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Abstract: This study uses heavy detrital minerals to determine actualistic fluvial and beach sand
provenance across the Betic Cordillera (Spain), along the coast from Almeria to Marbella. The Betic
Cordillera, primarily composed of metamorphic rocks to the east, supply an assemblage dominated
by almandine and graphite, with a longshore dispersal from Almeria to Malaga. Buergerite and
hypersthene indicate the provenance of calcalkaline lavas east of Cabo de Gata. The western part
of the Betic Cordillera, which comprises the Ronda Peridotite Complex, supplies a chromite and
diopside assemblage, with a dispersal from Marbella to Algeciras. Considering these mineralogical
suites, the effects of source rock compositions and weathering are evaluated. The heavy mineral
species mirror the mineralogy of the source rocks of local outcrops and wider source terranes. The
fluvial heavy mineral suites do not differ significantly from those in the beaches except for some
unstable species. Unstable species such as olivine, pyroxene, and amphibole do not show evidence
of loss because of elevated topography and semiarid climate, which do not affect heavy minerals.
This contribution also evaluates the potential of some heavy detrital species as ideal pathfinders in
searching for diamonds.

Keywords: Betic Cordillera; modern sands; heavy minerals; provenance

1. Introduction

It is well known that the integration of framework composition and heavy minerals
of modern sands has revealed an important source of information for provenance deter-
mination and has proven to be a useful tool in determining to what extent clastic detritus
reflects the signature of parent rocks and the effects of source lithologies and textures,
climate, weathering, transport, and depositional environments before diagenetic processes
obliterate these features (e.g., [1]). Accordingly, these studies have significantly increased in
number [2–8]. This research analyzes and interprets the mineralogy of the heavy minerals
of modern sands sampled along a nearly 320 km stretch of the Mediterranean coast of
Spain from Almeria to Cadiz (Figure 1a). The exposed lithologies belong to the Betic
Cordillera, which has a wide spectrum of source rock types and supplies large amounts
of detritus to the coastal and deep-marine environments of the Alboran Sea [9]. The Betic
Cordillera, located in southwestern Spain, is an Alpine orogenic thrust belt consisting of
several tectono-stratigraphic thrust units, including metamorphic (low- to high-grade),
mantle-exhumed rocks (peridotite complex), sedimentary rocks (carbonate, siliciclastic,
and evaporite), and volcanic rocks (e.g., [9]). A previous study [10] showed the main
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mineralogy of river, beach and offshore sands collected along this margin between Almeria
and Cadiz. The authors identified the composition of the sand grains, recognizing three
petrologic provinces characterized by distinct detrital modes on the analyzed onshore and
offshore sand. These three compositional provinces are Almeria–Malaga Province, Marbella
Province, and Almeria–Malaga Province (Figure 1b). The present paper represents a further
extension of the previous work because the integration of light and heavy minerals of
modern sands has been revealed as an important source of information for provenance
determination (e.g., [6,7,11]). The main goals of this study can be summarized as follows:

1. To differentiate heavy mineral assemblages supplied from different source rocks and
assessing the utility of heavy minerals as provenance indicators;

2. To quantify the degree to which weathering has potentially reduced heavy minerals’
diversity;

3. To determine the role of heavy mineral species as tracers in diamond exploration.
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Figure 1. (a) Location map of the Iberian Peninsula and northwestern part of Africa; (b) geological
map of the Iberian and northwestern sector of Africa modified after [12]; (c) tectono-stratigraphic
map of southwestern Spain (Betic Cordillera) and northwestern sector of Morocco. The legend of the
geological map of panel (a) is shown in Supplementary Figure S1 [12].
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To quantify sediment supply from rivers and beaches of the Betic Cordillera in
southwestern Spain and to characterize mineralogical fingerprints of detritus produced
by different source rock lithologies, we studied eight very-fine-grained river and beach
sand samples.

The results are intended to add to the database on the petrographic features of fluvial
and coastal sedimentation, highlighting the useful contribution of heavy detrital mineralogy
analysis of the sand fraction as a powerful research tool. The approach would also be
suitable for comparison with the sediment provenance in geological and physiographic
settings similar to the Mediterranean area.

2. Geology and Physiography of the Source Area

The Betic Cordillera, located in southwestern Spain, is an Alpine orogenic thrust belt
consisting of several tectono-stratigraphic thrust units, including metamorphic (low- to
high-grade), exhumed mantle rocks (peridotite complex), volcanic rocks, and sedimentary
rocks (evaporite, carbonate, siliciclastic) (e.g., [9]). The same tectonic pile is well exposed
surrounding the circum-Mediterranean orogenic belt in the Rif Tell and Calabrian arc [13].
The Betic Cordillera belongs to the Alpine chains surrounding the western Mediterranean
area from the Gibraltar Arc to the Calabria–Peloritani Arc [14–17]. The orogenic belt forms
an arc-shaped arm, formed from the last stage of Alpine Orogeny (from late Mesozoic
to Cenozoic time) caused by the convergence between the African and the Iberian and
Eurasian plates [13,18]. The arc shape is in continuity from north to south of the Gibral-
tar Strait across the Rif Mountains in Morocco, Tell and Atlas in Algeria, and the Italian
Peninsula in the Calabrian arc [13]. During the Miocene age, the internal zones of all the
circum-Mediterranean orogenic belts were affected by uplift. Consequently, orogenic gravi-
tational collapse was driven from the Plio-Pleistocene to Quaternary period by extensional
faults that generated intramountain basins [19–24].

The southern boundary of Iberia includes the Betic Cordillera, which is divided into an
external and internal domain to the north and south, respectively, and a Flysch Zone in the
west [25]. The external domain includes the Prebetic and Subbetic Zone (Figure 1a–c). The
Flysch Zone emerges in the Gibraltar Promontory, including quartzose turbidite sequences
and claystones from the Cretaceous to the lower Miocene [26]. The internal domain, known
as the Betic Zone or Alboran Domain, consists of layered thrust sheets of metasedimentary
and sedimentary rocks with an age ranging from the Paleozoic to the Cenozoic (Figure 1a–c).
This domain is divided into two main geological units: the Higher Betic Nappe and the
Nevado–Filabride Complex. The latter comprise Paleozoic mica schists with garnet and
chloritoid–garnet, quartzite, andalusite, cordierite, sillimanite, and garnet gneiss [27]. They
also include mica schists, marble, calc-schist, albite-epidote amphibolite, metavolcanic
rocks, and serpentinites from the Paleozoic to Triassic periods, along with calcareous
breccias and dolostones of a Triassic age [9]. The Nevado–Filabride Complex is covered
by the Higher Betic Nappe, mainly represented by two thin thrust sheets: the Malaguide
complexes and Alpujarride. (e.g., [28]). In some areas, the Nevado–Filabride Complex
separates the Alpujarride Complex via Triassic metasedimentary terranes, referred to as
the Almagride Complex. The Alpujarride Complex has Paleozoic quartzite, (possibly
pre-Silurian) epidote schist, garnet-bearing schist, mica schist, and marble. It also includes
Permian to Triassic phyllite, quartzite, and graphite-bearing and garnet-bearing schist
with interbedded marble and metabasalt, as well as Triassic gypsum, limestone, and
dolostone [27]. The Alpujarride Complex features the Ronda Peridotite Complex, the most
extensively known exposure of upper-mantle rocks worldwide. This complex includes
olivine gabbro, peridotite, and spinel or garnet pyroxenite [29], with minimal alteration
due to serpentinization [9,27]. The Malaguide Complex comprises non-metamorphosed to
very-low-grade metamorphic carbonate rocks, shale, sandstone, conglomerate, gypsum,
and chert, with Silurian of an early Miocene age. The tectonic units of the Higher Betic
Nappe are unconformably overlayed by clastic, evaporite rocks, and carbonate from the
early Miocene to the Quaternary period. Additionally, some outcrops of Miocene (7–15 Ma)
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calc-alkaline volcanic and volcaniclastic rocks (andesite to rhyolite) crop out in the area of
the coast from Carboneras to Cabo de Gata (Figure 1; [9]).

In the paper by Critelli et al. [10], the mineralogy of beach and river sands collected
along the Mediterranean coast side of the Betic thrust belt between Cadiz and Almeria was
studied. The composition of the sand grains allowed the authors to recognize three different
petrologic provinces characterized by three distinct detrital modes (Figure 1). The latter
correspond from west to east with the physiographic provinces of the Malaga Mountains,
Sierra Nevada, and Sierra de los Filabres, renamed by Critelli et al. [10] as follows:

1. Algeciras–Cadiz Province (quartzose petrofacies);
2. Marbella Province (quartzolithic ultramaficlastic petrofacies);
3. Almeria–Malaga Province (quartzolithic metamorphic—sedimentaclastic petrofacies).

In the Cabo de Gata–Carboneras province, only one sand sample (381) is volcani-
clastic, and Critelli et al. [10] have described it as being without a formal definition of a
petrographic province.

The elevation of the Betic Cordillera ranges from sea-level to 3478 m, with the higher al-
titude corresponding to Mount Mulhacen. The northeast-to-southwest segment of the chain
includes a nearly continuous alignment of highlands nearly parallel to the coastline [10].
The drainage of the chain is to the northwest and the south, and the drainage network
consists of local and ephemeral drainages (Figure 2), generally less than 50 km in length,
delivering clastic supply to the coast. These streams produce occasional catastrophic floods,
transporting rapid sediment to the coast and distributing drift currents along the shore.
An inverse relationship has been found between sediment discharge and the extent of the
drainage basins due to the capacity of the rivers to react to sudden floods and the absence
of areas in the drainage basins where sediments could be stored (e.g., [30]). Currently, the
climate along the coast varies from semiarid to desert [31], becoming more arid eastward,
with a mean annual precipitation of less than 200 mm, and more humid westward, with
a value of nearly 1000 mm. The mean annual temperature isotherm along the coast av-
erages at 18 ◦C [31]. According to these climatic parameters, the weathering efficiency is
mainly controlled by mechanical erosion. [1]. Consequently, the sand composition may
accurately reflect parent rock compositions of the source region without the depletion of
unstable minerals in sediments (e.g., [32]). Littoral drift redistributes sediments on narrow,
steep beaches, and storm waves can activate a very active surf zone, inducing powerful
littoral drift in both the eastern and western directions (e.g., [33]). Specifically, a prevailing
eastward littoral drift predominates between Malaga and Almeria, whereas a westward
littoral drift characterizes the coastal stretch from Malaga to Cadiz (Figure 1c) [34]. Not all
the continental clastic supply remains on the shelf because the narrowness of the northern
Alboran continental shelf likely favors a quick transfer to deeper sedimentary environments
(e.g., [30]).
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3. Materials and Methods

We studied eight very-fine-grained river and beach sand samples (Figure 2, Supple-
mentary Table S1).

We collected four samples from the active main channel and bars in the inner reaches
of river channels and high-tide berms at four beach localities (e.g., [10]).

These have been analyzed previously for their light mineralogy [10].
The sand was sieved to obtain 3–4 Φ granulometric fractions. These fractions of the

sand samples were employed for heavy mineral separation using gravity settling in bromo-
form, which shows a density of 2.89 g/cm3 at 20 ◦C. Magnetite was removed magnetically
using a bar magnet, while the remaining heavy minerals were concentrated by passing
the fraction multiple times through a Frantz Isodynamic magnetic separator (University
Complutense, Madrid, Spain). This procedure concentrated the heavy minerals into five
electromagnetic fractions (0.2; 0.5; 1.0; 1.5 and >1.5 A), facilitating their identification [35].
Heavy minerals were mounted on a slide for mineralogical analyses and were analyzed
through Raman spectroscopy (University of Calabria, Arcavacata di Rende, Italy). We
used this analytical instrumentation because it can be applied to thin sections and grain
mounts without requiring any special preparation, unlike other mineralogical analytical
tools such as X-ray diffraction [36,37]. We analyzed 50 grains for each electromagnetic
fraction. Raman spectra were directly obtained by focusing the laser beam on the grain
surface. Micro-Raman analysis was carried out using a Thermo Fisher DXR Raman micro-
scope (Waltham, MA, USA), equipped with OMNICxi Raman Imaging software 1.0, with
an objective of 50×, a grating of 900 ln/mm (full width at half maximum, FWHM), and an
electron-multiplying charge-coupled device (EMCCD). A 532.0 nm line (solid-state laser)
was used at an incident power output ranging from 1.8 to 7 mW. The spatial resolution of
the laser beam was 3–5 µm. The spectra acquisition time ranged from 5 to 40 s [38]. The
Raman spectra were acquired at a low wavenumber range from ~100 cm−1 to 1500 cm−1.

Detrital heavy minerals were identified using a comparison between the obtained
Raman peaks and the reference spectra reported in the literature (e.g., [39–62]) and miner-
alogical databases (http://www.rruff.info, accessed on 31 May 2024) [63].

Heavy mineral grains of nine selected samples were contained only in the 0.2 A, 0.5 A,
and 1.0 A fractions. (Table 1). The percentage of heavy minerals in each sample was
calculated by considering all the grains in all magnetic fractions.

Table 1. Distribution of heavy minerals in the different electromagnetic Franz fractions of each petro-
facies. Alm = almandine; Hyp = hypersthene; Aug = Augite; Di = Diopside; Omp = omphacite;
Hbl = hornblende; Krs = kaersutite; Tr = tremolite; Cum = cummingtonite; Act = actinolite;
Ep = epidote; Bur = buergerite; St = staurolite; Cld = chloritoid; Sill = Sillimanite; Fo = forsterite;
Chr = chromite.

Samples Petrofacies Sample
Environment

Electromagnetic
Fraction (A) Heavy Minerals

382 Rio Morales

A: Almeria-Malaga

fluvial
1.0 Ep + Bur

0.5 Alm + Cld + Bur

388 Rio Adra fluvial
1.0 Ep

0.5 Alm

381 Las Negras beach beach
0.5 Bur + Hbl + Cum + Hyp + Aug +

Di + Omp

0.2 Hyp + Krs + Bur

394 Punta de la Mona beach beach
1.0 St + Sill

0.5 Alm + Tr + Mnz

396 Lagos beach beach
1.0 Tr + St

0.5 Alm + Di

http://www.rruff.info
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Table 1. Cont.

Samples Petrofacies Sample
Environment

Electromagnetic
Fraction (A) Heavy Minerals

406 Rio Guadalmina

B: Marbella

fluvial
0.5 Fo + Hyp + Act

0.2 Chr

407 Rio Guadalmansa fluvial
1.0 Fo + Aug + Di

0.5 Alm + Di + Fo + Chr

408 Punta del Castor beach beach
1.0 Fo + Hyp + Aug + Act

0.5 Alm + Di + Cum

4. Results

Each sedimentary petrofacies in the Betic Cordillera orogen generates siliciclastic
sediment with a specific detrital signature for light (e.g., [10]) and heavy detrital mineralogy.

The results of the Raman analysis are shown in Figures 3–6. The heavy mineral
suites observed in Almeria–Malaga and Marbella petrofacies mainly include pyroxene,
amphibole, and garnet (Figures 3, 4 and 5a). The main difference in composition is shown
by the presence of metasedimentary heavy minerals (Figure 5b–d), epidote (Figure 5e),
tourmaline (Figure 5f), and monazite (Figure 6a) in the Almeria–Malaga petrofacies. At the
same time, actinolite, olivine, and spinel characterize the Marbella petrofacies (Figure 6b–d).
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Figure 4. Raman spectra of amphibole in the Almeria–Malaga petrofacies. (a) Hornblende (Hbl) and
(b) kaersutite (Krs) detected in Las Negras beach; (c) tremolite (Tr) occurring in the Lagos beach;
(d) cummingtonite (Omp) identified in Las Negras beach.

Pyroxene includes orthopyroxene, hypersthene (Figure 3a), and clinopyroxene as
diopside, augite, and omphacite (Figure 3b–d).

Amphiboles are characterized by hornblende, kaersutite, tremolite, and cumming-
tonite in the Almeria–Malaga petrofacies (Figure 4a–d) and by actinolite in the Marbella
petrofacies (Figure 6b).

Garnet is characterized by almandine (Figure 5a), which is often in association with
graphite (Figure 7).

Metasedimentary heavy minerals include staurolite (Figure 5b), chloritoid (Figure 5c),
and sillimanite (Figure 5d). Tourmaline is characterized by diagnostic bands [39,44] con-
firming the presence of the buergerite variety (Figure 5f).

The Marbella petrofacies is also composed of olivine as forsterite (Figure 6c) and spinel
as chromite (Figure 6d).

All the heavy minerals are primarily characterized by morphological features indica-
tive of mechanical weathering.
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4.1. Distribution of Heavy Minerals in the Almeria-Malaga Petrofacies

Heavy minerals are concentrated in different electromagnetic Franz fractions (Table 1).
Tourmaline-type buergerite, augite, and tremolite are mainly concentrated in electromag-
netic fractions 1.0 A and 0.5 A. Specifically, buergerite also characterizes the 0.2 A elec-
tromagnetic fraction where kaersutite and hypersthene are also present. Hypersthene is
also concentrated in the 0.5 A electromagnetic fraction. This fraction also includes alman-
dine, hornblende, cummingtonite, diopside, omphacite, chloritoid, and monazite. Epidote,
sillimanite, and staurolite characterize the 1.0 A electromagnetic Frantz fraction.

In this petrofacies, only one sand sample, from Las Negras beach, is volcaniclastic
(Cabo de Gata–Carboneras province), and it will be described without a formal definition of
the petrographic province. Specifically, this sand sample is composed mainly of the orthopy-
roxene hypersthene (~24%), the clinopyroxene augite, diopside, and omphacite (~23%),
amphibole (29%), and tourmaline (~24%) (Figure 8). Amphiboles include hornblende,
kaersutite and cummingtonite. The tourmaline buergerite is also found in an amount of
24%, compared to that in Rio Morales, where this mineral shows a lower abundance of 16%
(Figure 8).
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the location of the sampling sites. Tur = tourmaline (Bur); Mnz = monazite; Amp = amphibole (Hbl,
Cum, Tr, Act); Cpx = clinopyroxene (Di, Aug, Omp); Opx = Orthopyroxene (Hyp); Fo = forsterite;
Spl = Spinel; Ep = Epidote; Grt = Garnet (Alm); MM = metasedimentary heavy minerals (St, Cld, Sil).

Different to samples from Las Negras beach, in the other beach samples (Punta de
la Mona and Lagos), amphibole is represented by tremolite in amounts of 14% and 29%
(Table 1; Figure 8), respectively. These minerals are not present in the Rio Morales and Rio
Adra samples (Figure 8). In all sand samples, the amount of garnet, composed of almandine
species, ranges from 29% to 80% except in Las Negras beach (Figure 8). In both Punta de
la Mona and Lagos beach, this mineral is often in association with graphite. This latter
is also present as an inclusion in the garnet of Rio Adra. An average value of about 13%
of epidote is detected in Rio Morales and Rio Adra (Figure 8). Metasedimentary heavy
minerals (~27%) are observed in Rio Morales with the occurrence of chloritoid and in Punta
de la Mona beach and with the presence of staurolite and sillimanite (Figure 8). Staurolite
in Lagos beach is also found (Table 1). An amount of 14% of monazite is found in Punta de
la Mona beach (Figure 8). Carbonates such as ankerite and dolomite are identified in Rio
Morales and Rio Adra.
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The surface texture of the heavy minerals suites is fresh and angular and does not
show etching processes due to dissolution (Figure 3(a1,b1,c1,d1); see Figure 4(a1,b1,c1,d1),
Figure 5(a1,b1,c1,d1,e1,f1), and Figure 6(a1,b1,c1,d1)).

4.2. Distribution of Heavy Minerals in the Marbella Petrofacies

The results of different electromagnetic fractions of Marbella petrofacies are shown in
Table 1. These electromagnetic fractions exhibit the concentrations of forsterite, hypersthene,
diopside, and actinolite in the 1.0 A and 0.5 A fractions. Moreover, the 0.5 A electromagnetic
fraction includes almandine and cummingtonite with respect to the 1.0 A fraction, in which
augite and chromite are concentrated. Chromite in the 0.2 A electromagnetic fraction is
also observed.

Forsterite occurred in all sand samples, reaching an amount of up to 38% in Rio
Guadalmina and decreasing in amount to 18% at Punta del Castor beach (Figure 8). Punta
del Castor beach sand hypersthene show a higher value, of about 18%, than the other
sand samples.

The river (Rio Guadalmansa) to beach environment transition (Punta del Castor)
shows a slight decrease in abundance, ranging from 31% to 27% and 23% to 18%, for
diopside, augite, and garnet. Amphiboles is present in higher amounts in Punta del Castor
beach (19%) and shows a lower value in the Rio Gualdamina (8%) (Figure 8). Chromite
was found in Rio Guadalmina and Rio Guadalmansa (Figure 8).

5. Discussion
5.1. Betic Cordillera Source Rock Types and Heavy Minerals

The efficiencies of the concentrating processes are not the same for each mineral
(e.g., [10,64]), and according to their mobility, the occurring heavy mineral assemblages
indicate that these were delivered to the beach environment by rivers as bedload (e.g., [65]).
In terms of both water discharge and sediment transport, Andalusian river systems are
quite efficient despite the small size of their catchments (e.g., [30]).

In this study, many heavy mineral species were recorded: almandine, hypersthene,
augite, diopside, omphacite, hornblende, kaersutite, tremolite, cummingtonite, actinolite,
epidote, buergerite, staurolite, chloritoid, sillimanite, forsterite, and chromite. This great
variety is interpreted because of the weathering-limited erosion regime within the Betic
Cordillera, which has not affected the diversity of the heavy mineral assemblages taken
into the bedload rivers and transported to the coast. Clastic sedimentation is characterized
by unstable minerals such as olivine and pyroxenes in the sand. The high heavy mineral
diversity of this study area demonstrated that they have value as sensitive indicators
of both a local and broader scale of provenance. For example, the Rio Morales and Las
Negras beach heavy mineral assemblages reflect a restricted outcrop of volcanic rocks
at the Cabo de Gata promontory. The main heavy species are buergerite, augite, and
hypersthene. Specifically, buergerite was first found in hydrothermally altered tuffs and
clayey rhyolites near Mexquitic, San Luis Potosi, Mexico [66], in aplite–pegmatite veins of
the Plana Cretaceous Pluton in Bulgaria [67] and as a detrital mineral in Paleozoic felsic
metasedimentary source rocks [68]. The mineral suites also reflect variations in the broader
scale of provenance from Almeria to Malaga.

The main heavy mineral association of the Almeria–Malaga province is dominated by
almandine associated with graphite, which is often present as an inclusion in almandine.
Specifically, graphite can be considered a provenance-diagnostic detrital species (e.g., [69])
ascribed to sediment supplies mainly from small outcrops of the graphite-bearing schists
of the Alpujarride Complex (Figures 1c and 7). The assemblage of sillimanite, staurolite,
almandine, chloritoid, monazite, and epidote are ascribed to provenance from the Nevado–
Filabride Complex metamorphic rocks (Figures 1c and 8). In contrast, the presence of
dolomite suggests that this detrital species is supplied by metasedimentary lithotypes
of the Nevado–Filabride Complex and the Alpujarride Complexes (Figures 1 and 8). In
Marbella Province [10], the Ronda Peridotite Complex, including peridotites, gabbros, and
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serpentinites [19], is dominated by olivine as forsterite, chromite, and diopside (Table 1,
Figures 1c and 8). Even though the ultramafic rocks of the Ronda Peridotite Complex
represent a restricted outcrop area, the abundance of ultramaficlastic heavy species is much
higher than that of almandine supplied by the garnet-bearing schists of the Alpujarride
Complex (Figures 1 and 8), which has a much wider areal extent in the hinterland. The
overrepresentation of the ultramaficlastic detritus can be related to a Sand Generation
Index [22] for the Ronda Peridotite Complex that is higher than that of the Nevado–
Filabride metamorphites.

Therefore, we can confirm that the mineralogy of the river and beach sands analyzed
reflects the provenance of source rocks belonging to the catchment. This correlation between
mineralogical data and local geological characteristics enhances our understanding of the
study area’s sedimentary dynamics and erosion sources (Figure 9a–d).
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location sites (black rectangles and square); (b) 2D map view of the lithology of Marbella study area
with the location sites; (c) 2D map view of the lithology of Malaga study area with the location sites;
(d) 2D map view of the lithology of Almeria site with the location sites. The legend of this map is
shown in the Supplementary Figure S2 [70].

5.2. Provenance and Weathering of Heavy Minerals

In the provenance studies is formulated an “order of persistence” of the heavy detrital
minerals widely used as a measure of mineral stability in sediments (e.g., [71]). Unstable
species include andalusite + pyroxenes + amphiboles (APA sensu [11]), epidote + zoisite
+ kyanite + sillimanite + titanite + brookite (EKS sensu [11]) are considered moderately
stable, garnet + apatite + staurolite (GAS sensu [11]) is regarded as stable, and zircon +
tourmaline + rutile are considered ultrastable species (e.g., ZTR sensu [72]). Therefore,
different heavy minerals display different responses to weathering [5]. This study suggests
that the effects of chemical and biochemical weathering on the heavy minerals assemblages
have been negligible and that mechanical weathering has also been only a modest cause of
compositional modification during transport [73].
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5.3. The Role of Tracer Heavy Minerals in Diamond Exploration

The disaggregation of mantle rocks yields large quantities of mantle minerals, com-
monly referred to as kimberlitic indicator minerals, and, from an exploration point of
view, the most important indicator minerals are garnet, chromite, Cr-diopside and olivine
(e.g., [74]). In general, these “kimberlitic indicator minerals” are obviously not unique to
kimberlites but also include exhumed mantle peridotites like the Ronda massif. Therefore,
kimberlitic indicator minerals can be extracted from medium-to-fine sand in sample sur-
face materials such as soil, stream, and till sediments (e.g., [74–76]). Some heavy detrital
species, described by Nowicki et al. [74], have been found in the ultramaficlastic Mar-
bella petrofacies (e.g., [10]), confirming that they are supplied from the Ronda Peridotite
Complex, which includes peridotite, olivine gabbro, and spinel or garnet pyroxenite as
source rocks (e.g., [9,27,29]). Heavy mineral varieties of Betic sand, associated with mantle
rocks of the Ronda Peridotite Complex, include garnet, ilmenite, and chromite. These
species, considered stable (e.g., [71]), are particularly useful due to their greater ability
to survive weathering in the surface environment [5]; thus, in addition to rare diamond,
the disaggregation of mantle rocks yields quantities of other mantle minerals, commonly
referred to as kimberlitic indicators.

6. Conclusions

The provenance of the heavy minerals assemblages of the river and beach, from
Carboneras to Marbella, located in the Betic Cordillera orogenic terranes, is linked to meta-
morphic (mainly gneisses and schists), ultramafic (peridotite, olivine gabbro, and spinel
or garnet pyroxenite) and calcalkaline volcanic rocks, outcropping in the drainage basins
of the Andalusian margin. The eastern Betic Cordillera supplies two assemblages: one
widespread and dominated by almandine and graphite, derived from garnet–sillimanite
gneiss, forming the larger part of the outcrops, and the other by buergerite and hypers-
thene, identifying a small outcrop of andesite to rhyolite effusive rocks. The western Betic
Cordillera supplies an assemblage dominated by forsterite, chromite, and diopside, closely
matching the ultramafic bedrock lithology of the Ronda Peridotite Complex.

The results indicate that the effect of weathering did not influence the heavy min-
eral suites; even olivine, pyroxene and amphibole, susceptible to chemical loss, are well
preserved in the sand, with no sign of corrosion or dissolution. Moreover, some mantle
rock-derived heavy minerals, such as garnet, chromite, diopside and olivine, are known as
kimberlitic indicator minerals.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/geosciences14080208/s1: Figure S1: Geological map of the Iberian
Peninsula and northwestern sector of Africa with a legend; Figure S2: Geological map of the Betic
Cordillera (southwestern sector of Spain) with the location sample sites and a related legend. Table S1:
Location of sampling sites and year of sampling.
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