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A B S T R A C T

Challenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative
manner. While the validation on identical data sets was a great step forward, results analysis is often restricted
to pure ranking tables, leaving relevant questions unanswered. Specifically, little effort has been put into the
systematic investigation on what characterizes images in which state-of-the-art algorithms fail. To address this
gap in the literature, we (1) present a statistical framework for learning from challenges and (2) instantiate
it for the specific task of instrument instance segmentation in laparoscopic videos. Our framework relies on
the semantic meta data annotation of images, which serves as foundation for a General Linear Mixed Models
(GLMM) analysis. Based on 51,542 meta data annotations performed on 2,728 images, we applied our approach
to the results of the Robust Medical Instrument Segmentation Challenge (ROBUST-MIS) challenge 2019 and
revealed underexposure, motion and occlusion of instruments as well as the presence of smoke or other objects
in the background as major sources of algorithm failure. Our subsequent method development, tailored to the
specific remaining issues, yielded a deep learning model with state-of-the-art overall performance and specific
strengths in the processing of images in which previous methods tended to fail. Due to the objectivity and
generic applicability of our approach, it could become a valuable tool for validation in the field of medical
image analysis and beyond.
1. Introduction

Comparative performance assessment of image analysis algorithms
is typically performed by either reimplementing state-of-the-art meth-
ods or by international benchmarking competitions, so-called chal-
lenges (Maier-Hein et al., 2018). As the re-implementation of other
methods is prone to errors (e.g. errors in the implementation or subop-
timal choice of hyperparameters) and time-consuming, challenges are
nowadays the de facto standard for benchmarking new methods.
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To date, however, relatively little effort has been put into the
systematic analysis of results, as summarized in Wiesenfarth et al.
(2021).

Specifically, most reports neglect a particularly relevant question for
the medical domain:

What characterizes images on which algorithms fail?
Or, more broadly speaking:
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Fig. 1. Overview of the statistical approach to learning from a challenge. Based on the annotated challenge data set (0) and the results of the given challenge (1, here: Robust-MIS
challenge), a semantic annotation of the challenge’s test cases (2) is performed. This serves as the basis for a (generalized) linear mixed model ((G)LMM) analysis (3) to identify
major sources of algorithm failure and quantify the respective impact. The algorithm development is then tailored to the specific weaknesses (4) with the goal of enabling a new
state-of-the-art performance. (Bg: Background; Instr: Instrument).
How can we learn from challenge results in a way that enables us to
tailor future algorithm development to the specific remaining needs?

Some challenge organizers have recognized this problem and car-
ried out a laborious manual analysis, e.g., by reporting the best and
worst cases based on the participants’ performances and identifying a
set of image characteristics that could lead to worsening or improving
performance (i.e., over-/underexposed images) (Roß et al., 2020; Allan
et al., 2021, 2020, 2019). However, this approach is rather subjective
and does not allow for reliable quantification of the effects of different
sources. Furthermore, it may be subject to confirmation bias. Given the
lack of systematic analysis methodology, the contribution of this paper
is threefold:

1. We present a statistical framework for learning from challenges,
which focuses on the identification of sources for algorithm
failure (Fig. 1).

2. To demonstrate potential benefit of the new concept, we apply
it to the recently published challenge on multi-instance laparo-
scopic instrument segmentation ROBUST-MIS2 (Roß et al., 2020)
(see Fig. 2).

3. We demonstrate that knowledge on the identified sources of er-
ror can help improve algorithm performance in common failure
cases.

2 Robust Medical Instrument Segmentation (Robust-MIS) Challenge 2019,
https://www.synapse.org/#!Synapse:syn18779624/wiki/591266.
2

Fig. 2. (a) Sample video frame with multiple overlapping instruments and (b) corre-
sponding annotation (red: trocar, green/blue: graspers). Challenges include presence
of specular reflections, noise, motion blur, varying illumination levels, overlapping
instruments and instrument occlusions.

Note that this approach was specifically designed for challenges but
is similarly applicable to more basic validation studies, in which the
performance of only a single algorithm is assessed.

The remainder of this paper is structured as follows: After presenting
the related work in Section 2, we describe our framework for challenge
analysis, its application to the task of multi-instance segmentation
as well as our strength–weakness-driven algorithm development in
Section 3. The performed experiments and results are presented in
Section 4 and discussed in Section 5. Section 6 concludes this paper
by summarizing our main findings.

https://www.synapse.org/#!Synapse:syn18779624/wiki/591266
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2. Related work

In this section, we present the related work on systematic challenge
analysis in the field of biomedical image analysis as well as a brief
summary on the state-of-the-art in multi-instance medical instrument
segmentation.

2.1. Challenge analysis

The literature on the analysis of image analysis challenges is ex-
tremely sparse, both within and outside the medical community. In
fact, the meta science papers published to date have focused on rank-
ing instabilities (Maier-Hein et al., 2018; Reinke et al., 2018), stan-
dards (Mendrik and Aylward, 2019; Maier-Hein et al., 2018, 2020) and
challenge visualization (Wiesenfarth et al., 2021), while the topic of
results analysis has been given extremely little attention. The closest
work to ours was only recently published and presents a framework for
visualizing challenge results in an uncertainty-aware manner (Wiesen-
farth et al., 2021). While sources of error are not addressed within the
framework, the paper provided an important motivation for our work:
An analysis of numerous challenge reports in the field of biomedical
image analysis revealed that a large number (66% of those investigated)
report only final ranks or aggregated performance measures (Wiesen-
farth et al., 2021) without providing further analyses. This finding
is in line with our more recent observations: Challenge reports often
only provide a website with the rankings (e.g., MISAW,3 SurgVisDom,4
EndoVis-WorkFlowChallenge5), and corresponding publications con-
centrate on the presentation of aggregated metric values (Al Hajj et al.,
2019; Bodenstedt et al., 2018), visual examples (Allan et al., 2019,
2021) or manual inspection of best/worst cases (Roß et al., 2020).
In fact, we are not aware of any prior work on identifying sources of
algorithm failure in a systematic manner.

2.2. Multi-instance segmentation

While the task of binary instrument segmentation received a lot
of attention over the last couple of years such as Lee et al. (2019),
Shvets et al. (2018), Jin et al. (2019), Allan et al. (2015) and García-
Peraza-Herrera et al. (2016), literature on multi-instance segmentation
in applications for minimally invasive surgeries is extremely sparse.
To our knowledge, the only peer-reviewed work published indepen-
dently of the ROBUST-MIS challenge (Roß et al., 2020) (which this
work is based on), was published by Shvets et al. (2018). Their work
is on robotic instrument segmentation and features a comparatively
simplistic data set with respect to image characteristics (e.g., blood,
reflections). Hence, the methods competing in the ROBUST-MIS chal-
lenge can be regarded as representative for the state-of-the-art in the
field.

3. Methods

The following sections present the proposed framework for learning
from challenges (Section 3.1), its instantiation in the ROBUST-MIS
challenge (Section 3.2), as well as the proposed deep learning method
resulting from problem-tailored algorithm development (Section 3.3).

3.1. Framework for learning from challenges

This section introduces our concept for learning from challenges and
details the underlying statistical approach.

3 https://www.synapse.org/#!Synapse:syn21776936/wiki/601705.
4 https://www.synapse.org/#!Synapse:syn22083820/wiki/606329.
5

3

https://endovissub2017-workflow.grand-challenge.org/PastChallenges/.
3.1.1. Concept overview
We propose the following four-step procedure for learning from

challenges.

1. Hypothesis generation: In an initial step, potential sources
of algorithm failure are identified. These can relate to the
image device (e.g. dirty endoscope lens), the imaging protocol
(e.g. overexposure/underexposure), the handling of the equip-
ment (e.g. motion blur), the target structure (e.g. crossing medi-
cal instruments in the case of ROBUST-MIS) and other
application-specific features (e.g. smoke in the field of view of a
laparoscope). To generate a list of image characteristics that may
lead to poor performance, knowledge from the literature, expert
knowledge, personal experience, as well as a manual analysis of
the challenge results (as in Roß et al. (2020)) can be leveraged.

2. Semantic meta data annotation: (Part of) the challenge test
cases are then semantically annotated with these image charac-
teristics. This can be done by domain experts, or by leveraging
crowdsourcing, for example. Please note that we use the term test
case ‘‘to refer to a data set for which a participating algorithm
produce one result’’ (Maier-Hein et al., 2020).

3. Mixed model analysis: The semantic labels on image char-
acteristics along with the challenge results – represented by
(aggregated) metric results per test case – are then leveraged to
identify image characteristics leading to poor algorithm perfor-
mance. To this end, a mixed effects model (West et al., 2014) is
set up in which the (possibly transformed) metric values embody
the outcome variable and the image-specific information is inte-
grated as explanatory variables. In other words, the performance
of an algorithm on a given image is represented as a function
of the meta information available for the image. The method is
detailed in Section 3.1.2.

4. Tailored algorithm development: Based on the identification
of those error sources that have the biggest effect on algorithm
performance, algorithm development is tailored to the specific
problems identified.

Our approach to mixed model-based challenge analysis is detailed
in Section 3.1.2, followed by an instantiation of this framework in the
specific task of multi-instance instrument segmentation in laparoscopic
video data in Section 3.2.

3.1.2. Mixed model analysis
Although mixed model analysis is a standard approach in statistics,

we found that it is only very rarely employed in medical image analysis.
More specifically, we reviewed all 5390 papers published between 2004
and 2021 in the proceedings of the International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI), the
largest conference in the field of medical image analysis. According to a
systematic search (see Appendix B, Table B.4), only 1.7% of the papers
applied mixed model analysis despite the fact that a hierarchical data
structure (i.e. non-independent test cases) is very common in medical
imaging. Due to the rare usage of mixed models in the field, this section
will provide a light introduction into the topic.

As summarized in the previous section, the goal of the statistical
analysis is to leverage the semantic meta data annotation to identify
image characteristics leading to poor algorithm performance. Standard
linear regression models are not suitable for this purpose whenever
individual data points are not independent. Non-independence of the
data is a typical characteristic of challenges, for example because
multiple images from the same patient, or multiple frames from the
same video, are used in the analysis. In such a situation, data are
best represented by a hierarchical structure. In such a data tree (cf.
Fig. 3), data corresponding to the same leaf can be assumed to be
independent. Branches represent the source of non-independence, such
as a specific hospital, device, or patient. To account for the correlation
within challenge outcome data, we propose using Linear Mixed Models

https://www.synapse.org/#!Synapse:syn21776936/wiki/601705
https://www.synapse.org/#!Synapse:syn22083820/wiki/606329
https://endovissub2017-workflow.grand-challenge.org/PastChallenges/
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Fig. 3. Hierarchical structure of the ROBUST-MIS 2019 data. The stage 3 test set comprises solely the Sigma surgery that was performed for ten patients. For each patient 𝑝 ∈ 𝑃 ,
a varying number of images are acquired. Every image 𝑖 ∈ 𝐼 itself contains a varying number of instrument instances 𝐽𝑖.
Fig. 4. Mixed model-based statistical analysis for a challenge with a continuous metric value as outcome. Initially, random and fixed effects are defined. Image characteristics
that have a potential influence on algorithm performance are assumed to be binary and are represented as fixed effects in the model. Other factors, reflecting the hierarchical
structure of the acquired data (e.g. the patient/hospital/image frame identifier) are represented as random effects. Depending on the distribution of the outcome, either a Linear
Mixed Model (LMM) or a Generalized LMM (GLMM) for binary outcome is the model of choice. In the case of the LMMs, a transformation of the outcome may be required before
the model is fitted to avoid violation of the normality assumption. Further details of the workflow are provided in Sections 3.1.2. and 3.2.
*Note that metric values may be bounded in theory but appear normally distributed in the specific data set. In this case, no transformation is needed.
**Note that a GLMM for binary outcome is a mixed effect logistic regression model.
(LMMs) (West et al., 2014), as a generalization of linear regression
models.

LMMs enable regressing an outcome using a linear combination
of explanatory variables weighted by regression coefficients. The out-
come variable is also referred to as dependent/target/response/explained
variable while the explanatory variables are also called independent
variables. In contrast to standard regression models, mixed models not
only incorporate the parameters of interest, referred to as fixed effects,
but also so-called random effects of variables explaining the hierarchical
structure.

In our specific (challenge) setting, image characteristics that have
a potential influence on algorithm performance are by default as-
sumed to be binary (present/not present; though categorical variables
4

are also possible) and are represented as fixed effects in the model.
Other factors, reflecting the hierarchical structure of the acquired data
(e.g. the patient/hospital/image frame identifier) are represented as
random effects. The fixed effects coefficients of the model then provide
estimates of the impact of the provided image characteristics on the
prediction performance. There are several ways to incorporate the
challenge participant’s algorithms in this setup. If the specific effects of
the (typically small number of) algorithms are of interest, the algorithm
can be modeled as a fixed effect, otherwise it is modeled as a random
effect. Alternatively, as a first approximation, aggregated metric values
across algorithms (possibly after transformation; see below) may be
used.



Medical Image Analysis 86 (2023) 102765T. Roß et al.

w

O
i
s
a
o

F
c
o
t
r
m
f
a
i
f
v
n
o
a

R
e
c
w
w
f
p
i
o
e
r
t
b
a
w
v
o

R
b
p

o
r
v
d
w
a
a
F
i
m
i

Fig. 4 presents a simplified workflow for choosing the appropriate
mixed model for a given problem. The specific choice of the mixed
model and the process of instantiating depends primarily on the distri-
bution of the metric values. In the case of continuous metric values with
unbounded support, an LMM (West et al., 2014) is usually the most
natural choice. Applied to the problem of challenge analysis, LMMs can
be represented as:
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𝜀 (1)

ith the following components:

utcome. The vector 𝑦 represents the 𝑁 metric values on the test
mages, which may be aggregated over all algorithms or be provided
eparately for all of them. For clarity of presentation, we will assume
single value per image in the following explanation, but an example

f a more fine-grained composition is provided in Section 3.2.2.

ixed effects. The so-called design matrix 𝑋 corresponds to the 𝑝 image
haracteristics with corresponding 𝑝 fixed effects 𝛽. Generally, each row
f 𝑋 represents an image and consists of 𝑝 binary variables representing
he presence or absence of a specific image characteristic on the cor-
esponding image. 𝛽 is the regression coefficient resulting from mixed
odel fitting, which can be used to predict the dependent variable 𝑦

rom the fixed effects. The fixed effects considered in our model setting
re listed in Table 1 and illustrated in Fig. 8. Coefficients are easily
nterpretable in LMMs with untransformed dependent variables. Given,
or example, presence of an image characteristic 𝑐, the expected metric
alue changes by 𝛽𝑐 compared to the situation when the characteristic is
ot present. The so-called intercept 𝛼 is a scalar representing an average
utcome when all characteristics are absent (the arithmetic mean of 𝑦)
nd 𝟏 is a vector of 1s.

andom effects. The matrix 𝑍 is a so-called design matrix for the random
ffects. Assuming, for example, a hierarchical data structure, in which
lustering of test images arises from different patients, each patient
ould represent one of 𝑞 columns in 𝑍, and each row in the matrix
ould have exactly one entry with 1 (0 otherwise), reflecting the

act that there is a unique assignment of outcome data to a specific
atient. Similarly, further random effects, such as hospital IDs, can be
ncorporated by increasing the number of columns of 𝑍 (and dimension
f 𝑢). 𝑢 quantifies the random effect on the specific outcome. For
xample, the imaging device of a specific hospital could have a lower
esolution, hence making predictions more difficult and thus leading
o a worse metric value on average. Elements in 𝑢 are assumed to
e normally distributed with zero mean and a variance interpreted
s the between-cluster-variability (e.g. the variability in performance
hen comparing images of different hospitals). If the between-cluster-
ariability is large when compared to the residual variance (see below),
bservations within the cluster are highly correlated.

esiduals. 𝜀 is a vector of residuals. The residuals are assumed to
e normally distributed,  (0, 𝜎2𝜀𝐼) capturing the variation in 𝑦 unex-
lained by the random and fixed effects.

Fitting of the LMM (i.e. estimation of the coefficients) is carried
ut through restricted maximum likelihood methods (REML). LMMs
ely on the assumption of normality of the residuals, i.e., the outcome
ariable given the values of the explanatory variables follows a normal
istribution. To detect a potential violation of the normality constraint,
e recommend studying the Q-Q-Plot (Thode, 2002) of the residuals
fter model fitting. Often, a transformation of the metric values must be
pplied to obtain approximate normality such that an LMM can be used.
or a metric with values ∈ [0, inf], for example, the log transformation
s a popular choice; if a metric is bounded by [0, 1], the logit function,
apping the metric values to [− inf , inf], is frequently used. Note that

n case of such nonlinear transformation, additivity and linearity of
5

i

Table 1
Meta data information provided by a human annotator for the entire background (Bg.)
and for each instrument instance (Inst.), and/or globally.

Local characteristics

Characteristic Bg. Inst.

Covered by blood? ✓ ✓
Covered by smoke? ✓ ✓
Covered by tissue? ✗ ✓
Subject to motion artifacts? ✓ ✓
Covered by specular reflections? ✓ ✓
Covered by another instrument? ✗ ✓
Covered by any other object (non-surgical)? ✓ ✓
Too bright? ✗ ✓
Too dark? ✗ ✓
Global characteristics

Characteristic Img.

Is the image too bright? ✓
Is the image too dark? ✓
Does the lens seem dirty? ✓

effects on 𝑦 is lost, possibly complicating interpretation of regression
coefficients.

If the outcome variable follows a non-normal distribution such as
Binomial/Bernoulli, Poisson or Gamma, GLMMs, as a generalization
of LMMs can be used (McCulloch et al., 2011). Specifically, if the
outcome variable is binary, a mixed effects logistic regression model as
a special case of GLMMs can be used. An instantiation of such a model
is provided in Section 3.2.2.

3.2. Instantiation of the framework for multi-instance instrument segmen-
tation

As a proof of concept, we instantiated our proposed framework for
the ROBUST-MIS challenge 2019 (Roß et al., 2020). This challenge was
based on 10,040 endoscopic images that had been extracted from three
different surgery types (Maier-Hein et al., 2021). For the ROBUST-
MIS challenge, a test case was defined as the last frame of a 10 s
video snippet of 250 endoscopic image frames. For each test case,
the segmentation results of five (one algorithm was excluded due
of a non-compliant training process that would affect comparability)
participating algorithms were available.

3.2.1. Annotation of image characteristics
To identify potential sources of error, we analyzed the general

literature on endoscopic image analysis (Maier-Hein et al., 2014a;
Ali et al., 2021b) as well as the specific literature on artifacts in
endoscopy (Ali et al., 2020, 2021a; Funke et al., 2018; Soberanis-Mukul
et al., 2020) and on endoscopic vision challenges (Bodenstedt et al.,
2018; Allan et al., 2020; Roß et al., 2020). Combined with personal
experience gained during the annotation process for the challenge
data (Maier-Hein et al., 2021), we identified twelve relevant sources
of error (see Table 1) which were classified as global – characterizing
the whole image (here: dirty lens, overexposure and underexposure) –
or local (e.g. blood on specific instrument instance). The local features
were provided for all instrument instances and/or the background
individually. A trained engineer with experience in endoscopic image
annotation (annotator was part of the annotation team of Maier-Hein
et al. (2021)) then annotated the presence of such characteristics for all
images (see Fig. 6). For the relevant test set (stage 3) this resulted in
a total of (5 + 3) ⋅ 2, 728 = 21,824 image related and 9 ⋅ 3, 302 = 29,718

nstrument instance annotations. We performed the statistical analysis
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solely on the test cases, as algorithm results were only available for the
challenge’s test set. However, Fig. 6 shows the comparison of the image
characteristics between training and test set to emphasize that both sets
contained a similar distribution of characteristics.

3.2.2. Statistical analysis
The Dice Similarity Coefficient (𝐷𝑆𝐶) (Dice, 1945) is a widely used

metric in medical image analysis (Maier-Hein et al., 2018; Reinke et al.,
2018) and also served as a basis for the ranking in the ROBUST-MIS
challenge (Roß et al., 2020). Yet, as 𝐷𝑆𝐶 values are in the range of
[0, 1], modeling the algorithm performances directly on the challenge
metric would violate the normality assumption of the residuals 𝜀. As

entioned in Section 3.1.2, the problem can potentially be overcome
y applying a transformation 𝑓 (⋅), such as the logit to metric values

bounded in [0, 1], with the goal of mapping the values to the range of
[− inf , inf]. As this process did not yield an approximate normal residual
distribution of 𝜀 for our data, we propose regarding the segmentation
problem as a pixel-level classification problem and applying a GLMM
to model the target metrics precision and recall as a function of image
characteristics, as detailed in the following paragraphs.

Outcome reformulation. For this study, we leverage the fact, that the
𝐷𝑆𝐶 is closely related to precision (𝑃𝑅𝐸) and recall (𝑅𝐸𝐶). More
pecifically, 𝐷𝑆𝐶, 𝑃𝑅𝐸 and 𝑅𝐸𝐶 can all be expressed as a function
f the number of true(T)/false(F) positives(P)/negatives(N):

𝑅𝐸 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

; 𝑅𝐸𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

𝐷𝑆𝐶 = 𝐹1 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

= 2 ⋅ 𝑃𝑅𝐸 ⋅ 𝑅𝐸𝐶
𝑃𝑅𝐸 + 𝑅𝐸𝐶

(3)

To use precision and recall as target metrics, we convert each multi-
nstance reference annotation mask into a set of binary masks, each
orresponding to one instrument instance. For each image 𝑖 ∈ 𝐼 , each

instrument 𝑗 ∈ 𝐽𝑖 that is present in 𝑖 and each algorithm 𝑘 ∈ 𝐾 we then
determine both, the recall, defined as the probability 𝜋𝑖,𝑗,𝑘 of a pixel of
the reference segmentation to be present in the mask provided by the
algorithm, and the precision, defined as the probability �̃�𝑖,𝑗,𝑘 of a pixel
f the segmentation mask to be present in the reference segmentation.
n other words, we relate the TP to either the reference mask of an
nstance (recall) or the mask provided by the algorithm (precision). For-
ally, the pixel-level classification (per instance) is binary and thus can

e regarded as a Bernoulli experiment. Depending on the perspective
recall or precision) if a pixel is correctly classified as instrument follows

Bernoulli distribution 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋) with parameter 𝜋 = 𝜋𝑖,𝑗,𝑘 resp.
𝜋 = �̃�𝑖,𝑗,𝑘.

GLMM fitting. In GLMMs, a link function 𝑔 relates the expected outcome
(here the parameter 𝜋) with the linear predictor. The canonical choice
for this function in case of binary data is the logit link function 𝑔(𝜋) ∶=
og 𝜋

1−𝜋 . The complete equation is then given by

𝑁×1
⏞⏞⏞
𝑔(𝜋𝜋𝜋) =

𝑁×1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛼
⏟⏟⏟

1×1

𝟏
⏟⏟⏟
𝑁×1

+

𝑁×1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑋
⏟⏟⏟
𝑁×𝑝

𝛽
⏟⏟⏟

𝑝×1

+

𝑁×1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑍
⏟⏟⏟
𝑁×𝑞

𝑢
⏟⏟⏟

𝑞×1

, (4)

here 𝜋𝜋𝜋 is a column-vector consisting of all the probabilities 𝜋𝑖,𝑗,𝑘 (resp.
�̃�𝑖,𝑗,𝑘) and 𝑔 is applied element-wise. As described above, we define
ixed effects 𝛽 (see Table 1 and Fig. 8) for image and instrument char-
cteristics (within 𝑋), resulting in 𝑝 = 17. Furthermore, we model the
articipants’ algorithms, as well as the patient, image and instrument
s independent random effects (more detail in ) combined in vector 𝑢
with indicator matrices combined in 𝑍), resulting in 𝑞 = |𝐾|+|𝑃 |+|𝐼|+
𝑖∈𝐼 |𝐽𝑖|, where |𝐾|, |𝑃 |, |𝐼|,

∑

𝑖∈𝐼 |𝐽𝑖| refer to the number of algorithms,
he number of patients, the number of images and the total number
f instances, respectively. The number of rows 𝑁 in our model comes
own to 𝑁 = |𝐾| ⋅

∑

𝑖∈𝐼 |𝐽𝑖|. Note that we inspected the cases of single
6

nd multiple instruments per image separately (see Table 2). So while a
Table 2
Sources of algorithm failures and successes, where + denotes a significant positive effect
of 0 < 𝑂𝑅 ≤ 1.25, ++ a significant positive effect of 1.25 < 𝑂𝑅 ≤ 1.50 and + + + a
ignificant positive effect of 1.50 < 𝑂𝑅. Analogously, − denotes a significant negative
ffect of 0.75 ≤ 𝑂𝑅 < 0, −− a significant negative effect of 0.50 ≤ 𝑂𝑅 < 0.75 and −− a
ignificant negative effect of 𝑂𝑅 < 0.50. Empty columns indicate no significant impact
ould be found. A significance level of 0.05 is used throughout. ‘‘x’’ means that the
ffect could not be assessed (e.g. the effect covered by instrument does only exist when
> 1). ‘‘inst.’’ refers to instrument instance.
Characteristic Local characteristics

Precision Recall

Inst. > 1 Inst. = 1 Inst. > 1 Inst. = 1

Instrument overexposed ++
Instrument covered by tissue ++ + ++
Instrument underexposed − −− −− − − −
Instrument covered by reflections ++
Instrument covered by material −− −−
Instrument covered by smoke
Instrument in motion −− −
Instrument covered by blood
Instrument covered by instrument − − − x −− x
Background contains other objects −−
Background in motion
Background covered by blood
Background covered by reflections
Background covered by smoke − −

Characteristic Global characteristics

Precision Recall

Inst. > 1 Inst. = 1 Inst. > 1 Inst. = 1

Image lens dirty
Image too bright
Image too dark −

|𝐾| = 5 and |𝑃 | = 10 stayed constant there were 1184 images with
instrument and 1031 images with multiple instruments each (2118

nstruments in total). By modeling the algorithms as random effects,
he analysis is performed globally across all algorithms. However,
he analysis could also be performed for comprehensive performance
ssessment of an individual algorithm. In this case, the algorithm can
e removed as a random effect, as detailed in Appendix C.

odel interpretation. After fitting the model, coefficients 𝛽 can be inter-
reted in terms of log odds ratios (OR) (McCulloch et al., 2011). The OR
s a statistic measuring how two events are associated with each other
egarding their presence or absence (McCulloch et al., 2011). Here, the
R measures the ratio of the odds (e.g. 𝜋𝑖,𝑗,𝑘∕(1−𝜋𝑖,𝑗,𝑘)) in the presence
nd absence of a given image characteristic. However, the fact that the
R is not symmetrical around 1 (the value indicating no effect of the

mage characteristic) makes the comparison of the individual effects
ess intuitive (as can be illustrated by an OR of 2:3 (0.6) and its inverted
atio of 3:2 (1.5)). Fig. 7 thus shows the log of the OR, making the
alues symmetrical around 0. For the interpretation, a positive log OR
ncreases the chance that a high metric is measured, while a negative
og OR decreases the chance.

.3. Strength–weakness-driven algorithm development

As detailed in the results Section 4.1, the GLMM revealed several
mage characteristics with major impact on algorithm performance,
amely: motion and underexposure of the instrument, crossing medical
nstruments as well as smoke or other medical equipment (e.g. swabs
r bandages) in the field of view. We hypothesized that a majority of
hese issues can be addressed by going beyond single image analysis
nd taking the temporal context into account. In fact, the annotators
f the Heidelberg Colorectal Data Set for Surgical Data Science in
he Sensor Operating Room (HeiCo) (Maier-Hein et al., 2021), which
erved as basis for the ROBUST-MIS challenge, also reported that

nalysis of preceding frames was sometimes necessary to label a given
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Fig. 5. Concept of the multi-instance segmentation approach for a video frame 𝑥𝑡 of a video 𝑉 . A Mask R-CNN performs instance localization based on three input channels: The
current image frame 𝑥𝑡, the instrument likelihood 𝑙𝑥𝑡 estimated with a U-Net (Ronneberger et al., 2015), and third channel 𝑚𝑉 encoding motion information via optical flow. The
optical flow of a video sequence 𝑉 = (𝑥0 ,… , 𝑥𝑡) of length 𝑡+ 1 is estimated by (1) determining the optical flow for each pair of consecutive frames via FlowNet2 (Ilg et al., 2017)
and then (2) summarizing the pairwise information with an LSTM into 𝑚𝑉 . A post-processing step applied to the output of the Mask R-CNN (see Sect. Appendix A.4) yields the
final result.
frame. The proposed architecture resulting from the GLMM analysis is
shown in Fig. 5. The core component of the presented deep learning
architecture is a masked region-based convolutional neural network
(Mask R-CNN) (He et al., 2017) that uses the following information as
input: (1) the raw video frame, (2) the probability of a pixel to be an
instrument and (3) the Long short-term memory (LSTM)-summarized
(Hochreiter and Schmidhuber, 1997) information on object motion
encoded in an optical flow. Details are provided in Appendix A.

4. Experiments and results

We validated our framework on the ROBUST-MIS challenge 2019
data set (Roß et al., 2020; Maier-Hein et al., 2021). The following
sections present our findings with respect to image characteristics
impacting algorithm performance as well as the validation of our
algorithm tailored to the specific weaknesses of the state-of-the-art.

4.1. Effect of image characteristics on the performance of state-of-the-art
algorithms

The frequency of special image characteristics captured by the meta
data annotation is shown in Fig. 6.

Following the statistical methodology presented in Section 3.2,
we analyzed the influence of image characteristics on the algorithm
performance, using precision and recall as metrics. The main results
are presented in Fig. 7 and Table 2.

According to our results, the following main characteristics had a
statistically significantly (𝑝 < 0.05) negative influence on the results:
instrument is underexposed, in motion or covered by material, or
background is covered by smoke or other objects. Example frames are
provided in Fig. 8. When two or more instrument instances were visible
(see Fig. 7), the statistically significant characteristic with the largest
impact was ‘‘instrument covered by another instrument’’.

4.2. Performance of algorithm developed based on strength–weakness
-analysis

Our method resulting from the strength–weakness-analysis was
compared to the ROBUST-MIS 2019 challenge’s top-scoring methods
based on the accuracy as reported in the ROBUST-MIS challenge (Roß
et al., 2020) and using the challengeR analysis tool (Wiesenfarth et al.,
2021). For the validation of our method, we used the metrics proposed
by the ROBUST-MIS challenge as this allowed us to compare it to
7

Fig. 6. Summary of the 195,148 meta data annotations performed on the ROBUST-
MIS challenge data (training and test data). The frequency of the selected image
characteristics (Table 1) in the test and training data set is shown along with
information on the number of instruments per image. The size of the blocks and
connecting lines in the image correspond to the proportion of images that have the
respective property. The colors were picked to improve the legibility of the image
(‘‘bg.’’: background; ‘‘instr.’’: instrument; ‘‘img.’’: image).

the best-performing related methods. Following the challenge guide-
lines (Roß et al., 2020), we split the data into 5983 training and 4057
test images. The reason for the relatively high number of test images
compared to training images was the fact that we reserved one surgery
type exclusively for testing, as detailed in Roß et al. (2020). As shown
in Fig. 10 and A.12, our method shows higher performances compared
to the state-of-the-art in the majority of categories that represent typical
failure cases. The metric value distributions for the top-performing
ROBUST-MIS algorithms and our method are presented in Fig. A.12 for
(a) the three stages of the test dataset and (b) varying numbers of visible
instruments in the image. The proposed method achieved the highest
median multi-instance DSC (MI_DSC) score (Roß et al., 2020) for the
most difficult test stage (unseen procedure and patients), namely Stage
3.

We further performed an ablation study to assess the benefit of the
different architectures components, namely (1) the optical flow and (2)
the instrument likelihood as additional input to the Mask R-CNN and
(3) our post-processing method applied to the output of the Mask R-
CNN (see Appendix A for more details). The results are presented in
Fig. 9 and Table 3. Including the optical flow (𝑇 vs. 𝑇 ) improved
𝑅 𝑅𝐹
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Fig. 7. Impact of image characteristics on the algorithm performance for ≥ 2 instances. The characteristics’ effect is displayed in the form of the log(𝑂𝑅), representing the logarithms
of the odds of occurrence of the outcome in presence of the image characteristic, compared to the odds of the outcome occurring in the absence of that exposure. Significant
effects are marked with an asterisk (∗∶ 𝑝 ≤ 0.05, ∗∗∶ 𝑝 ≤ 0.01, ∗∗∗∶ 𝑝 ≤ 0.001).
Table 3
Effect of the different inputs for training the Mask R-CNN, showing the mean (𝜇),
median (𝑥), 5th, 25th, and 75th quartile (𝑄1, 𝑄3), and the interquartile range (𝐼𝑄𝑅)
of the multi-instance dice coefficient 𝐷𝑆𝐶𝑀𝐼 . The names of the trained model 𝑇 with
the indices 𝑅, 𝐿 and 𝐹 are referring to 𝑅 = raw, 𝐹 = flow and 𝐿 = likelihood, as
detailed in the Appendix A. The model 𝑇 +

𝑅𝐹𝐿 is the same model as 𝑇𝑅𝐹𝐿, but followed
by the post-processing.

Model 𝜇 𝑥 𝑄5 𝑄25 𝑄75 𝐼𝑄𝑅

𝑇𝑅 0.50 0.44 0.00 0.27 0.83 0.56
𝑇𝑅𝐹 0.73 0.91 0.0 0.48 0.95 0.47
𝑇𝑅𝐿 0.79 0.93 0.24 0.63 0.96 0.33
𝑇𝐹𝐿 0.80 0.93 0.29 0.63 0.96 0.33
𝑇𝑅𝐹𝐿 0.80 0.93 0.29 0.63 0.96 0.33
𝑇 +
𝑅𝐹𝐿 0.81 0.94 0.32 0.75 0.96 0.21

the performance by a factor of 2, from a median MI_DSC of 0.44 to 0.91
(mean: 0.50 to 0.73 (146%)). Including the instrument likelihood in the
network model (𝑇𝑅𝐿) also increased the median MI_DSC by a factor
of 2 (0.44 to 0.93 (211%); mean 0.50 to 0.79 (158%)). Incorporating
both the flow and the instrument likelihood as additional input (𝑇𝑅𝐹𝐿)
did not yield a substantial improvement compared to 𝑇𝑅𝐿. The post-
processing significantly (𝑝 = 2.7𝐸 − 7) increases the mean performance
of the model 𝑇𝑅𝐹𝐿 at 1%, while simultaneously reducing the IQR from
0.33 to 0.21. Also, the robustness of the method (defined in Roß et al.
(2020) as the 5th percentile) increased from 0.28 to 0.32. Further
descriptive statistics can be found in Table 3.

5. Discussion

While a lot of research is currently invested in maximizing algo-
rithm performance for various image analysis tasks, comparatively little
effort is currently put into failure analysis. This holds especially true for
the growing field of benchmarking via challenges. Although challenge
results potentially encode crucial information with respect to typical
failure cases as well as reasons for algorithm failure, most challenge or-
ganizers restrict their reports to plain ranking tables (Wiesenfarth et al.,
2021) leaving the rich challenge data unexploited. To address this gap
in the literature, we presented a statistical framework for systematically
learning from challenge results. Rather than performing a black-box
8

prediction of algorithm performance, we focus on gaining insights
into what might be the problems algorithms encounter in medical
image analysis and, specifically, when and why they fail. The following
sections discuss mixed models in medical imaging (Section 5.1), the
general approach (Section 5.2), the specific findings for the sample
application (Section 5.3) as well the new algorithm resulting from the
statistical analysis (Section 5.4).

5.1. Mixed models in medical imaging

Mixed model analysis is a common approach in statistics. By ana-
lyzing more than 5000 papers published at the MICCAI conference, we
found that only 1.7% of the papers have used mixed models for results
analysis. In those papers, hierarchical models have primarily been pro-
posed to discover variability at the group and population levels (e.g. by
extracting patient-specific models (Swee and Grbić, 2014), for multi-
group shape analysis (Shigwan and Awate, 2016) or to model solutions
using decomposed tasks (e.g. in endovascular catheterization Rafii-Tari
et al., 2014 and for generating patient specific segmentation Kutra
et al., 2012). Furthermore, (linear) mixed effect models have mainly
been used to account for the consistency of variables across repeated
measures, to estimate distributions, or to explore individual and group
differences (e.g. by learning spatiotemporal patterns on a network Ko-
val et al., 2017, or by addressing inter/within-subject effects/changes
between serial Magnetic Resonance Imaging (MRI) scans Kim et al.,
2015). Other approaches used nonlinear mixed-effects to explore the
patterns of early brain growth (Vardhan et al., 2017) or for the predic-
tion of future observations based on past measurements and population
statistics (Sadeghi et al., 2014). None of the papers used mixed model
analysis to reveal the specific strengths and weaknesses of algorithms,
as proposed in this work.

5.2. Framework for challenge analysis

In the field of biomedical image processing, failure analysis is
often restricted to qualitative assessments (Wiesenfarth et al., 2021).
Even quantitative analyses are typically restricted to single parame-
ter assessments contrasting algorithm performance in the presence or
absence of certain features (e.g. Soberanis-Mukul et al. (2020)). This
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Fig. 8. Illustration of the 17 image characteristics that have a potential impact on algorithm performance.
approach should be used cautiously as it neglects possible strong inter-
play between features. We overcome these limitations by a statistically
well-grounded approach. Leveraging the strengths of mixed models,
we are able to disentangle the effects of different sources and clearly
identify sources of algorithm failure. This enables the design of future
algorithms dedicated to the actual needs.

A core strength of our approach can be seen in the fact that it is
generically applicable regardless of domain (e.g. radiology, surgery,
pathology) and algorithm category (e.g. model-based, machine
learning-based). Furthermore, it is not restricted to challenge analysis
but can also be used for the comprehensive performance assessment of
an individual algorithm. In this case, the algorithm can be removed as
fixed or random effect from Eq. (4) as detailed in Appendix C.

A limitation of our concept is the additional manual annotation
effort involved. For comparison to the statistical approach, requiring
this high amount of annotations, we performed an ablation study, in
which five experts rated the influence of image characteristics of a
subset of 100 images with poor performance (see Appendix D). The
experiment revealed a high inter-rater variability with a diverse opinion
on whether specific characteristics have a large negative influence or
9

not. In addition, their ratings differ from the results of the statistical
analysis. We therefore argue that the large amount of annotations
and the statistical analysis will help to draw correct conclusions over-
coming a confirmation bias related to the expert analysis. Depending
on the specific application, the annotation effort could potentially be
overcome by an automatic annotation of image characteristics, or by
(quality-controlled) crowdsourcing (Maier-Hein et al., 2014b; Heim
et al., 2018).

It should be noted that traditional feature importance measures,
such as those applied to popular random forest-based methods, would
merely provide a ranking of image characteristics. In contrast, we are
interested in proper statistical inference. This approach comes with two
key advantages:

1. Awareness of uncertainties: An image characteristic may have
a large effect size but estimation uncertainty may likewise be
large while another image characteristic may have a smaller
effect with low estimation uncertainty, i.e. high precision. In
this case, the latter image characteristic may be considered more
relevant. Furthermore, in a small data set, estimates may solely
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Fig. 9. Performance of the model for different input data. 𝑇𝑅: only (raw) input
images; 𝑇𝑅𝐹 images and flow; 𝑇𝑅𝐿 images and instrument likelihood; 𝑇𝑅𝐹𝐿 images, flow
and likelihood. 𝑇 +

𝑅𝐹𝐿 indicates using an additional post-processing step after applying
(𝑇𝑅𝐹𝐿).

Fig. 10. Comparison of our method (𝑇 +
𝑅𝐹𝐿) with the four best-performing methods of

the ROBUST-MIS challenge (#1-#4) for the seven characteristics that have a significant
negative impact on algorithm performance according to our effect analysis. It can be
seen that our proposed method (𝑇 +

𝑅𝐹𝐿) outperforms the competitors in most categories.

be due to chance. To address such issues, statistical tests and con-
fidence intervals in the statistical model take the uncertainty and
in particular the sample size into account in decision making.

2. Awareness of data dependencies: We are interested in the
significance of the effects of image characteristics, which are
entered into the model as fixed effects. However, random effects
are used mainly to account for correlations in the data and
avoid biases and violations of distributional assumptions when
performing statistical tests.

It should further be noted that we instantiated the concept only
for a single challenge, with specific focus on multi-instance medical
instrument segmentation. However, as segmentation is by far the most
widely used task in challenges (Maier-Hein et al., 2018), our concept
can be transferred to a majority of studies and also create awareness of
the problem that arises when using statistical tests for bounded metrics.
Finally, it must be noted that statistical modeling is a complex process
of balancing adherence to specific assumptions and model complexity.
Delivering a recipe applicable to every challenge is not possible within
the scope of a single paper but we believe that this work could trigger
more sophisticated challenge analyses following the general approach
presented here.

5.3. Instantiation for ROBUST-MIS challenge

In contrast to the literature (e.g. Maier-Hein et al. (2014a), Ali
et al. (2021b, 2020, 2021a), Funke et al. (2018), Soberanis-Mukul
et al. (2020), Bodenstedt et al. (2018), Allan et al. (2020) and Roß
et al. (2020)), our study did not reveal a harmful effect of reflections,
blood, and smoke on the algorithm performances. Instead, our analysis
10
showed that the main limiting factors are when an instrument is in
motion, underexposed, or covered by another instrument. Interest-
ingly, other characteristics such as an instrument being overexposed
or covered by tissue, reflections or blood, seem to even support the
algorithm performances. That artifacts/characteristics are not always
harmful is in line with a recent work from Kayser et al. (2020) who
use reflections to improve the segmentation of polyps. The fact that the
characteristic ‘‘instrument covered by tissue’’ has a slight positive effect
on algorithm performance is most likely due to the fact that the visible
tissue overlay mainly occurs when the instrument is clearly visible and
distinguishable from the background.

While most of the characteristics either harm or benefit both metrics
investigated, we identified one characteristic that yielded different
results for precision and recall. Specifically, when the background
contains other objects, we observe an increased recall but a decreased
precision. This indicates that an oversegmentation occurred typically
occurred in these cases.

The strongest negative impact by far was found when the instrument
is being covered by another instrument. This can be attributed to the
architecture of Mask R-CNNs and their way of processing images. A
Mask R-CNN relies on a region proposal network that provides bound-
ing boxes around regions of particular interest. Especially in regions
where instruments overlap, those bounding boxes might contain parts
of multiple instrument instances, which then leads to poor segmenta-
tions. This finding is in line with work on the Mask R-CNN problem of
overlapping instances (Xu et al., 2020).

5.4. Algorithm development tailored to failure cases

With a few exceptions (Hasan and Linte, 2019; Isensee and Maier-
Hein, 2020), the few methods published on multi-instance segmenta-
tion to date use a Mask R-CNN (González et al., 2020; Kletz et al.,
2019) as core component. To our knowledge, Kletz et al. (2019) were
the first to use a Mask R-CNN for surgical instrument segmentation.
They developed their method for laparoscopic gynecology videos but
reported limitations under conditions of occlusion and overlapping in-
struments. In the context of binary segmentation, several authors have
aimed to tackle this issue by including temporal information in order
to improve their segmentation, e.g., in situations where instruments
are only partially visible, due to overlapping tissue. Jin et al. (2019)
were the first who estimated the optical flow by using a CNN, namely
UnFlow (Meister et al., 2018), for the segmentation of instruments.
Instead of using the optical flow as an additional feature, they used it
as a prior for initializing the attention of a temporal attention pyramid
network to learn to focus on moving objects. However, their approach
was for binary segmentation, type classification and instrument parts
segmentation and classification, thus requiring a much simpler network
architecture and no management of pixels that could possibly belong
to different object instances.

The first to combine a Mask R-CNN and the optical flow were
González et al. (2020), who proposed the use of a Mask-RCNN to ensure
a segmentation and classification of instruments as, e.g., grasper or
scissors. The authors computed the optical flow of previous frames
to include a temporal consistency module and consider an instance’s
predictions across the frames in a sequence. The approach outper-
formed the state-of-the-art methods on the Endoscopic Vision 2017 and
2018 Robotic Instrument Segmentation data sets (Allan et al., 2019).
However, this work was also not used for multi-instance segmentation.

Up to this point, and to the best of our knowledge, none of the
approaches for multi-instance segmentation have successfully incorpo-
rated temporal information in the algorithm, as further reported by Roß
et al. (2020). To address this gap in the literature, a new algorithm was
developed that generated a benefit using optical flow in combination
with instrument probability in order to explicitly address the previously
mentioned weaknesses (see Appendix A). While we found a huge
performance boost when integrating the flow as an additional input of
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a native Mask R-CNN, the effect was negligible when also incorporating
instrument likelikehood. In contrast, we achieved a high performance
boost with an additional post-processing step dedicated to resolving
ambiguities in the presence of overlapping instruments, as shown in
Table 3.

The presented results suggest that typical challenges of laparoscopic
videos, such as reflection, blood, and lighting variations, are already
well manageable by state-of-the-art methods. However, difficulties with
tube-like structures that are misclassified as instruments or transparent
objects such as trocars persist. Furthermore, images with crossing or
close instruments remain difficult to separate for both state-of-the-
art methods and the presented approach, even though the latter was
specially designed to manage such difficulties. One limiting factor may
be seen in restrictions in the training and test data set, where only 8% of
the images contain more than two instrument instances. Furthermore,
only in rare cases do those instances overlap or intersect, thus resulting
in only limited opportunities for training and evaluating the algorithm’s
separation capabilities.

It should be mentioned that real-time capability is an essential
prerequisite for successful translation to a clinical setting. Currently,
the Conditional Random Field (CRF) Appendix A.4 and the estimation
of the optical flow would already approximately take more than 2 s
per image. However, the method presented was merely an attempt to
solve the multi-instance segmentation problem. The next step could be
rendering the algorithm real-time capable.

We would further like to highlight that our main goal was not
to produce a new state-of-the-art algorithm, instead, we wanted to
show that the systematic analysis of challenge results potentially leads
to actionable insights and thus to a significant improvement in the
algorithm performances.

Overall, our methodology achieved a new best score on the
ROBUST-MIS challenge data set. While we did not use the challenge
test data to tune hyperparameters, it should be mentioned that we
had access to the other participants’ performance results to inform the
strength–weakness driven algorithm development. This could still be
seen as a competitive advantage. However, the primary aim of this
study was not to present a new state-of-the-art method for instrument
segmentation but a novel concept for learning from challenges. With
this work, we have not only identified typical failure cases for the task
of medical instrument segmentation but also showcased an entirely new
way of problem-driven algorithm development based on insights gained
through challenge results.

6. Conclusion

In conclusion, the proposed approach to leveraging meta data anno-
tations for a mixed model-based analysis of challenge results opens up
entirely new opportunities for systematically learning from challenges.
By identification of characteristics that lead to algorithm failure it
not only provides a much deeper understanding of the state-of-the-
art for a given application but also enables tailoring future algorithm
development to the actual remaining needs.
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