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Abstract: The effect of the vertical component of earthquakes on the structural behaviour of unre-
inforced masonry (URM) walls is usually not considered by technical codes for ordinary buildings.
Recent scientific literature, however, indicates that the earthquake vertical component may play a
significant role in the crack pattern of URM walls and their collapse. This paper investigates the effect
of the vertical seismic component on the capacity and damage scenario for a two-story regular URM
wall, described with a detailed micro-modelling approach. Pushover and nonlinear time history
analyses are carried out with and without the vertical component and under different dead loads
representative of typical stress states for URM structures. The inter-story drift and roof drift ratios
are introduced as Engineering Demand Parameters (EDPs), and their correlation with the Ground
Motion Parameters (GMPs) of the horizontal and vertical components is discussed. The results
show a very good correlation between the seismic demand and the GMPs of the vertical component,
demonstrating the influence of the vertical component on the global seismic response. Moreover, the
study shows that the influence of the vertical component increases with the vertical load applied to
the structure, which indicates that the vertical ground motion component cannot be a priori neglected
for URM walls when moderate to large vertical GMPs are expected.

Keywords: masonry structures; URM walls; earthquake vertical component; micro-modelling;
nonlinear static analysis; nonlinear time history analysis

1. Introduction

Following the indications of Eurocode 8 EN1998-1 §4.3.3.5.2 [1] and EN1998-3 §4.4.7 [2],
the vertical component of the seismic action is considered only when the Peak Ground
Acceleration (PGA) of the ground motion is greater than 0.25× g and in the following cases:

• for horizontal or nearly horizontal structural members spanning 20 m or more;
• for horizontal or nearly horizontal cantilever components longer than 5 m;
• for horizontal or nearly horizontal pre-stressed components;
• for beams supporting columns;
• in base-isolated structures.

In the published literature, the relationship between vertical and horizontal response
spectra of the free field ground motion recorded is studied to show the importance of the
vertical component of earthquake ground motion in seismic analysis. Pioneering studies
have shown that the relationship between vertical and horizontal (V/H) response spectra
is highly dependent on the period and site distance from the seismic source [3–6]. The
literature shows that the vertical component of the earthquake plays a fundamental role in
defining the crack pattern of the elements and their collapse. Different papers studied the
two main shocks of the 2016 Central Italy seismic sequence. Liberatore et al. [7] compared the
Interferometric Synthetic Aperture Radar (InSAR) findings of the 2016 Amatrice earthquake
with the macro-seismic data, highlighting how, in masonry structures with small cohesion,
the vertical component increases masonry vulnerability. This result was confirmed in other
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studies that analysed the 2012 Emilia Romagna earthquake [8–10]. The analysis of the crack
pattern of some structures, e.g., the clock tower in Emilia Romagna [11], confirmed that, for
low-strength masonry structures, the influence of the vertical component of the earthquake
leads to severe damage of the structures or even to their collapse.

Recent papers on historic masonry structures studied the effects of the earthquake
vertical component considering different conditions: the characteristics of the seismic
event affecting the area [12–16], the distance from the epicentre [16], and the type of struc-
ture [17,18]. In Kallioras et al. [19], the damage potential of vertical accelerations was
investigated through a series of multidirectional shake table tests on full-scale structures
under simulated near-source ground motions of increasing intensity. The experiments
comprised three nominally identical building specimens subjected to the principal hori-
zontal component alone, the horizontal component combined with the vertical one, and
the full three-component ground motion. In Chieffo et al. [20], a FEM model of the Banloc
castle, a historical building in Romania, was investigated in the nonlinear dynamic field to
evaluate the influence of the vertical seismic component in terms of displacement stress
and crack pattern, accounting for only the horizontal component and the horizontal and
vertical components. In Brunelli et al. [21], to simulate the seismic performance of the
“Pietro Capuzi” school in Visso, the Marche Region (Italy), under a series of seismic motion
events similar to those produced by the 2016–2017 Central Italy earthquake, the sequence
of acceleration time histories recorded along both horizontal directions X and Y at the
base and the vertical component were applied to nonlinear EF models with both fixed and
compliant bases.

This paper aims to evaluate the influence of the vertical component of the earthquake
on a 2D wall implemented in the OpenSees framework with STKO analysis software [22]
using a micro-modelling approach.

The choice of this modelling approach is made considering the type of analysis to
be carried out and the case study. Following a bibliographic study, it is possible to affirm
that the main advantage of this type of modelling is the accuracy in predicting the failure
load and the collapse mechanism, as demonstrated in [23,24]. It has been shown that the
micro-model is able to obtain results of very similar collapse mechanisms on unreinforced
masonry structures.

Section 3 of the paper describes the case–study structure, with the geometric charac-
terization, mechanical properties, and calibration of the structural micro-model. Section 4
shows the results of Pushover (PO) analyses carried out considering different vertical
loading conditions, representing typical conditions for masonry structures. Nonlinear
Time History Analyses (NTHAs) carried out by subjecting the structure to three different
earthquakes and different vertical loads are described in Section 5, where the selected
ground motion records, the results of the analyses, and the correlations between the se-
lected Engineering Demand Parameters (EDPs) and the Ground Motion Parameters (GMPs)
are described. In Section 6, the conclusions are drawn.

2. Numerical Formulation

The model used in this work is an extension of the plastic damage model developed
by Petracca et al. [25] and presented in Petracca et al. [26].

The model is based on continuum damage mechanics and uses a mixed implicit
integration scheme.

The adopted model is an orthotropic model of pure tension/compression damage
(d+/d−) based on the continuous model to accurately reproduce the nonlinear shear
response of masonry walls. Failure surfaces are defined through two scalar quantities
calculated using Equations (1) and (2):

τ− = H(−σmin)

[
1

1− α

(
αI1 +

√
3J2 + k1β〈σmax〉

)]
(1)
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τ+ = H(σmax)

[
1

1− α

(
αI1 +

√
3J2 + β〈σmax〉

)
σt

σp

]
(2)

where τ− represents the equivalent compression stress, τ+ represents the equivalent tensile
stress, σmax represents the primary effective stress, σt represents the tensile strength of the
units or mortar joints, σp represents the peak compressive strength of the units or mortar
joints, I1 is the first invariant of the effective stress tensor, J2 is the second invariant of
the effective deviatoric stress tensor, and k1 is the ratio between the biaxial and uniaxial
compressive strengths.

Equivalent stresses and damage evolution in tension and compression are defined by
uniaxial stress-strain laws. The uniaxial stress laws are defined as shown in Figure 1 and are
comprised of two parts: a linear part [(0; 0)—(ε0; σt)] with σt equal to the stress resistance
of the unit or mortar joints and ε0 equal to the corresponding deformation at σt and of
a softening branch that depends on the tensile fracture energy Gt and the characteristic
length of the finite element ldis.
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Figure 1. Uniaxial stress laws.

The uniaxial compression law is defined as in Figure 2 and is characterized by five
parts: a linear part [(0; 0)—(ε0; σ0)], a hardening section [(ε0; σ0)—(εp; σp)], two softening
parts [(εp; σp)—(εk; σk)] and [(εk; σk)—(εu; σu)], and a final residual [(εu; σu)—(+∞; σu)].
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With:
σ0 equal to the compression strength at the beginning of hardening;
ε0 equal to the deformation at the beginning of hardening;
σp equal to the peak compression strength of the units or mortar joints;
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σp peak deformation;
σr = σu equal to residual strength;
εr equal to the residual deformation;
σu equal to the ultimate deformation;
σk e εk evaluated as intermediate control points.
All the numerical simulations shown in this work are completed using the OpenSees [27]

solver, where the authors have implemented the proposed constitutive model. Pre- and
post-processing are carried out with STKO software [22].

3. Case–Study Structure

This section discusses the geometrical and mechanical characteristics of the case
study structure. This study considers a masonry wall with geometric characteristics sim-
ilar to wall D tested in Pavia (IT) [28,29], belonging to a two-story UnReinforced Ma-
sonry (URM) building. The wall dimensions are 600 × 643 × 25 cm (length, height, and
width, respectively) with four openings, two on the first floor with dimensions equal to
94 cm × 214 cm (length, height) and two on the second floor with dimensions equal to
94 cm × 124 cm (length, height), perfectly aligned with each other, as shown in Figure 3a.
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Figure 3. Wall geometry: (a) element dimensions (m), numbering of masonry piers, and (b) layout of
the numerical model.

Material properties are chosen to match a typical Italian historical masonry building [30].
They are characterized by solid fired-clay bricks with dimensions 25 × 12 × 5.5 cm3 (length,
thickness, and height), having a mean cubic compressive strength equal to 15 MPa and
hydraulic lime mortar with a thickness of 10 mm with a compressive strength of 3.2 MPa. The
brick courses are alternated to give discontinuity to the vertical mortar joints, as shown in
Figure 3b.

The homogenized compressive strength of masonry is assumed to be equal to 3.2 MPa.
For the micro-model, the mechanical parameters are divided between those inherent to the
brick and those inherent to the mortar, as shown in Tables 1 and 2. The mortar compression
strength is assumed equal to the compressive strength of the masonry, while the other
parameters are assumed in agreement with the relevant scientific literature. Specifically,
these would be the tensile strength of the mortar and the energy parameters of fracture of
mortar and brick, which vary for calibration purposes.
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Table 1. Brick material parameters.

Parameter Unit Value

Young’s Modulus E (N/mm2) 6000
Poisson’s ratio ν (-) 0.2

Tensile strength ft (N/mm2) 1.5
Tensile fracture energy Gt (N/mm) 0.1

Compressive strength hardening fc0 (N/mm2) 10
Compressive strength at peak fcp (N/mm2) 15
Compressive strength residual fcr (N/mm2) 5

Compressive deformation at peak εp (-) 0.01
Compressive fracture energy Gc (N/mm) 10

Table 2. Mortar material parameter.

Property Symbol and Units Value

Young’s Modulus E (N/mm2) 350
Poisson’s ratio ν (-) 0.15

Tensile strength ft (N/mm2) 0.09
Tensile fracture energy Gt (N/mm) 0.02

Compressive strength hardening fc0 (N/mm2) 1.6
Compressive strength at peak fcp (N/mm2) 3.2
Compressive strength residual fcr (N/mm2) 0.5

Compressive deformation at peak εp (-) 0.05
Compressive fracture energy Gc (N/mm) 70

Equal degrees of freedom in the x direction are located at each floor of the structure to
prevent relative displacement between nodes in this direction. This assumption is only an
approximation to represent the 2D model; it should be highlighted that the roof in the test
was not a rigid diaphragm.

The analyses are developed by varying the Vertical Load (VL) representing the dead
and live loads of the slabs. Three different VLs are applied to each story, i.e., 10 kN/m,
30 kN/m, and 64 kN/m. The application of the vertical loads involves an increase in the
stress at the base of about 5%, 10%, and 20% respectively. The VLs were named as follows:
VL-a, VL-b, and VL-c.

Figure 4 shows the shear and flexural capacities versus the applied vertical stress of
the masonry piers P1 and P2 (Figure 3).
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Figure 4. Resistance domains of masonry piers P1 (left) and P2 (right). Vertical lines correspond
to VL-a (yellow line), VL-b (black line), and VL-c (green line). Grey lines correspond to the shear
capacity Vt, and the red and blue curves refer to flexural capacities corresponding to free rotation
(Vf_fr) or absence of rotation at the top of the panel (Vt_nr), respectively.
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The failure criteria provided in the Italian design code [31,32] are used in this study.
Thus, the in-plane flexural capacity Mu and the shear capacity Vt of the pier are calculated
as indicated in Equations (3) and (4).

Mu =
σ0l2t

2

(
1− σ0

0.85 fd

)
(3)

where Mu is the in-plane bending moment, fd design compressive strength of masonry, 0.85
is the stress distribution coefficient, σ0 = N/(l t) the average compression stress, N is the
vertical action on the pier, and l, t are the width and thickness of the pier, respectively.

Vt =
1.5τ0dlt

β

√
1 +

σ0

1.5τ0d
(4)

where Vt is the shear capacity of the section according to the Turnšek and Čačovič [33]
criterion, β is a coefficient taking into account the slenderness of the pier, and τ0d is the
design shear strength.

On the horizontal axis (Figure 4), vertical stress σc is normalized to the peak com-
pressive strength fcp (or σcp) of the masonry, while, on the vertical axis, there is the shear
capacity Vb corresponding to the activation of the flexural and shear mechanisms. On
each plot, the grey line refers to the shear capacity Vt controlled by the shear, while the
blue and the red lines correspond to the flexural capacity Vf attained considering different
constraints at the top of the panel, i.e., free rotation Vf_fr or the absence of rotation Vf_nr.
The flexural capacities of Figure 4 are calculated in terms of the flexural shear Vf as the
ratio between the flexural capacity Mu and the height h0 of the point in the panel where
the bending moment is equal to zero (Vf = Mu/h0). The resistance domains are used to
evaluate the capacity of the masonry piers analysed and the collapse mechanisms expected
for different loading conditions. Vertical lines corresponding to VL-a (yellow line), VL-b
(black line), and VL-c (green line) of the ratio σc/σcp are placed over the resistance domains
to predict the range of possible resistance values. For example, for VL-c (green lines), the
Vb of masonry pier P2 can vary from 160 to 340 kN.

Table 3 reports the first three linear periods of the structure studied and the correspond-
ing mass participation ratios for each loading condition. The modal analysis shows that,
for each VL, the horizontal and vertical modes are uncoupled, and the vertical response of
the building is predominantly governed by the third mode of the structure.

Table 3. Vibration modes and mass participation ratios for VL-a (at left), VL-b (at centre), and VL-c
(at right).

VL-a VL-b VL-c

T (s) Mx (%) My (%) T (sec) Mx (%) My (%) T (sec) Mx (%) My (%)

0.1328 79.57 0.00 0.1888 81.75 0.00 0.2576 83.07 0.00
0.0494 13.33 0.00 0.0700 14.14 0.00 0.0947 14.47 0.00
0.0451 0.00 87.54 0.0634 0.00 89.93 0.0861 0.00 91.30

4. Pushover Analyses

This section describes the results of the Pushover (PO) analyses for the structure stud-
ied. The PO analyses are developed using the horizontal load with a uniform distribution
proportional to the masses (positive and negative). The horizontal load is concentrated at
the plane levels (at the node).

Figure 5 shows the PO curves. The vertical axis shows the base shear Vb, and the
horizontal axis shows the Inter-story Drift Ratio (IDR) or the Roof Drift Ratio (RDR). IDR
represents the ratio between the inter-story displacement and the story height, and RDR
represents the ratio between the displacement on the top of the structure and its total height.
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Figure 5 shows the IDR for the first story (IDRS1, left), the IDR for the second story (IDRS2,
centre), and the RDR (right). Each plot shows the results obtained for VL-a, VL-b, and VL-c.
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Figure 5. PO curves obtained for VL-a, VL-b, and VL-c. The three plots report the IDR of the first
level (left), the IDR of the second level (centre), and the RDR (right) of the masonry wall.

The plots show the curves obtained for different VLs. The figure shows that the IDRS1
values are higher than the corresponding IDRS2 and RDR values. For this reason, the IDRS1
values are considered in the PO graphs below.

In the range of the vertical loads considered, which are significantly lower than the
compressive strength of the masonry, a monotonic increasing trend is observed for the peak
value of the PO curve as the vertical load increases.

Figure 6 reports the PO curve evaluated for VL-a at the first level of the case–study
structure and the corresponding cracking pattern at 0.5% 1%, and 2% of IDRS1. The first
two values are representative of the shear and bending limit states suggested by the Italian
technical code [31] and CNR DT 212 [34] for the frame behaviour (piers fixed to spandrels).
The Italian technical code suggests a drift limit of 2% for piers that behave as cantilevers. It
is used herein as an extreme upper bound of the near-collapse conditions of an unreinforced
masonry (URM) wall.
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Figure 6. Cracking pattern of the masonry wall with VL-a. From left to right, damage scenarios
corresponding to (a) 0.5%, 1% (b), and 2% (c) of IDRS1.

Figure 7 shows the crack patterns corresponding to VL-a (at left), VL-b (centre), and
VL-c (right) for IDRS1 equal to 2%. As expected, higher vertical loads correspond to a higher
pier capacity, and less damage to the piers corresponds to greater damage to the spandrels.

The PO curves are described for two reasons: the first is to have a comparison be-
tween the resistant capacity of the element (Vb) obtained from the PO analysis with that
obtained from the cycles of nonlinear dynamic analysis, and the second is to show how
the PO curves to vary the static vertical load and then to demonstrate the reliability of the
calculation models.
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Figure 7. Crack pattern of the masonry wall corresponding to an IDR of the first level equal to 2% for
(a) VL-a, (b) VL-b, and (c) VL-c.

5. Nonlinear Time History Analyses

This section reports the results of the NTHAs carried out using three ground motions
recorded in Italy, applied to the case–study structure with and without the vertical compo-
nent (V) of the seismic acceleration. The nonlinear model uses 5% damping (at the first and
third mode frequencies) with full initial stiffness.

Two global Engineering Demand Parameters (EDPs) are considered for the NTHAs [35]:
the IDR and the RDR.

5.1. Ground Motion Record Selection

The NTHAs performed for the case–study structure use three unscaled ground motion
records recently recorded in Italy and selected from the ITalian ACcelerometric Archive—
ITACA [36]. The records are selected to be spectrum-compatible with the Uniform Hazard
Spectrum (UHS) corresponding to a return period TR of 475 years and a rigid soil (cat. A)
site located at long 45.419, lat 7.1536. Additionally, according to EC8 [1] and NTC18 [31],
for each period Ti included in a range between 0.02 s and 1.0 s, the average spectrum of the
three selected records was greater than 90% of the UHS and lower than the 130% of the
UHS, as indicated in Figure 8.
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Figure 8. Response spectra corresponding to the horizontal components of the spectrum-compatible.
Upper and lower limits represent 130% and 90% of the UHS considered in this study.

First, only the Horizontal component H of the ground motion is applied to the two-
dimensional (2D) structure; then, the horizontal and vertical components (H + V) are
applied simultaneously. For each ground motion component, 15 s of the record is used
in the analysis to reduce the computational effort. This interval time is selected based on
the significant duration of the record and considering the time over which a proportion of
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the total Arias Intensity between 5% and 95% is accumulated. Figure 9 shows the ground
motion components H and V used for each record in this study.
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Figure 9. Horizontal (top row) and vertical (bottom row) recorded accelerograms: (a) earthquake #1,
Norcia 30 October 2016, 14.9 km from the epicentre; (b) #2 Norcia 30 October 2016, 19.2 km from the
epicentre; and (c) #3 Norcia 30 October 2016, 20 km from the epicentre.

Table 4 reports the main seismological features of each selected record (Name, Moment
Magnitude Mw, Earthquake Date, Code of the Station, Site Class, and Epicentral Distance
R) and the Peak Ground Acceleration of the selected horizontal component (PGAH) and
vertical components (PGAv).

Table 4. Ground motion records.

# Event
Name

Event
Mw

Event
Date

Station
ID

EC8 Site
Class

R
(km)

PGAH
(g)

PGAV
(g)

1 Norcia 6.5 2016/10/30 CSC B 14.900 0.169 0.159

2 Norcia 6.5 2016/10/30 MMO A 19.200 0.189 0.140

3 Norcia 6.5 2016/10/30 T1215 A 20.100 0.089 0.065

The ratios PGAV/PGAH of the records #1, #2, and #3 are equal to 0.94, 0.74, and 0.73,
respectively.

Figure 10 shows the response spectra of the H and V components of the three selected
records and the corresponding ratio, V/H. These plots indicate that record #1 is character-
ized by a very high vertical spectral acceleration at T = 0.09 s, equal to Sa,V = 5.20 m/s2. For
the same period, the horizontal spectral acceleration, Sa,H, is low; thus, the ratio at Sa,V/SaH
is at its maximum in this period and is equal to 2.25. Analogous behaviour can be observed
for records #2 and #3, whose maximum ratios Sa,V/SaH occur at T = 0.75 s and T = 0.59 s,
respectively. As indicated in Section 3, the vertical period obtained for VL-c (T = 0.861 s) is
very similar to the period corresponding to the maximum spectral amplification of record
#1. This indicates that the effect of the vertical component of record #1 is, in this case,
affected by an amplification due to the dynamic characteristics of the structure. This effect
is negligible for the other records.
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Figure 10. Response spectra of the H component (a) and V component (b) and ratio V/H for each
period of the selected ground motion records (c).

5.2. Ground Motion Parameters of the Selected Records

The H and V components of the three selected earthquake ground motions are care-
fully analysed by six different intensity parameters, some of which are calculated from the
ground motion records and others from the response spectra. The parameters computed
from the ground motion records are PGA, Peak Ground Velocity (PGV), Arias Intensity
(AI) [37], and Specific Energy Density (SED). PGA corresponds to the peak of the accelero-
gram, while PGV corresponds to the peak of the velocigram. AI is a cumulative ground
motion Intensity Measure (IM), computed based on the time integral of the squared acceler-
ation, as shown in Equation (5), where a(t) is the ground motion acceleration at time t, tmax
is the total duration of the ground motion, and g is the acceleration of gravity.

AI =
π

2g

∫ tmax

0
[a(t)]2dt (5)

Similarly, SED is computed on the time interval of the squared velocity, as shown in
Equation (6), where v(t) is the ground motion velocity.

SED =
∫ tmax

0
[v(t)]2dt (6)

The parameters computed from the response spectra are the following: Acceleration
spectrum Intensity (ASI) [38] and Housner Intensity (HI) [39]. ASI is defined as the integral
of the pseudo-spectral acceleration (Sa) over the period range of 0.1–0.5 s, as given by
Equation (7), where Sa is the 5% damped spectral acceleration at vibration period T.

ASI =
∫ 0.5

0.1
Sa(ξ = 0.05; T)dT (7)

Similarly, HI is the integral of the pseudo-spectral velocity (Sv) over the period range
of 0.1–0.5 s.

HI =
∫ 0.5

0.1
Sv(ξ = 0.05; T)dT (8)

Table 5 shows the values of the above-described intensity parameters calculated for
the H and V components of ground motions #1, #2, and #3.
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Table 5. Ground motion parameters of the H and V components of #1, #2, and #3 ground
motion records.

Ground Motion
Parameters

#1 #2 #3

H V H V H V

PGA (m/s2) 0.872 0.640 1.653 1.558 1.853 1.369

PGV (m/s) 0.058 0.053 0.136 0.073 0.089 0.114

AI (m/s) 0.086 0.047 0.308 0.243 0.521 0.360

SED (m2/s) 0.0026 0.0051 0.0253 0.0072 0.0189 0.0151

ASI (m/s) 0.404 0.335 1.400 1.014 1.499 1.254

HI (m) 0.166 0.137 0.378 0.251 0.350 0.314

In order to establish the record characterized by the maximum ground motion intensity
for both seismic components, the Ground Motion Parameters (GMPs) of records #2 and #3
(GMP#i) are normalized to the corresponding GMPs of record #1 (GMP#1) (Figure 11). The
ratio GMP#i/ GMP#1 shows that the GMPs of record #3 are consistently lower than those
of the other two records for both seismic components. Conversely, the normalized GMPs
of H components of records #1 and #2 can be greater than or less than one, depending on
the GMP. In particular, the GMPs that involve acceleration terms (PGA, AI, and ASI) are
greater than one, while GMPs with velocity terms (PGV, SED, and ASI) are lower than one.
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Figure 11. Normalized GMPs of the H component (a) and the V component (b) of the selected ground
motion records.

The normalized GMPs of the V components of record #2 are almost always greater
than one, except for PGA, for which the ratio GMP#2/GMP#1 equals 0.879. In short, this
analysis shows that: (1) the H and V intensities of record #3 are always the lowest, (2) the V
intensity of record #2 is almost always the highest (except for the PGA), and (3) there is not
a record characterized by the highest H intensity, because it depends on the GMP.

5.3. Results Obtained for a Reference Masonry Pier

Figures 12–14 report the IDRs of masonry pier P1 (IDRP1) obtained by varying the ver-
tical load and subjecting the case–study structure to earthquakes #1, #2, and #3. Each figure
reports the IDRs versus time curves of P1 for the VL-a (a), VL-b (b), and VL-c (c). The red
lines indicate the 2% IDR limit (drift limit representative of the failure condition), while the
black and grey lines represent the results with and without the vertical seismic component.
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Figure 12. IDRs obtained subjecting the structure with VL-a (a), VL-b (b), and VL-c (c) to earthquake
#1. The red lines indicate the IDR limit of 2%.
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Figure 13. IDRs obtained subjecting the structure with VL-a (a), VL-b (b), and VL-c (c) to earthquake
#2. The red lines indicate the IDR limit of 2%.
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Figure 14. IDRs obtained subjecting the structure with VL-a (a), VL-b (b), and VL-c (c) to earthquake
#3. The red lines indicate the IDR limit of 2%.

The figures show that the vertical component of the earthquakes tends to increase the
IDR of the pier, especially for high vertical loads. The differences between results with
or without the V component may depend on GMPs. This is shown, for example, by the
comparison of IDR time histories in Figure 13c, with significant differences between the
grey and black curves and IDR time histories in Figure 12c, with minor differences between
the two curves, even though the two earthquakes have similar PGAs and the same loading
condition.

Earthquake #3, characterized by a lower PGA than earthquakes #1 and #2, generates
significantly lower IDRs (Figure 11), which never exceed the 1% value.

Figures 15–17 show the IDR-Vb curve obtained on masonry pier P1 and the damage
pattern when the structure is subjected to earthquakes #1, #2, and #3. Each figure reports
these results with and without the V component and for the different loading conditions
(VL-a (a), VL-b (b) 10%, and VL-c (c)).

The obtained results confirm that the V component of the earthquakes increases the
EDPs, and this increase becomes more significant as the vertical load and the value of the
IDR increase. As with the shear–displacement curves, the damage scenario indicates more
extensive damage when the vertical seismic component is considered, particularly for high
vertical loads.

Note that, although earthquake #3 generates a limited damage scenario (Figure 17)
compared to those obtained from earthquakes #1 (Figure 15) and #2 (Figure 16), there is still
a widespread crack pattern when the V component of the earthquake is taken into account.
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Figure 15. IDR-Vb curves and crack patterns obtained for earthquake #1. TH results for the H
component are in grey, TH results for H + V components are in black, the PO curve for positive
displacements is the continuous red line, and the PO curve for negative displacements is the dashed
red line. Loading conditions: VL-a (a), VL-b (b), and VL-c (c).
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Figure 16. IDR-Vb curves and crack patterns obtained for earthquake #2. TH results for the H com-
ponent are in grey, TH results for H + V components are in black, the PO curve for positive displace-
ments is the continuous red line, and the PO curve for negative displacements is the dashed red 
line. Loading conditions: VL-a (a), VL-b (b), and VL-c (c). 
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Figure 16. IDR-Vb curves and crack patterns obtained for earthquake #2. TH results for the H
component are in grey, TH results for H + V components are in black, the PO curve for positive
displacements is the continuous red line, and the PO curve for negative displacements is the dashed
red line. Loading conditions: VL-a (a), VL-b (b), and VL-c (c).
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Figure 17. IDR-Vb curves and crack patterns obtained for the earthquake #1. TH results for the H 
component are in grey, TH results for H + V components are in black, the PO curve for positive 
displacements is the continuous red line, and the PO curve for negative displacements is the dashed 
red line. Loading conditions: VL-a (a), VL-b (b), and VL-c (c). 
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Figure 17. IDR-Vb curves and crack patterns obtained for the earthquake #1. TH results for the H
component are in grey, TH results for H + V components are in black, the PO curve for positive
displacements is the continuous red line, and the PO curve for negative displacements is the dashed
red line. Loading conditions: VL-a (a), VL-b (b), and VL-c (c).

5.4. Correlation between the Ground Motion Parameters and Engineering Demand Parameters

To evaluate the possible correlations between the GMPs of the V components (GMPV)
and the Inter-story Drift Ratios (IDRs) obtained for the case–study structure, the max-
imum IDRs obtained from the simultaneous application of the H and V components,
maxIDR(H + V), are related with the GMPV shown in Table 5 [40]. Figure 18 shows six
plots, where the values of PGAV, PGVV, AIV, SEDV, ASIV, and HIV of records #1, #2,
and #3 are displayed on the horizontal axis, and on the vertical axis, the values of the
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maxIDR(H + V) obtained applying VL-a (in black), VL-b (in orange), and VL-c (in grey) on
masonry pier P1 are shown. Similarly, Figures 19–21 show the same plots for IDRS1, IDRS2,
and the RDR.
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Figure 18. Correlations between the GMPs of the V components (GMPV) and the maximum IDR
obtained on masonry pier P1 from the simultaneous application of the H and V components,
maxIDRP1(H + V). In each image, with the sole exception of the PGAV plot, from left to right,
earthquakes #3, #1, and #2; in the PGAV plot (top left), from left to right, earthquakes #3, #2, and #1.
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Figure 19. Correlations between the GMPs of the V components (GMPV) and the maximum IDR
obtained on the first story of the case–study structure from the simultaneous application of the H and
V components, maxIDRS1(H + V). In each image, with the only exception of PGAV plot, from left to
right, earthquakes #3, #1, and #2; in the PGAV plot (top left), from left to right, earthquakes #3, #2,
and #1.

The correlations between GMPV and maxIDRs are calculated using the Coefficient of
Determination R2, a number between 0 and 1 that measures how well a statistical model
predicts an outcome. The values of coefficients R2 are based on linear regression lines fitted
through the data, characterized by the form y = ax, where a is a constant coefficient.
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Figure 20. Correlations between the GMPs of the V components (GMPV) and the maximum IDRs
obtained for the second story of the case–study structure from the simultaneous application of the H
and V components, maxIDRS2(H + V). In each image, with the only exception of the PGAV plot, from
left to right, earthquakes #3, #1, and #2; in the PGAV plot (top left), from left to right, earthquakes #3,
#2, and #1.
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Figure 21. Correlations between the GMPs of the V components (GMPV) and the maximum RDR
obtained on the case–study structure from the simultaneous application of the H and V compo-
nents, maxRDR(H + V). In each image, with the sole exception of the PGAV plot, from left to right,
earthquakes #3, #1, and #2; in the PGAV plot (top left), from left to right, earthquakes #3, #2, and #1.

The results obtained from this analysis show a very clear correlation between GMPV
and maxEDPs. All regression lines are characterized by a positive slope, demonstrating
how, as the GMPV increases, the corresponding structural demand increases. This in-
dicates that the influence of the vertical component should be predicted by accurately
selecting ground motion records with a significative intensity of the vertical ground mo-
tion component. Moreover, it is expected that, if a masonry structure is subjected to a
sequence of earthquakes, the greater the intensity of the vertical component, the greater the
structural demand.

Table 6 reports the numerical results obtained from the NTHAs for each considered
record (#1, #2, and #3) and the vertical load case (VL-a, VL-b, and VL-c). The table
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includes the maxEDPs obtained considering only the H component and the simultaneous
application of the H and V components. Moreover, for each case, it indicates the ratio
(H + V)/H, corresponding to the percentage of increase/decrease of the maxEDPs due to
the V component. Note that, unlike the graphic results shown in Figures 12–14, the increase
of the ratio (H + V)/H with the vertical load is not observed. However, this result depends
on how this ratio is calculated. In fact, the ratio (H + V)/H is calculated as the ratio between
the maxEDP corresponding to the application of the H + V components and the maxEDP
corresponding to the H component, whose values generally do not correspond to the same
at the same time step ti. For this reason, a further EDP is considered to account for the
increment of the EDP time series due to the V component varying the vertical load.

Table 6. EDPs obtained applied to the case–study structure of the selected records with and without
the vertical component.

EDPs Load
Case

Record #1 Record #2 Record #3

H H+V (H+V)/H H H+V (H+V)/H H H+V (H+V)/H

IDRP1

VL-a 0.02484 0.02361 0.950 0.02229 0.02827 1.268 0.00419 0.00451 1.077
VL-b 0.02382 0.02647 1.111 0.02195 0.02536 1.155 0.00733 0.00812 1.108
VL-c 0.02635 0.02409 0.914 0.02404 0.03242 1.349 0.00797 0.00804 1.009

IDRS1

VL-a 0.02450 0.02329 0.951 0.02090 0.02652 1.269 0.00390 0.00419 1.072
VL-b 0.02354 0.02554 1.085 0.02182 0.02466 1.130 0.00739 0.00813 1.100
VL-c 0.02664 0.02480 0.931 0.02388 0.03060 1.282 0.00807 0.00813 1.007

IDRS2

VL-a 0.01018 0.01082 1.063 0.01017 0.01276 1.254 0.00178 0.00170 0.956
VL-b 0.01989 0.02149 1.081 0.01950 0.02190 1.123 0.00535 0.00536 1.002
VL-c 0.02340 0.02900 1.239 0.02073 0.02708 1.306 0.00706 0.00767 1.086

RDR
VL-a 0.01621 0.01590 0.981 0.01491 0.01807 1.212 0.00262 0.00273 1.043
VL-b 0.01990 0.02147 1.079 0.01909 0.02119 1.110 0.00578 0.00614 1.063
VL-c 0.02398 0.02410 1.005 0.02137 0.02527 1.183 0.00736 0.00762 1.034

For each step ti of the ground motion time histories, the geometrical distance be-
tween the EDP with and without vertical component is calculated, and subsequently, the
maximum values over the entire time history are obtained as indicated in Equation (9).

maxδ = max
√
[EDPH+V(ti)− EDPH(ti)]

2 (9)

Figure 22 and Table 7 show the values of maxδ varying the vertical load for IDRS1 (a),
IDRS2 (b), and the RDR (c).
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Figure 22. Maximum distance δ between the EDPs obtained with and without the vertical component
for VL-a, VL-b, and VL-c. On the left (a), the maxδ obtained from IDRs1, in the centre (b), the maxδ

obtained from IDRs2 and on the right (c), the maxδ obtained from the RDR.
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Table 7. Maximum values of the geometrical distance between the EDPs calculated over each time
history with and without the vertical component.

maxδ
Record #1 Record #2 Record #3

VL-a VL-b VL-c VL-a VL-b VL-c VL-a VL-b VL-c

Maxδ (IDRS1) 0.00676 0.00710 0.01234 0.01163 0.01254 0.02582 0.00121 0.00114 0.00364
Maxδ (IDRS2) 0.00319 0.00698 0.01087 0.01623 0.01344 0.02690 0.00057 0.00099 0.00352
Maxδ (RDR) 0.00447 0.00632 0.01136 0.00777 0.00939 0.02115 0.00080 0.00081 0.00308

The figure shows that, for all EDPs and almost all ground motion records (#1, #2, and
#3), the maxδ value increases as the vertical load on the structure increases. This indicates
that the effect of the vertical component is strongly affected by the vertical load acting on
the structure. The only exception to this behaviour is for the maxδ obtained from IDRS2
with earthquake #2. In this case, the maxδ decreases for VL-b with respect to VL-a and
VL-c. However, this does not invalidate the general results on the influence of the vertical
component, as the load increases as a significative increase of maxδ is still observed between
VL-a and VL-c.

Figure 22 also shows that earthquakes #2, #1, and #3 provide the largest, middle, and
lowest EDP values, in that order. These results confirm that, regardless of the applied load,
the influence of the vertical component increases with its intensity. Section 5.2 showed
that, with only the exception of the PGA, for all other GMPs, the vertical components
of earthquakes #2 and #3 are characterized by the maximum and minimum intensities,
respectively (Figure 11).

6. Conclusions

This paper investigates the effect of the vertical seismic component on the capacity
and damage scenario of unreinforced masonry structures. Pushover and nonlinear time
history analyses are carried out for a two-story regular wall described with a detailed
micro-modelling approach under different dead loads representative of typical stress states.

Nonlinear time history analyses (NTHAs) were carried out using three unscaled
ground motion records recently recorded in Italy and selected from the ITalian ACcelero-
metric Archive—ITACA [36]. The records were selected to be spectrum-compatible with
the Uniform Hazard Spectrum (UHS) corresponding to a return period TR of 475 years and
a rigid soil (cat. A). The recorded ground motions were applied to the case–study structure
with and without the vertical component (V) of the seismic acceleration.

Two global Engineering Demand Parameters (EDPs) were considered for the NTHA:
the Inter-story Drift Ratio (IDR) and the Roof Drift Ratio (RDR), which represent the
ratio between the inter-story displacement and the story height and the ratio between the
displacement on the top of the structure and its total height. In addition, the behaviour of
the single masonry pier varying the vertical load and the IDR of the masonry pier P1 is
considered as further EDP.

The correlation between the Engineering Demand Parameters (inter-story drift and
roof drift ratios) and the Ground Motion Parameters (GMPs) of the horizontal and vertical
components was discussed. The influence of the vertical component was highlighted by the
apparent correlation between the GMPs of the vertical component and the calculated EDPs.

For each step ti of the ground motion time histories, the geometrical distance between a
given EDP with and without the vertical component was also calculated, and its maximum
values (max δ) over the entire time history were introduced as a new parameter that was
found to be very closely correlated to the GMPs and to the vertical load.

This indicates that the vertical ground motion component cannot be a priori neglected
for URM walls when moderate-to-large vertical GMPs are expected, as confirmed by a
comparison of damage scenarios obtained with and without the vertical component of
the earthquake.
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Future developments of this work include using additional accelerograms and analysing
the role of vertical components of earthquakes for irregular masonry walls and 3D structures,
as well as for masonry structures modelled with the equivalent frame approach [41–44].
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