y = {+∞}, let U ∈ N

R
(+∞). Then there exists a ∈ R such that

(a,+∞] ⊂ U . Then (a,+∞) ∈ NR(+∞), and it follows that (a,+∞) ∈ Z, hence
(a,+∞] ∈ Z′, thus U ∈ Z′. The case y = −∞ is similar. ��
Theorem 11.5 If Z ∈ FFF (R) and y ∈ [−∞,+∞] then the following conditions are
equivalent:

(1) lim Z = NR(y),
(2) clusterset(Z, R) = {y}.

Proof The result follows at once from Lemma 11.3, Theorem 10.9, and Lemma 11.4.
��

11.3 The FiltersNR(±∞) from theViewpoint of the Natural Topology onFFF (R)

The following result looks at these matters from the viewpoint of the natural topology
ofFFF (R).

Lemma 11.6 Consider the FFF (R)-valued Moore–Smith sequence w : R → FFF (R)

defined by

w(r)
def= NR(r)

for each r ∈ R. Then

lim≤ w = lim
r→+∞NR(r) = NR(+∞) and lim≥ w = lim

r→−∞NR(r) = NR(−∞).
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Proof Let U be a neighborhood of NR(+∞) inFFF (R). We may assume, without loss
of generality, than U = Fb(R) for b ∈ NR(+∞), and that b = (x,+∞), where
x ∈ R. We claim that

x < r ⇒ w(r) ∈ U .

Indeed, if x < r then b ∈ NR(r), hence NR(r) ∈ Fb(R), i.e., w(r) ∈ U . The proof of
the second statement is symmetrical. ��
Corollary 11.7 NR(+∞) and NR(−∞) belong to the closure of {NR(r) : r ∈ R} in the
natural topology ofFFF (R).

Proof It suffices to apply Lemma 3.23. ��

11.4 The Structure of the Cluster Set of Filters on the Real Line (II)

We now look at the cluster set of Z ∈FFF (R) from a more concrete viewpoint, which
is useful in dealing with pointwise estimates, and introduce the notion of lim sup and
lim inf of a filter onR. These notions are related, as we will see, to the familiar notions
of lim inf and lim sup of a real-valued sequence or function, but formally different,
hence it is convenient to use a different notation. Recall from Sect. 9.2 that if Z,W
are filters on A then Z �� W means that Z ∨ W exists in FFF (A), and Z � �W means
that Z ∨W does not exist inFFF (A). If b ⊂ A, then b �� W [resp. b � �W] means that
Ab �� W [resp. Ab � �W].

Definition 11.8 If Z ∈FFF (R) then we define

Z+ def= {r ∈ R : (r ,+∞) �� Z} ,
Z− def= {l ∈ R : (−∞, l) �� Z} ,

limsup Z
def= sup Z+,

liminf Z def= inf Z−,

with the understanding that sup∅ = −∞ and inf ∅ = +∞.

Example 11.9 It is useful to keep in mind the following examples.

(1) Z+ = (−∞, 0) if Z is the filter generated by the filter base in Example 4.13.
(2) Z+ = (−∞, 0] if Z = NR(0).
(3) Z+ = R and Z− = ∅ if Z = NR(+∞).
(4) Z+ = ∅ and Z− = R if Z = NR(−∞).
(5) Z+ = Z− = R if Z is the filter generated by the filter base in Example 4.14.

In particular, we observe that limsupNR(+∞) = liminf NR(+∞) = +∞. In a
similar way, one shows that limsupNR(−∞) = liminf NR(−∞) = −∞.

Definition 11.10 We say that a subset I of R is a left-interval in R if it has one of the
following forms: (i) I = (−∞, a) for some a ∈ R; (ii) I = (−∞, a] for some a ∈ R;
(iii) I = R; (iv) I = ∅. The notion of right-interval is defined by symmetry.
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Lemma 11.11 If Z ∈FFF (R) then Z+ is a left-interval in R, and Z− is a right-interval
in R.

Proof The conclusion for Z+ follows at once from the fact that if r ∈ R, (r ,+∞) �� Z,
and r ′ < r , then (r ′,+∞) �� Z. The reasoning for Z− is symmetric. ��
Lemma 11.12 If Z,W ∈FFF (A) and x ∈ R then

(1) If Z ⊂ W then Z+ ⊃ W+ and Z− ⊃ W−.
(2) Z+ = ∅ if and only if NR(−∞) ⊂ Z, and Z− = ∅ if and only if NR(+∞) ⊂ Z.
(3) x /∈ Z− if and only if [x,+∞) ∈ Z, and x /∈ Z+ if and only if (−∞, x] ∈ Z.
(4) If Z ⊂ W then liminf Z ≤ liminfW and limsupW ≤ limsup Z.

Proof By symmetry, it suffices to prove the first statement in each part. (1) If Z ⊂ W
and r ∈ W+ then (r ,+∞)∩ b �= ∅ for each b ∈ W, hence the same conclusion holds
for each b ∈ Z. (2) It suffices to observe that (i) the statement Z+ = ∅ means that ∀
x ∈ R ∃b ∈ Z such that b ∩ (x,+∞) = ∅, i.e., b ⊂ (−∞, x], hence (−∞, x] ∈ Z;
(ii) the statement that ∀ x ∈ R (−∞, x] ∈ Z is equivalent to NR(−∞) ⊂ Z. (3) The
statement x /∈ Z− means that ∃ b ∈ Z such that (−∞, x)∩ b = ∅, i.e., b ⊂ [x,+∞),
hence [x,+∞) ∈ Z, and conversely. (4) Follows at once from (1). ��
Corollary 11.13 If Z ∈FFF (A) and Z+ = ∅ then Z− = R, and if Z− = ∅ then Z+ = R

Proof It suffices to prove the first statement. If Z+ = ∅ and x ∈ R \ Z− then (2)
and (3) in Lemma 11.12 imply that NR(−∞) ⊂ Z and [x,+∞) ∈ Z, hence ∅ =
(−∞, x − 1) ∩ [x,+∞) ∈ Z, a contradiction. ��
Lemma 11.14 If α, β ∈ R, α < β, Z ∈FFF (A) and c ∈ Z, then

(1) If c ⊂ [β,+∞) then (α, β) ∩ Z− = ∅.
(2) If c ⊂ (−∞, α] then (α, β) ∩ Z+ = ∅.

Proof (1) If y ∈ (α, β) and (−∞, y) �� Z then, in particular, (−∞, y) ∩ b �= ∅, but
this is impossible, since c ⊂ [β,+∞). The proof of (2) is similar. ��
Lemma 11.15 If Z ∈FFF (A), x ∈ R, and ε > 0, then

if (x − ε, x + ε) ∩ Z− = ∅ or (x − ε, x + ε) ∩ Z+ = ∅ then x /∈ clusterset(Z, R)

(11.5)

Proof If (x − ε, x + ε) ∩ Z− = ∅ then, in particular, x + ε
2 /∈ Z−. Lemma 11.12

implies that
[
x + ε

2 ,+∞
) ∈ Z. Since

(
x − ε

4 , x + ε
4

)∩ [
x + ε

2 ,+∞
) = ∅, it follows

thatNR(x)��Z, i.e., x /∈ clusterset(Z, R). If (x−ε, x+ε)∩Z+ = ∅ then, in particular,
x − ε

2 /∈ Z+. Lemma 11.12 implies that
(−∞, x − ε

2

] ∈ Z. Since
(
x − ε

4 , x + ε
4

) ∩(−∞, x − ε
2

] = ∅, it follows that NR(x) � �Z, i.e., x /∈ clusterset(Z, R). ��
Lemma 11.16 If Z ∈FFF (R) then

clusterset(Z, R) = [
liminf Z, limsup Z

]
(11.6)

with the understanding that [+∞,+∞] = {+∞} and [−∞,−∞] = {−∞}.
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Proof Theorem 11.1 and Lemma 11.3 imply that it suffices to prove that

limsup Z = max clusterset(Z, R) and liminf Z = min clusterset(Z, R).

By symmetry, it suffices to prove the first statement, which amounts to show that

(i) limsup Z ∈ clusterset(Z, R)and (ii) if limsup Z < x then x /∈ clusterset(Z, R).

In order to prove (i), we separately examine the following three cases:

(i.a) −∞ < limsup Z < +∞; (i.b) limsup Z = −∞; (i.c) limsup Z = +∞.

If (i.a) holds, then either Z+ = (−∞, a) or Z+ = (−∞, a], where a = limsup Z ∈ R,
but in either case, for each ε > 0,

(−∞, a + ε] ∈ Z and (a − ε,+∞) �� Z. (11.7)

The first statement in (11.7) follows from Lemma 11.12, since a+ ε /∈ Z+, the second
one from the fact that a − ε ∈ Z+. If NR(a) � �Z then there exists r > 0 and b ∈ Z
such that (a − r , a + r) ∩ b = ∅, and this means that

either b ⊂ [a + r ,+∞) or b ⊂ (−∞, a − r ] (11.8)

but (11.8) is incompatible with (11.7) with ε
def= r

2 . Hence NR(a) �� Z, i.e., a ∈
clusterset(Z, R), and (i) holds. If (i.b) holds, then Z+ = ∅, hence NR(−∞) ⊂ Z (by
Lemma 11.12), thus NR(−∞) �� Z, and this means that −∞ ∈ clusterset(Z, R). If
(i.c) holds, then Z+ = R, i.e., for each r ∈ R, (r ,+∞) �� Z, hence NR(+∞) �� Z,
thus +∞ ∈ clusterset(Z, R). The proof of (i) is complete.

In order to prove (ii), it suffices to examine the following two cases:

(ii.a) −∞ < limsup Z < +∞; (ii.b) limsup Z = −∞.

If (ii.a) holds and limsup Z < x , then there exists ε > 0 such that (x−ε, x+ε)∩Z+ =
∅, and Lemma 11.15 implies that x /∈ clusterset(Z, R). Hence (ii) holds in this case.
If (ii.a) holds then Z+ = ∅, and Lemma 11.12 implies that Z ⊃ NR(−∞), i.e.,
lim Z = NR(−∞). Then Theorem 11.5 implies that

clusterset(Z, R) = {−∞}

hence (ii) holds in this case as well, and the proof is complete. ��
Corollary 11.17 If Z ∈FFF (R) then

liminf Z ≤ limsup Z. (11.9)

Theorem 11.18 If Z ∈FFF (R) and y ∈ R then the following conditions are equivalent:
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(1) liminf Z = limsup Z = y,
(2) clusterset(Z, R) = {y},
(3) lim Z = NR(y).

Proof The result follows at once from Theorem 11.5 and Lemma 11.16. ��
We now present a different description of the limsup Z and liminf Z.

Lemma 11.19 If Z ∈FFF (R) then

(1) limsup
R

Z = inf {sup {x : x ∈ b} : b ∈ Z}
(2) liminf RZ = sup {inf {x : x ∈ b} : b ∈ Z}

Proof It suffices to prove the first statement, by symmetry. If limsup Z = +∞ then
Z+ = R. Let

α
def= inf {sup {x : x ∈ b} : b ∈ Z} . (11.10)

If α < +∞ then there exists b ∈ Z with sup {x : x ∈ b} < +∞. Let β
def=

sup {x : x ∈ b}. Then b ⊂ (−∞, β], hence β + 1 /∈ Z+, a contradiction. Hence
α = +∞ and (1) holds. Assume that limsup Z = −∞. We claim that either α = +∞
or α ∈ R lead to a contradiction, and hence α = −∞. Indeed, if α = +∞ then
sup {x : x ∈ b} = +∞ for each b ∈ Z, hence (r ,+∞) �� Z for each r ∈ R, thus
Z+ = R and hence limsup Z = +∞, a contradiction. On the other hand, if α ∈ R

then α − 1 < sup {x : x ∈ b} for each b ∈ Z, hence α − 1 ∈ Z+, i.e., Z+ �= ∅ and
hence limsup Z > −∞, a contradiction. Assume that −∞ < limsup Z < +∞ and

let β
def= limsup Z. If α = +∞ then sup {x : x ∈ b} = +∞ for each b ∈ Z, hence

(r ,+∞) �� Z for each r ∈ R, thus Z+ = R and hence limsup Z = +∞, a contradic-
tion. If α = −∞ then there exists b0 ∈ Z such that sup {x : x ∈ b} < β − 1, hence
b0 ⊂ (−∞, β − 1), thus b0 ∩ (β − 1, β + 1) = ∅, thus β /∈ clusterset(Z, R), a
contradiction, by Lemma 11.16. It follows that α ∈ R. We claim that α = β. Assume
that r ∈ clusterset(Z, R), and ε > 0. Then NR(r) �� Z, thus (r − ε, r + ε) ∩ b �= ∅
for each b ∈ Z. Hence r − ε < sup {x : x ∈ b} for each b ∈ Z, thus r − ε ≤ α,
and since ε > 0 is arbitrary, it follows that r ≤ α. Since this inequality holds for
each r ∈ clusterset(Z, R), Lemma 11.16 implies that limsup Z ≤ α. In order to
show that equality holds, it suffices to show that α ∈ clusterset(Z, R). Suppose not.
Then there exists ε0 > 0 and b0 ∈ Z with (α − 2ε0, α + 2ε0) ∩ b0 = ∅. Hence
either (i) b0 ⊂ (−∞, α − 2ε0] or (ii) b0 ⊂ [α + 2ε0,+∞), but (i) would imply that
sup {x : x ∈ b0} < α−2ε0, which is impossible by (11.10). Hence (ii) holds. However,
(11.10) implies that there exists b ∈ Z such that sup {x : x ∈ b} < α + ε0, and this
implies that b ∩ b0 = ∅, which is also impossible. Hence α ∈ clusterset(Z, R). ��

Recall that if (A,Z) is a filtered set and w : A → R is a function then w�(Z) ∈
FFF (R). The following result will be useful in applications.

Theorem 11.20 If (A,Z) is a filtered set, w : A → R is a function, and y ∈
[−∞,+∞], then the following conditions are equivalent:
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(1) lim
Z
w = y,

(2) limw�(Z) = NR(y),
(3) liminfw�(Z) = limsupw�(Z) = y,
(4) clusterset(w�(Z), R) = {y}.

Proof The equivalence between (1) and (2) is contained in Proposition 9.38. The
equivalence between (2), (3), and (4) follows from Theorem 11.18 ��

12 Applications of the Natural Topology toMoore–Smith Sequences
of Sets

In this section, we present further results pertaining to Moore–Smith sequences of
nonempty subsets of a topological space, which may be obtained as an application of
the results on filter presented so far.

12.1 Cofinal Subsets in a Directed Set

The notion of cluster point of a Moore–Smith sequence is based on the notion of
cofinal subsets of a directed set. Recall that Fin[A] is the collection of all final sets in
the directed set A and that it is a filter on ASet, by Lemma 3.25.

Definition 12.1 If A is a directed set then a subset of A is called cofinal in A if it
overlaps with each tail of A. The collection of all cofinal sets in A is denoted by
cof(A).

Observe that

Fin[A] ⊂ cof(A)

since in a directed set each tail overlaps with every other tail, and indeed (recall
Definition 1.7)

cof(A) = wloc(Fin[A]) (12.1)

since the statement that a given set overlaps with each tail of A is equivalent to the
statement that no tail of A is contained in the complement of the given set, i.e., the
complement of the set is not a final set in A. In other words, if Q ⊂ A then Q ∈ cof(A)

⇔ �Q /∈ Fin[A].
Lemma 12.2 If A is a directed set and Q ⊂ A then Q and �Q cannot both fail to be
cofinal.

Proof The result follows from (12.1). Indeed, if Q and �Q both fail to be cofinal, then
Q and �Q both belong to Fin[A], and this is impossible since Fin[A] is a filter. ��
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12.2 The Cluster Set of a Moore–Smith Sequence of Points

Definition 12.3 If w ∈ S (Y) and � is topology on Y, we say that w clusters at x
if for each U ∈ N�(x) the set {k ∈ A : w(k) ∈ U } is cofinal in A, where A is the
direction of w, and define

ClusterSet(w,�)
def= {x ∈ Y : w clusters at x} . (12.2)

Lemma 12.4 If w ∈ S (Y) and � is topology on Y, then ClusterSet(w,�) is
closed.

Proof Assume that x /∈ ClusterSet(w,�). Then there existsU ∈ N�(x) such that
the set w∗(U ) is not cofinal. Let O ∈ � such that O ⊂ U and x ∈ O . If x ∈ O then
O ∈ N�(x) and w∗(O) is not cofinal. ��

Observe that if limw = y then y ∈ ClusterSet(w,�), hence the limiting
values of a Moore–Smith sequence w belong to the cluster set of w.

12.3 The Cluster Set of Set-ValuedMoore–Smith Sequences

Definition 12.5 If w ∈ S (P•(Y)), then the shadow projected by U ⊂ Y along w is
the set

w•[U ] def= { j ∈ ASet : s( j) ∩U �= ∅}

where A is the direction of w.
Definition 12.6 If w ∈ S (P•(Y)), then the inner shadow projected by U ⊂ Y along
w is the set

w•[U ] def= { j ∈ A : w( j) ⊂ U } ,

where A is the direction of w.
Observe that w•[U ] ⊂ w•[U ] and, if w ∈ S (Y), then w•[U ] = w•[U ] = w∗(U ).

Definition 12.7 If w is a P•(Y)-valued Moore–Smith sequence and � is a topology
on Y, we say that w clusters at y ∈ Y if, for each U ∈ N�(y) the shadow w•[U ] is
cofinal in A, where A is the direction of w.
If w ∈ S (Y) then this notion recaptures the one introduced in Definition 12.3, and
ClusterSet(w,�) is defined just as in (12.2).

Definition 12.8 If w is a P•(Y)-valued Moore–Smith sequence and � is a topology
on Y, we say that w converges to y ∈ Y and write

limw = y
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if for each U ∈ N�(y) the inner shadow w•[U ] is final in A, where A is the direction
of w. If w ∈ S (Y) then this notion recaptures Definition 3.18.

Recall that if w ∈ S (P•(Y)) then TY[w] ∈ FFF (Y) is the filter of tails of w,
introduced in Sect. 6.2. The following result extendsCorollary 9.39 tow ∈ S (P•(Y)).

Lemma 12.9 Ifw ∈ S (P•(Y)) and� is a topology onY then the following conditions
are equivalent:

(1) limw = y,
(2) lim TY[w] = N�(y).

Proof Let A be the direction of w. If (1) holds then for each U ∈ N�(y) there exists
j ∈ A such that if k ∈ A and jRAk then k ∈ w•[U ], i.e.,w(k) ⊂ U , and thismeans that
Tail j [w] ⊂ U , i.e.,U ∈ TY[w], hence (2) holds. Since all these steps are reversible,
the converse implication holds as well. ��
Proposition 12.10 If w ∈ S (P•(Y)) and � is a topology on Y then

ClusterSet(w,�) = Cluster[TY[w],�]. (12.3)

Proof Let y ∈ Y and let A be the direction of w. Observe that the condition that
y ∈ ClusterSet(w,�) means that for each U ∈ N�(y) and for each j ∈ A there

exists k ∈ A such that jRk and w(k)∩U �= ∅, i.e., such that
(⋃

jRk w(k)
)
∩U �= ∅,

and since
(⋃

jRk w(k)
)
= Tail j [w], this means that for each U ∈ N�(y) and for

each j ∈ A the intersection between Tail j [w] and U is not empty, and this is
equivalent to the condition that y ∈ Cluster[TY[w],�]. ��

12.4 Applications to the Notion of Moore–Smith Subsequence

There is a close analogy with the situation where limW = Z and the one where a
sequence w = {wn}n∈N is a subsequence of a sequence z = {zn}n∈N. The following
definition makes this analogy more precise.

Definition 12.11 If w and t are P•(Y)-valued Moore–Smith sequences, we say that w
and t are equivalent if TY[w] = TY[t]. We say that t is aMoore–Smith subsequence of
w if lim TY[t] = TY[w].

If t andw are Y-valued sequences and t is a subsequence ofw (in the ordinary sense)
then t is a Moore–Smith subsequence of w.
Lemma 12.12 Ifw ∈ S (P•(Y)),� is a topologyonY,and y ∈ ClusterSet(w,�),

then then the set

A�
y (w)

def= {( j,U ) ∈ A × N�(y) : w( j) ∩U �= ∅} ⊂ A × N�(y),
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(where A is the direction of w) is a directed set under the relation ( j,U )R(k, V ) iff
jRk and U ⊃ V .

Proof Reflexivity and transitivity are immediate. Assume that ( j,U ) and (k, V ) are
elements of A�

y (w). Since A is directed, there exists l ∈ A with jRl and kRl. Since
y ∈ ClusterSet(w,�) and U ∩ V ∈ N�(y), there exists g ∈ A with lRg and
w(g)∩U∩V �= ∅. Hence (g,U∩V ) ∈ A�

y (w), ( j,U )R(g,U∩V ) and (k, V )R(g,U∩
V ). ��

In the following result, we extend to the context of Moore–Smith sequences of sets
a familiar fact about sequences of points.

Theorem 12.13 If w ∈ S (P•(Y)), y ∈ Y, and � is a topology on Y, then the
following conditions are equivalent:

(1) y ∈ ClusterSet(w,�),

(2) y ∈ Cluster[TY[w],�],
(3) there exists a P•(Y)-valued Moore–Smith sequence t such that:

(3.1) t is a Moore–Smith subsequence of w,
(3.2) lim t = y.

Proof Let A be the direction of w. Since in Proposition 12.10 we proved that (1) and
(2) are equivalent, it suffices to show that (3)⇒ (2) and (1)⇒ (3) If (3) holds then
TY[t] ⊃ TY[w] and, by Lemma 12.9, TY[t] ⊃ N�(y), thus TY[w]∨N�(y) exists, hence
(2) holds. Finally, we show that (1) implies (3). If (1) holds, apply Lemma 12.12 and
obtain the directed set A�

y (w) described therein. Now define a P•(Y)-valued Moore–
Smith sequence whose direction is A�

y (w) as follows:

t : A�
y (w)→ P•(Y), t( j,U )

def= w( j) ∩U .

We claim that t is a Moore–Smith subsequence of w and that lim t = y.
In order to show that t is a Moore–Smith subsequence of w, i.e., TY[w] ⊂ TY[t], it

suffices to show that if j ∈ A then Tail j [w] ∈ TY[t]. Let U ∈ N�(y). Then there
exists k ∈ A with jRk and s(k) ∩U �= ∅. We claim that

Tail(k,U )[t] ⊂ Tail j [w].

Indeed, if r ∈ Tail(k,U )[t] then there exists (g, V ) ∈ A�
y (w) with (k,U )R(g, V )

and r ∈ t(g, V ), i.e., r ∈ w(g) ∩ V . Since jRk and kRg we have jRg. Moreover,
r ∈ w(g, V ) ⊂ w(g). We have thus proved that Tail(k,U )[t] ⊂ Tail j [w] and this
means that Tail j [w] ∈ TY[t], i.e., TY[w] ⊂ TY[t].

We now show that y = lim t. Let U ∈ N�(y). Since y ∈ ClusterSet(w,�),
there exists jU ∈ A with w( j)∩U �= ∅. Now observe that if ( j, V ) ∈ Tail( jU ,U )[t]
then t( j, V ) = w( j) ∩ V (by definition), w( j) ∩ V �= ∅ (since ( j, V ) ∈ A�

y (w)), and
V ⊂ U (since ( jU ,U )R( j, V )). Hence t( j, V ) ⊂ U . ��
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13 Applications to the Problem of the Differentiation of Integrals (II)

Some confusion may arise from the fact that filters onA(X) takes us one level higher
in the hierarchy of powersets, in the following sense: if Z ∈ FFF (X) and b ∈ Z then
b ⊂ X, hence Z is a collection of subsets of X; however, if Z ∈FFF (A(X)) and b ∈ Z
then b ⊂ P•(X) (since b ⊂ A(X)), hence b is a collection of subsets of X, and Z is a
family of collections of subsets of X (cf. Sect. 2). In particular, one should not confuse
a map as in (1.28) (which is, in particular, a map of the form X→ P(P(A(X)))) with
a “family of approach regions,” which is a mapX→ P(A(X)). For more background,
see [11].

Observe that the expression limG(x) fω which appears in (1.29) is the limiting
value of fω along the filter G(x), introduced in Definition 1.12. We have seen that this
limiting value depends on the behavior of the filter ( fω)�(G(x)) ∈FFF (R). In order to
reduce notational clutter, we will denote the filter ( fω)�(G(x)) by Gω

f (x), hence we
define

Gω
f : X→FFF (R)

as follows:

Gω
f (x)

def= ( fω)�(G(x))

Lemma 13.1 If G is a family of filters on A(X) based on X, x ∈ X, and f ∈ L1(X),

then the following conditions are equivalent:

(1) G differentiates f at x,
(2) the following inequalities hold:

f (x) ≤ liminf
R

Gω
f (x) ≤ limsup RGω

f (x) ≤ f (x). (13.1)

Proof It suffices to apply Proposition 9.38 and Theorem 11.18. ��

Remark 13.2 Observe that, if G is a family of filters onA(X) based on X, as in (1.28),
and f ∈ L1(X), then it is not necessarily true that the functions

liminf
R

Gω
f (x) and limsup

R

Gω
f (x)

are measurable as functions of x ∈ X, unless we impose some conditions on G. This
problem will be handled in Sect. 13.1 by the same method employed in [9].
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13.1 Measurability Issues (II)

Lemma 13.3 If f , g : X→ R are (not necessarily measurable) functions, in order to
show that

f ≥ g a.e. on X

it suffices to show that

∀α > 0, ∀Q ∈ A∗(X), if g(x) > α ∀x ∈ Q then Q ∩ { f ≥ α} �= ∅. (13.2)

Proof Assume that ω∗({ f < g}) > 0. Let Bm,n
def= {

f < m−1
n < m

n < g
}
, where

m, n are integers, and observe that { f < g} =
⋃
m,n

Bm,n . Then there exist m0, n0 such

that ω∗(Bm0,n0) > 0, and Bm0,n0 contradicts (13.2). ��
Lemma 13.4 If f ∈ L1(X), α > 0, Q ∈ A∗(X), then, in order to show that

f (x) > α for a.e. x ∈ Q (13.3)

it suffices to show that

∀R ∈ A∗(Q), fω[R′] > α, (13.4)

where R′ is a measurable representative of R.

Proof If R
def= {x ∈ Q : f (x) ≤ α} ∈ A∗(X), then R ⊂ {x ∈ X : f (x) ≤ α} and since

f is measurable, it follows that there exists a measurable representative R′ of R such
that R′ ⊂ {x ∈ X : f (x) ≤ α}. Then fω[R′] ≤ α, a contradiction with (13.4). ��

13.2 Proof of Theorem 1.27

Recall from Lemma 13.1 that, in order to show that G differentiates f , it suffices to
prove the two inequalities (13.1) for a.e. x ∈ X. Let us examine the inequality on the
right. Our task is then to prove that

limsup
R

Gω
f (x) ≤ f (x), a.e. on X (13.5)

and apply Lemmas 13.3 and 13.4with g
def= limsup RGω

f (x). Recall fromLemma 13.3
that, in order to prove that (13.5) holds, it suffices to show that (13.2) holds, where

g
def= limsup RGω

f (x). Let us assume that

α > 0, Q ∈ A∗(X), ∀x ∈ Q g(x) > α. (13.6)
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As we observed in Remark 13.2, the function g is not necessarily measurable. The
crucial observation is that g(x) > α, i.e., limsup RGω

f (x) > α, means, according to
Definition 11.8, that there exists r ∈ R such that α < r and

(r ,+∞) �� ( fω)�(G(x)). (13.7)

Observe that (13.7) means that

∀b ∈ G(x), (r ,+∞) ∩ ( fω)∗(b) �= ∅ (13.8)

and this means that

∀b ∈ G(x) ∃R ∈ b such that fω[R] > r . (13.9)

It follows that (13.6) implies that

∀x ∈ Q ∀b ∈ G(x) ∃R ∈ b such that fω[R] > r (13.10)

and this means that G is adapted to f on Q above α. Observe that, a fortiori, this
means that, for each S ∈ A∗(Q), G is adapted to f on S above α. Since G and f
are compatible, it follows that the mean-value of f over R lies above α for each
R ∈ A∗(Q). Lemma 13.4 then implies that (13.3) holds, hence

Q ∩ { f ≥ α} �= ∅. (13.11)

Hence we have shown that (13.2) holds, and Lemma 13.3 then implies (13.5). The
other inequality in (13.1) follows along similar lines.

13.3 TheMaximal Operator Associated to a Family of Filters

Stein’s theorem on limits of sequences of operators shows that the role played by the
boundedness properties of the maximal operator, associated to the study of problems
of almost everywhere convergence, is not coincidental but essential; see [11]. It is
natural to wonder whether to a given family G of filters on A(X) based on X, as
in (1.28), it is possible to associate a maximal operator which would play a similar
role. As we will see presently, since filters on A(X) takes us one level higher in the
hierarchy of powersets, as observed at the beginning of Sect. 13, the definition of such
a maximal operator also depends on the choice of a generating basis for G(x), for each
x ∈ X.

Definition 13.5 If G is a family of filters on A(X) based on X, as in (1.28), and if
W(x) is a generating basis for G(x) for each x ∈ X, we define

M f (x)
def= sup

{
1

ω(Q)

∫
Q
| f | dω : ∃b ∈ W(x), Q ∈ b

}
. (13.12)
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Theorem 13.6 If there exists a constant C > 0 such that

ω∗({x ∈ X : M f (x) > λ}) ≤ C

λ

∫
f dω (13.13)

for each λ > 0 and each f ∈ L1(X), and if there exists a dense subset C ⊂ L1(X)

such that G differentiates C, then G differentiates L1(X).

Proof The proof follows a standard argument, presented for example in [11, Sect.
5.2.5]. ��

14 Miscellaneous Notes

The notion of filter is due to Cartan [8]. In 1909, Frigyes Riesz understood the role
played by the objects that are now called ultrafilters in the study of the notions of
continuum and completeness [26, p. 23], foreshadowing the use of ultrafilters in the
construction of a compactification of certain topological spaces, implicitly used by
Marshall Harvey Stone in 1937 and Henry Wallman in 1937 and 1938, and explic-
itly adopted by Samuel [30]. These ideas, as well as those of Felix Hausdorff, who
formulated the abstract definition of neighborhoods [16, p. 213], were picked up by
Root [27, 28]. In 1938, Herman Lyle Smith also attained the notion of filter, in order
to build a theory that could include cases seemingly not covered by the Moore–Smith
convergence. More information can be found in [34].

The existing literature has apparently not yet reached a consensus on how the
notion of a Moore–Smith subsequence of a given Moore–Smith sequence should be
defined. This is a bit surprising, since the “right” definition is virtually contained in
an observation made by H. Cartan in 1937, and later in 1955 in the work by Bartle [2]
and more conclusively in 1972 in a work by Aarnes and Andenæs [1]. In Sect. 12.4 we
have given the “right” notion of Moore–Smith subsequence of a given Moore–Smith
sequence. The reason this is the most appropriate notion is fully articulated in [1].
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