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Abstract: Over the years, several bone regeneration procedures have been proposed using natural
(autografts, allografts, and xenografts) and synthetic (i.e., metals, ceramics, and polymers) bone
grafts. In particular, numerous in vitro and human and animal in vivo studies have been focused
on the discovery of innovative and suitable biomaterials for oral and maxillofacial applications in
the treatment of severely atrophied jaws. On this basis, the main objective of the present narrative
review was to investigate the efficacy of innovative collagenated porcine bone grafts (OsteoBiol®,
Tecnoss®, Giaveno, Italy), designed to be as similar as possible to the autologous bone, in several
bone regeneration procedures. The scientific publications were screened by means of electronic
databases, such as PubMed, Scopus, and Embase, finally selecting only papers that dealt with
bone substitutes and scaffolds for bone and soft tissue regeneration. A total of 201 papers have
been detected, including in vitro, in vivo, and clinical studies. The effectiveness of over 20 years of
translational research demonstrated that these specific porcine bone substitutes are safe and able to
improve the biological response and the predictability of the regenerative protocols for the treatment
of alveolar and maxillofacial defects.

Keywords: bone regeneration; bone defects; maxillary defects; oral surgery; xenografts; porcine bone
grafts; biomaterials

1. Introduction

Bone regeneration procedures are surgical techniques developed to restore the jaw
defects provoked by tissue damage, infections, tooth loss, neoplasms, or local trauma [1–3].
Many different protocols have been adopted in accordance with the defect type (hori-
zontal/vertical augmentation) [4–7], the local anatomy (anterior/posterior region of max-
illa/mandibula) [8–11], the defect extension, and the planned rehabilitation [4,12–14]. The
rationale of these procedures is to obtain a durable regeneration of the hard/soft tissue
interface after the organization of a blood clot, which promotes the local new bone forma-
tion [15–17]. The use of xenografts and alloplastic bone substitutes represents a useful and
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safe technique that takes advantage of the high manageability of these products, avoiding
the need for a donor site for autologous graft retrieving [17–19]. The effectiveness of these
products has been evaluated by different studies conducted in various research centers
around the world. These studies have been developed on a progressive scale, starting
from in vitro studies on cell cultures, proceeding with in vivo studies on animal models, and
finally with human studies, which allow for strengthening the 20-year work experience in
translational research activity. In particular, both the histological and histomorphometric
investigations performed at the microscopic level are able to reveal the bone response to the
graft, providing strong knowledge about the bone scaffold behavior, the resorption process,
the local bone neoformation, and the long-term persistent response of the regenerated
tissues. Moreover, these methodologies have been associated with other techniques, such
as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic
Force Microscopy (AFM) and Synchrotron Micro-CT, in order to improve the biomaterial
surface characterization and information about the physicochemical and biological compo-
sitions. This methodological approach steers clinicians towards the correct choice of the
scaffold shape (i.e., particulate/block), the surgical procedure, and the graft manipulation
and stabilization techniques, in order to increase the predictability of the procedure. In
these terms, the aim of the present review was to describe the effectiveness of several
protocols for the alveolar/maxillofacial bone and soft tissue regeneration using different
OsteoBiol® innovative collagenated porcine bone grafts.

2. Materials and Methods

The screening of the studies was performed using the electronic databases PubMed,
Scopus, and Embase, through the research of specific keywords: Piattelli A AND porcine
bone biomaterials; Piattelli A AND porcine bone biomaterials AND jawbone regeneration;
Piattelli A AND porcine granules; Piattelli A AND porcine bone blocks; Piattelli A AND
porcine collagen bone barriers; Piattelli A AND porcine collagen membranes; OsteoBiol®

AND porcine bone biomaterial; OsteoBiol® AND jawbone regeneration; OsteoBiol® AND
maxillofacial regeneration; OsteoBiol® AND porcine granules; OsteoBiol® AND porcine
bone blocks; OsteoBiol® AND porcine collagen bone barriers; OsteoBiol® AND porcine
collagen membranes.

The manuscripts were then evaluated through a qualitative synthesis.

2.1. Inclusion Criteria

The studies published up to January 2021 were evaluated with no language restrictions.
The identified studies were limited to papers that dealt with collagenated porcine bone
substitutes and scaffolds for bone and soft tissue regeneration during the last 20 years. No
restrictions about the use of barrier membranes were applied to the systematic research
process. The inclusion criteria considered human studies, in vitro research and reports,
and animal model investigations. The off-topic publications were excluded from the
investigation. The articles were then classified in accordance with the surgical procedure
and the study design.

2.2. Selection of the Studies

The screening of the study data and papers was performed independently by two
calibrated and expert reviewers (M.T. and A.P.). After a first check, all the abstracts of the
identified papers were evaluated as the 1st level of screening. The reviews and book chapters
were excluded from the qualitative analysis. A description of the reasons for exclusion was
drafted, concerning not considered articles. The full text of the included papers was obtained,
and then, they were classified for the qualitative synthesis. For this purpose, a specially
designed data form was used (Excel Office Microsoft, Redmond, WA, USA).

A total of 1375 manuscripts have been detected by the electronic database research. A
total of 266 duplicates have been removed, and 1109 papers have been considered for the
full-text eligibility evaluation. A total of 44 literature reviews, five book chapters, 87 papers
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written in non-English grammar, and 772 off-topic manuscripts were excluded. In the end,
a total of 201 papers have been included in the final analytical synthesis (Figure 1).
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Figure 1. PRISMA Flowchart of the study design and manuscript-selection process.

2.3. Description of the Porcine Grafts

Figures 2 and 3 report the characteristics and the clinical applications of the different
biomaterials (OsteoBiol®, Tecnoss®, Giaveno, Italy) used and cited in the selected papers.
All of them are porcine collagenated xenografts and show high biocompatibility and
osteoconductive properties [20,21]. A dedicated product has been developed for every
clinical indication, trying to provide the best handling, granulometry, and consistency, in
order to achieve ideal regenerative results [22]. In particular, the dual-phase heterologous
bone matrix granules are composed of a mineral phase and a xenogenic collagen phase,
which is able to provide the best biocompatibility, a chemical composition similar to
autogenous bone, gradual resorption of the bone matrix with the replacement by the newly
formed bone at re-entry time, and a high angiogenic potential [23–26]. These elements
are critical for a successful bone regeneration procedure that sometimes can be further
improved with the association of some of these xenografts.
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3. Results

The main effective results for each biomaterial used alone or in combination have been
schematically divided and summarized in the tables below [Tables 1–8], on the basis of the
clinical indication they have been specifically designed for.

Table 1. Bone regeneration procedures with collagenated porcine xenografts: Alveolar Regeneration
(ALR) and Alveolar Regeneration/Dehiscences and Fenestrations (ALR/DEH).

Reference Clinical
Indication Biomaterial Results

Covani U., 2004 [27] ALR Putty, Evolution New bone formation after 4 months

Arcuri C., 2005 [28] ALR Putty Grafting material completely substituted by trabecular
bone tissue after 3 months

Barone A., 2008 [29] ALR mp3®, Evolution
High percentage of trabecular bone and mineralized tissue

in ridge preservation after 7 months

Cardaropoli D., 2008 [30] ALR Gen-Os®, Evolution
85% preservation of initial ridge dimension; new bone

formation; 25% residual graft particles
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Table 1. Cont.

Reference Clinical
Indication Biomaterial Results

Crespi R., 2009 [31] ALR Gen-Os® 100% implant survival for implants placed in sockets
grafted with MHA, CS, and PB (24-month follow-up)

Rossi R., 2010 [32] ALR Gen-Os®
Minimally invasive approaches (3D navigation systems)

with immediate loading allow the development,
maintenance, and stability of soft and hard tissue

Crespi R., 2011 [33] ALR Gen-Os® Good biocompatibility and high osteoconductivity in
alveolar bone grafting

Festa V.M., 2013 [34] ALR Gen-Os®, Lamina
Reduced hard tissue reabsorption after tooth extraction

compared to EXT after 6 months

Barone A., 2012 [35] ALR mp3®, Evolution
Grafted sites allowed the placement of larger implants and

required fewer augmentation procedures at implant
placement (3-year follow-up)

Barone A., 2013 [36] ALR mp3®, Evolution
Grafted sites allowed the placement of longer or wider

implants (4-month follow-up)

Barone A., 2015 [37] ALR mp3®, Evolution
No significant differences between flap and flapless
techniques for tooth extraction and socket grafting

procedures

Barone A., 2015 [38] ALR mp3®, Evolution
Bone levels improvement in mesial and distal sites by

using xenograft and PRF

Lorenzon G., 2015 [39] ALR Gel 40 Good bone regeneration after 11 and 18 months from the
implant placement

Thalmair T., 2013 [40] ALR mp3®
Covering the extraction socket with the free gingival graft

allowed the maintenance of soft tissue volume, and
minimized the buccal contour shrinkage

Barone A., 2016 [41] ALR Apatos®, mp3®, Evolution
After 3 months, there was less volume loss and ridge

surface and a significantly smaller shrinkage of the basal
area

Felice P., 2016 [42] ALR mp3®, Evolution

More failures and complications but better aesthetics
results in immediate and immediate-delayed placed

implants; similar bone level changes (4 months
post-loading)

Barone A., 2016 [43] ALR mp3®, Evolution
Immediate implant procedures are a successful treatment

when strict selection criteria and important surgical
expertise are applied (3-year follow-up)

Barone A., 2017 [44] ALR mp3®, Apatos®, Evolution

The ridge preservation procedures showed better results
compared to natural healing: no differences in

maintenance of bone width between the biomaterials, but
bone height better preserved with the cortical porcine bone

Alfonsi F., 2017 [45] ALR Gen-Os®, mp3®, Apatos®,
Evolution, Lamina®

The cortico-cancellous porcine bone presented
osteoconductivity, volume maintenance, new bone

formation, and reabsorption of the xenograft without
inflammation

Esposito M., 2017 [46] ALR mp3®, Evolution
More frequent failures but better aesthetics results at
immediate and immediate-delayed placed implants;
similar bone level changes (one-year post loading)

Scarano A., 2017 [47] ALR Gen-Os®, Evolution
Greater stability after the implant placement at the time of

mandibular molar extraction

Barone A., 2017 [48] ALR Apatos®, mp3®

Reduced bone loss in both test groups when compared to
naturally healing sockets; no preservation of the alveolar

crest; 30% reduction in the estimates after healing (4-month
analysis)

Giuliani A., 2018 [24] ALR mp3®, Evolution

Thinner and a greater number of trabeculae in the grafted
sites; defects homogenously filled; improved strength of
the socket; resorbed biomaterial and new bone formation

over time; mp3 preserved and healed defects
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Table 1. Cont.

Reference Clinical
Indication Biomaterial Results

Checchi V., 2017 [22] ALR Gen-Os®, Evolution
Immediate placement of wide diameter implants provided

inferior aesthetic outcomes and delayed placement of
normal-diameter implants (one-year post loading)

Crespi R., 2011 [49] ALR Apatos®

Absence of inflammation; bone formation in all treated
sites; presence of biomaterial particles and connective

tissue; same bone formation and resorption processes for
the two biomaterials

Corbella S., 2017 [50] ALR Gen-Os®, mp3®, Apatos®,
Evolution

No difference in bone formation between the biomaterials;
calcium sulphate and beta-tricalcium phosphate faster

resorbed; xenografts were less resorbable; allografts did not
show higher bone formation than control; lower new bone

formation with bovine bone than spontaneous healing;
porcine bone and magnesium-enriched hydroxyapatite

showed a higher new bone volume

Kilinc A., 2017 [51] ALR Evolution

The secondary closure was strongly favorable over the
primary closure in terms of swelling and mouth opening;

collagen membrane may support primary healing in terms
of wound healing

Troiano G., 2017 [52] ALR mp3®, Gen-Os®, Apatos®,
Lamina®, Evolution

Using bone graft covered by a resorbable membrane
decreased alveolar ridge horizontal and vertical resorption

after tooth extraction

Rossi R., 2017 [53] ALR mp3®, Evolution
Software technology by means of implant navigation

systems allowed the achievement of optimal aesthetic and
functional results

Scarano A., 2018 [54] ALR Apatos®, Evolution

Patients who developed implant displacement into the
mandibular corpus must remove implants as soon as

possible, as the bone healing does not allow the
removal later

Nakajima Y., 2018 [55] ALR Gen-Os®, Evolution
More apical position of the coronal level of osseointegration

with the presence of alveolar mucosa at implants

Chandrasekaran B., 2017 [56] ALR Gen-Os® Synergistic use of PRF with bone grafts accelerated the
healing process and ensured adequate bone filling

Barone A., 2014 [57] ALR mp3®, Evolution

The flapped procedure gave more negative results
(increased resorption in width of the post-extraction site,

less vertical bone resorption on the buccal aspect); the
flapless procedure allowed the augmentation of the
keratinized gingival width, soft tissue preservation,

and improvement

Kivovics M., 2017 [58] ALR Gen-Os®, Evolution
Successful maintenance of the vertical and horizontal

dimensions of the ridge; sufficient bone volume for implant
placement in all sites (6 months after surgery)

Marconcini S., 2018 [59] ALR mp3®, Apatos®, Evolution

After 4 years, better ridge preservation (preserving
marginal bone and achieving better aesthetic results

around implants); the cortical porcine bone showed better
clinical outcomes

Ramanauskaite A., 2019 [60] ALR Gen-Os®, mp3®, Apatos®, Derma,
Evolution

Higher survival rates and lower marginal-bone-level loss
for implants inserted into the previously grafted sockets

Faria-Almeida R., 2019 [61] ALR mp3®, Evolution The use of membrane achieved better results

Felice P., 2020 [62] ALR mp3®, Evolution

No significant difference in failure, complications, or
patient satisfaction between all the procedures, but more

failures in immediate and early implants; smaller bone loss
with immediate implants; better aesthetic results with
immediate and early implants (3 years post-loading)

Felice P., 2020 [63] ALR mp3®

Outcomes were similar between the two groups in the
presence of adequate bone volumes; peri-implant marginal

bone loss was minimal in both groups (3 years
post-loading)
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Table 1. Cont.

Reference Clinical
Indication Biomaterial Results

Esposito M., 2021 [64] ALR Gen-Os®, Evolution
Ridge preservation and delayed placement of conventional

4- or 5-mm diameter implants showed better results
(5 years post-loading)

Th Elaskary A., 2021 [65] ALR Lamina®

Optimum radiographic, aesthetic, and periodontal
outcomes; minimized treatment time and number of

surgical interventions; the protocol delimited infection and
prepared sockets for implant placement (one-year

after placement)

Tallarico M., 2016 [66] ALR/DEH Gen-Os®, Derma
High implant and prosthetic survival and success rates;

good aesthetic outcomes (6 months post-loading)

Tallarico M., 2017 [67] ALR/DEH Gen-Os®, Derma

Both procedures showed successful results but waiting
4 months after tooth extraction and socket preservation
procedures showed less marginal bone loss and a better

aesthetic outcome (one-year post-loading)

Table 2. Bone regeneration procedures with collagenated porcine xenografts: Dehiscences and
Fenestrations (DEH) and Dehiscences and Fenestrations/Lateral Access Sinus Lift (DEH/LASL).

Reference Clinical
Indication Biomaterial Results

Barone A., 2006 [68] DEH Putty, Apatos®, Evolution
Immediate implants and regenerative procedures to treat
peri-implant bone defects showed a good stability of the

marginal bone level

Covani U., 2006 [69] DEH Gen-Os®, Evolution
Similar results to those of immediate implants; success after

prosthetic rehabilitation with no mobility, pain, suppuration, or
peri-implant radiolucency (12-month follow-up)

Covani U., 2008 [70] DEH Gel 40, Evolution
Flap elevation provided higher regenerated bone at coronal

level; immediate implants with or without flap elevation can be
successful, even in the presence of bone defects

Covani U., 2009 [71] DEH mp3®, Evolution
Complete bone healing: no mobility, pain, suppuration, or

peri-implant radiolucency at the second-stage surgery
(6 months post-operation)

Slotte C., 2013 [72] DEH mp3®
Complete and enhanced bone regeneration with PCPB after

12 months: osteoconductive properties directly on the surface
of the graft

Cassetta M., 2012 [73] DEH Gen-Os®, Putty
Stable long-term results for implants inserted in both groups

(5-year follow-up)

Barone A., 2015 [74] DEH Apatos®, Evolution
Similar effectiveness and safety of immediate implant

placement to delayed restoration; better healing times and costs

Barone A., 2016 [75] DEH mp3®, Evolution
Immediate implant placement and restoration showed

predictable clinical outcomes with a very high success rate
(7-year follow-up)

Ekstein J., 2016 [76] DEH Gen-Os®, Evolution

High crestal bone stability and limited marginal bone loss
around conical connection tapered implants with platform

switching; complete implant survival rate (14-month
follow-up)

Covani U., 2014 [77] DEH Apatos®, Evolution
Positive final aesthetic results; minimal bone level changes;

maintenance of the early increase in both midfacial tissue and
the papillae (5-year prospective single-cohort study)

Figliuzzi M.M., 2015 [78] DEH mp3®, Evolution
No significant differences in the peri-implant bone reabsorption

of post-extractive implants over 2 years

Zita Gomes R., 2017 [79] DEH/LASL mp3®, Evolution
Evaluating primary and secondary stability could lead to

higher implant success
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Table 3. Bone regeneration procedures with collagenated porcine xenografts: Crestal Access Sinus
Lift (CASL), Lateral Access Sinus Lift (LASL) and Lateral Access Sinus Lift/Horizontal Augmentation
(LASL/HOR).

Reference Clinical
Indication Biomaterial Results

Barone A., 2008 [80] CASL Gel 40, Evolution Adequately performed, this technique showed no
problems and clinical success predictability

Santagata M., 2010 [81] CASL Gel 40
This simplified treatment facilitated single tooth

implant rehabilitation; immediate loading was easier
thanks to improved bone density

Lopez M., 2016 [82] CASL Putty Less traumatic and invasive surgery

Barone A., 2005 [83] LASL Gen-Os®, Evolution
No complications during surgical procedures;

complete healing; no signs or symptoms of maxillary
sinus disease (5-month after surgery)

Barone A., 2006 [84] LASL Gen-Os®, Evolution
More complications in smokers and with the use of

onlay bone graft in conjunction with sinus
augmentation

Orsini G., 2006 [85] LASL Apatos®, Evolution

New formed bone around particles; presence of the
osteoid matrix in some areas; mainly compact bone

present at the interface; no acute inflammatory
infiltrate

Barone A., 2008 [86] LASL mp3®, Evolution
No significant differences in clinical parameters for

piezosurgery and conventional instruments

Scarano A., 2009 [87] LASL Lamina®
Patient remained asymptomatic; no infections or
inflammation from the implants migrated in the

maxillary sinus (7-year after removal)

Scarano A., 2010 [88] LASL Apatos®, Evolution

Successfully results with porcine bone;
rougher-surfaced implants were preferable; less
peri-implant marginal bone resorption (5-year

follow-up after loading)

Scarano A., 2011 [89] LASL Apatos®, Evolution

Cortical porcine bone was biocompatible,
osteoconductive and did not interfere with the

normal reparative bone processes (4- and 6-month
after retrieval)

Hinze M., 2013 [90] LASL mp3®, Evolution, Lamina®

Minimized sinus infections; preserved integrity of
the sinus membrane; regenerated bone around the

zygomatic implants (6-month after implant
placement)

Iezzi G., 2012 [91] LASL Apatos®

Success of all the biomaterials: newly formed bone
and vessels thanks to the high microporosity; many
grafted particles partially resorbed and substituted

by newly formed bone (6-month follow-up)

Barone A., 2013 [92] LASL mp3®, Evolution

No significant increase in vital bone; reduced
connective tissue proliferation and reabsorption of

the graft; maybe blood supply can play a role in
such a result (6-month follow-up)

Ramirez Fernandez M.P.,
2013 [93] LASL mp3®, Evolution

Biocompatibility, bio-resorbability and
osteoconductivity: newly formed bone on the

xenografts; gradual diffusion of Ca2+ ions from the
biomaterial into the newly forming bone at the

interface (biomaterial reabsorption process)
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Table 3. Cont.

Reference Clinical
Indication Biomaterial Results

Cassetta M., 2012 [94] LASL Gen-Os®, Evolution

Piezoelectric device could simplify sinus
augmentation; better results in terms of sinus

membrane perforations; no statistical differences in
time for the antrostomy and sinus membrane
elevation in respect to traditional instruments

Silvestri M., 2013 [95] LASL mp3® After 6 months, PCPB resulted a valid and
predictable alternative to DPBB

Traini T., 2015 [96] LASL Apatos®

None of the biomaterials seemed to be ideal: the
regenerated bone had a D3 bone quality and covered

almost one-third of the space filled by BSBs
(6-month after healing)

Cassetta M., 2015 [97] LASL Gen-Os®

Porcine bone alone or with autologous bone showed
biocompatibility and osteoconductivity; uneventful
healing; comparable newly formed bone, marrow
spaces and residual grafted material in the three

groups (2-month follow-up)

Falisi G., 2013 [98] LASL mp3®

Functional and anatomic recovery of the maxillary
antrum; immediate implant placement (diameter >

4 mm); reduced surgical times; no patient morbidity;
local anesthesia (one-year follow-up)

Scarano A., 2014 [99] LASL Lamina®

Achieved bone formation and possible placement of
implants without any grafting material: totally
healed sinus’ wall; newly formed bone; wide

osteocyte lacunae; large marrow spaces; newly
formed vessels; no inflammation

Corbella S., 2016 [100] LASL Apatos®, mp3®, Gen-Os®
Use of AB to achieve the highest new bone

formation; use of BB or a mixture of TCP and HP
when donor site morbidity occurs

Lopez M., 2016 [101] LASL mp3®, Lamina®, Evolution

Good quality bone reformation: a new sinus floor
filled with resorbable cortico-spongious bone paste;
adequate vascularization of the graft; integration of

the Lamina®

Iezzi G., 2017 [102] LASL Gen-Os®, Apatos®, mp3®

All the BSBs can be used successfully:
biocompatibility; osteoconductivity; new bone

surrounding many particles, crosslinked by newly
formed bone trabeculae; gradual reabsorption and

partial replacement by new bone; no adverse
reactions

Esposito M., 2018 [103] LASL Sp-Block, mp3®, Evolution

Zygomatic implants showed more complications:
significantly fewer prosthetic and implant failures

and the need for functional loading; better
rehabilitation of severely atrophic maxillae

(4 months post-loading)

Forabosco A., 2018 [104] LASL Gen-Os®, Evolution
The use of PRF in combination with biomaterials or
alone was effective and safe; low risk; satisfactory

clinical results

Davò R., 2018 [105] LASL Sp-Block, mp3®, Evolution

Immediately loaded zygomatic implants showed
more complications: significantly fewer prosthetic
and implant failures and more time for functional
loading; better rehabilitation of severely atrophic

maxillae (one-year post-loading)
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Table 3. Cont.

Reference Clinical
Indication Biomaterial Results

Bechara S., 2017 [106] LASL Gen-Os®, Evolution
Short implants (6 mm) showed no significant

differences in the augmented bone results, faster
treatment, and minor costs (3-year follow-up)

Chirilă L., 2016 [107] LASL Gen-Os®

Caution with all the procedures to not destroy the
ostium, compromising maxillary sinus clearance;
signs of infection disappeared within 5 to 7 days,

and normal sinus function and drainage
were restored

Noami S., 2014 [108] LASL mp3®, Evolution

Biocompatibility and osteoconductivity; most of the
particles surrounded by newly formed bone; large
osteocyte lacunae; some marrow spaces; new bone

formation suggested by residual particles

Mehl C., 2016 [109] LASL mp3®
More time- and cost-effectiveness to allow

comprehensive prosthetic restorations within a
month, without using frequent and long treatments

Kawakami S., 2018 [110] LASL Gen-Os®, Evolution

Greater augmentation height when the antrostomy
was placed more cranial; the sinus mucosa width

regained the original dimensions (9 months
after surgery)

Scarano A., 2018 [111] LASL Gen-Os®, Lamina®, Evolution

Successful mechanical support of sinus membranes;
only bone tissue formation, not mixed with the graft;

biocompatibility; not complete resorption after
6 months, but residual was bone integrated

Scarano A., 2018 [112] LASL Lamina®
Bone formation without using biomaterials;

preserved space in sinus lifting, contributing to
wound healing

Kawakami S., 2019 [113] LASL Gen-Os®, Evolution
The height of the antrostomy did not influence

clinical and radiographic results in LASL

Hirota A., 2019 [114] LASL Gen-Os®, Evolution

No differences in clinical results on the dimensional
changes of augmented maxillary sinus floor in

perforated or not sinus mucosae (9 months
after healing)

Tanaka K., 2019 [115] LASL Gen-Os®, Evolution
More mineralized bone and bone marrow and less
amounts of soft tissue in the alveolar crest of the

maxillary sinus (9 months after surgery)

Adiloglu S., 2019 [116] LASL Gen-Os®, mp3®, Evolution

Higher new bone formation with 100% collagenated
bone mix; no differences in connective tissue

formation and residual graft materials (6-month
healing process)

Luongo R., 2020 [117] LASL Lamina®

The porcine cortical bone layer increased bone
formation and implant stability; reduced healing

time, cost, and biological complications (1- to 5-year
follow-up)

Felice P., 2020 [118] LASL Sp-Block, mp3®, Evolution

Immediately loaded zygomatic implants reported
fewer prosthesis failures, implant failures and

functional loading time, but more complications
over time (3 years post-loading)

Pagliani L., 2012 [119] LASL/HOR Gen-Os®, mp3®, Gel 40,
Evolution, Lamina®

Porcine bone substitute and barrier membranes
showed good clinical results; bone condensation and

resorption properties (one-year post-loading)
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Table 4. Bone regeneration procedures with collagenated porcine xenografts: Horizontal Augmenta-
tion (HOR), Vertical Augmentation (VER), Horizontal and Vertical Augmentation (HOR/VER) and
Vertical Augmentation/Lateral Access Sinus Lift (VER/LASL).

Reference Clinical
Indication Biomaterial Results

Cassetta M., 2005 [120] HOR Gen-Os®

Autologous bone graft integration in 4 months;
mastication promoted the transformation into

lamellar bone; reliability demonstrated within the
first year of function

Barone A., 2007 [121] HOR mp3®

Minimal bone loss after bone block graft and
implant placement; successful treatment of severe
maxillary atrophy with autogenous bone from the

anterosuperior edge of iliac wing

Santagata M., 2011 [122] HOR Putty
MERE technique reduced morbidity and healing

time; simple and reliable technique; ideal
implant placement

Wachtel H., 2013 [123] HOR mp3®, Evolution, Lamina®
Sufficient bone augmentation without other

augmentation procedures and quite complete
reabsorption after 6 months

Rodriguez J., 2013 [124] HOR Dual-Block, Evolution
Longer implants placement without clinical

limitations with minimal bone height; more implant
stability; minimal neurological disturbance

Scarano A., 2011 [125] HOR Gen-Os®

Viable and safe procedure to avoid crestal resorption
and fracture of buccal plate; increased horizontal

bone in coronal area; no compromission of cortical
vascularization; no dehiscence of the mucosa; no

hypoesthesia from patients

Scarano A., 2015 [126] HOR Gen-Os®

This technique, in association with biomaterial,
allowed horizontal bone gain, good biomaterial

integration, no fractures of buccal plate, and
implant success

Lopez M., 2015 [127] HOR mp3®, Lamina®, Evolution

Combination of resorbable cortical Lamina® and
other resorbable biomaterials of porcine origin led to

good vascularization of the graft, newly formed
bone, and complete integration of the Lamina®

without its removal

Lopez M., 2016 [128] HOR Putty, Lamina®

Combination of resorbable cortical Lamina® and
some graft materials which did not allow stability

alone led to good vascularization and complete
integration of the Lamina®

Amr A., 2017 [129] HOR Gen-Os®, Lamina®
Successful alternative to the autogenous onlay block

bone graft because no significant differences
were found

Del Corso M., 2013 [130] HOR Gen-Os®

Stable, functional, and aesthetic rehabilitation; no
significant bone loss; same level of the peri-implant

tissues around the implant collars; no dehiscence
(4-year follow-up)

Checchi V., 2019 [131] HOR mp3®

Uneventful and complete healing of the screw stage;
stable and osseointegrated implants; not completely

good esthetic but functional results because the
buccal profile was not thick enough (8 months after

implant placement)

Rossi R., 2019 [132] HOR Gen-Os®, Lamina®

Insertion of standard diameter implants and
subsequent restoration; the regenerated bone was

not remodeled and/or resorbed after 4 years of
occlusal loading
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Table 4. Cont.

Reference Clinical
Indication Biomaterial Results

Scarano A., 2019 [133] HOR Lamina®

Uneventful healing; increased bone regeneration;
decreased volume of residual cavity; prevention of

tissue collapses within the defect and maintaining of
structural integrity; no need for second surgery (up

to 24 months after surgery)

Esposito M., 2020 [134] HOR mp3®, Lamina®
Less invasive, faster, and cheaper treatment; less

associated morbidity; marginal bone loss around the
implant (one year after loading)

Iezzi G., 2020 [135] HOR Gen-Os®

No significant difference in crestal bone loss;
promising technique for rehabilitating patients with

agenesis of the upper lateral incisors (24-month
follow-up)

Scarano A., 2011 [7] VER Sp-Block, Gen-Os®, Evolution

The biomaterial rigidity allowed the elimination of
miniscrews and miniplates, the simplification of the

technique and the preservation of the space; no
dehiscence of the mucosa at the marginal ridge;

newly formed bone also in close contact with the
biomaterial particles without any connective tissue

or gaps

Felice P., 2012 [136] VER Sp-Block, Evolution
Elimination of chisels to complete bone osteotomy;

reduction in postsurgical nerve disturbances
and intraprocedure

Felice P., 2013 [11] VER Sp-Block, Evolution
Successful implant prosthetic rehabilitation; newly

formed bone within the block; no foreign body
reactions (4 months after surgery)

Barone A., 2017 [137] VER Sp-Block

No significant difference in volumetric bone
remodeling and in the success of the graft between

the two groups, though inlay technique showed
higher success rate (4 months after surgery)

Felice P., 2017 [138] VER Sp-Block, Evolution

Heterologous bone blocks were preferred to
autogenous ones because showed similar results,

avoiding invasive harvesting surgeries (2- to 7-year
follow-up)

Marconcini S., 2019 [139] VER mp3®, Sp-Block

Success of the implants in low residual vertical
height conditions before placement; temporary
postoperative paresthesia resolved in 2 months;

important bone gain after 4 months; little
peri-implant marginal bone loss (3 years

after loading)

Bernardi S., 2018 [140] VER Sp-Block Loss of implants and significant complications with
longer implants (one-year follow-up)

Gheno E., 2014 [141] HOR/VER Sp-Block, C-Block, Evolution
Effective permeation of CGF through the bone
scaffold; high bone regeneration; high clinical

success rate (12-month follow-up)

Rossi R., 2016 [142] HOR/VER mp3®, Lamina®

Uneventful rehabilitation; the resorbable membrane
was vascularized and integrated with soft and hard
tissues; active remodeling of the graft and gradual
substitution with new bone; no secondary surgery

Rossi R., 2017 [143] HOR/VER Gen-Os®, Lamina®

Good and predictable results; its placement and the
added particulate bone graft provided blood supply,
stability, good bone regeneration, and reabsorption;

uneventful healing
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Table 4. Cont.

Reference Clinical
Indication Biomaterial Results

Polis Yanes C., 2019 [144] HOR/VER Lamina®, Apatos®

Resorbable heterologous cortical Lamina® showed
better outcomes: new bone formation after 4 weeks

from the GBR, less morbidity, and
successful outcomes

Rossi R., 2019 [145] HOR/VER Gen-Os®, Lamina®
Successful restoration of complex cases; no

morbidity; reabsorption of the Lamina®; good
balance between the soft tissue and the restorations

Rossi R., 2020 [146] HOR/VER Gen-Os®, Lamina®

Reliable, manageable, and versatile material;
successful outcomes in all the three procedures, but

better results when Lamina® was combined with
xenogenic bone of similar origin

Esposito M., 2012 [147] VER/LASL Sp-Block, Gen-Os®, Evolution

6 × 4 mm implants showed slightly better results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment (5-month follow-up)

Felice P., 2012 [148] VER/LASL Sp-Block, mp3®, Evolution

5 × 5 mm implants with a novel nanostructured
calcium incorporated titanium surface showed

similar results in posterior mandibles bone
augmentation: faster, cheaper, and more uneventful

treatment (4-month follow-up)

Pistilli R., 2013 [149] VER/LASL Sp-Block, mp3®, Evolution

5 × 5 mm implants with a novel nanostructured
calcium incorporated titanium surface showed

similar results, especially in posterior mandibles
bone augmentation: faster, cheaper, and more

uneventful treatment (one-year follow-up)

Esposito M., 2016 [150] VER/LASL Sp-Block, Gen-Os®, Evolution

4-mm length implants showed slightly better results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment, despite fewer complications (4-month

follow-up)

Bolle C., 2018 [151] VER/LASL Sp-Block, Gen-Os®, Evolution

4-mm length implants showed slightly better results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment, despite fewer complications (one-year

follow-up)

Gastaldi G., 2018 [152] VER/LASL Sp-Block, mp3®, Evolution

5 × 5 mm implants with a novel nanostructured
calcium incorporated titanium surface showed

similar results in posterior mandibles bone
augmentation: faster, cheaper, and more uneventful

treatment (3-year follow-up)

Pistilli R., 2013 [153] VER/LASL Sp-Block, Gen-Os®, Evolution

6 × 4 mm implants showed slightly better results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment (one-year follow-up)

Felice P., 2018 [154] VER/LASL Sp-Block, Gen-Os®, Evolution

6 × 4 mm implants showed slightly better results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment (3-year follow-up)

Esposito M., 2019 [155] VER/LASL Sp-Block, mp3®, Evolution

5 × 5 mm implants with a novel nanostructured
calcium incorporated titanium surface showed

similar results in posterior mandibles bone
augmentation: faster, cheaper, and more uneventful

treatment (5-year follow-up)
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Table 4. Cont.

Reference Clinical
Indication Biomaterial Results

Felice P., 2019 [156] VER/LASL Sp-Block, Gen-Os®, Evolution

6 × 4 mm implants showed similar results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment (5-year follow-up)

Esposito M., 2020 [157] VER/LASL Sp-Block, Gen-Os®, Evolution

4 mm long implants showed slightly better results,
especially in posterior mandibles bone

augmentation: faster, cheaper, and more uneventful
treatment, despite fewer complications (3-year

follow-up)

Table 5. Bone regeneration procedures with porcine xenografts: Maxillofacial (MAX).

Reference Clinical
Indication Biomaterial Results

Rinna C., 2005 [158] MAX Lamina®

Excellent results: avoiding autologous implants and greater
morbidity; complete integration; regeneration of wide fractures
without the use of metal mesh support; fewer costs (from 1 to

8-year follow-up)

Grenga P., 2009 [159] MAX Lamina®

Hess area ratio >85% had no postoperative diplopia; Hess area
ratio <65% had postoperative diplopia; Hess area ratio between
65% and 85% had variable surgical outcomes, but most patients

had no problematic diplopia (4 months post-surgery)

Rinna C., 2009 [160] MAX Lamina®
Excellent results: biocompatibility; adaptability; no damage to

the orbital soft tissues during application; restoration of
wide defects

Ozel B., 2015 [161] MAX Lamina®
Good results: biocompatibility; plasticity; no morbidity; no

restoration of near-total or wide defects (1, 3, 6, and 12-month
follow-up)

Cascone P., 2018 [162] MAX Lamina®
Valid results: 50% more incisal opening after the procedure;

31.8% less excursive movement to the right and 22% more to
the left

Senese O., 2018 [163] MAX Lamina® Transconjunctival approach is the best surgical technique with
high patient satisfaction

Table 6. Bone regeneration procedures with collagenated porcine xenografts: Periodontal Regenera-
tion (PER) and Soft Tissue Augmentation (TIS).

Reference Clinical
Indication Biomaterial Results

Del Corso M., 2008 [164] PER Gen-Os®

As a membrane: protection of the surgical site;
accelerated wound healing of the soft tissues;

reduced morbidity. With graft materials: attraction
of mesenchymal cells and vessels; osteogenic effect;

immune action

Cardaropoli D., 2009 [165] PER Gel 40, Evolution
85% initial ridge dimensions preservation; correct
implant placement; newly formed bone with 25%
residual graft particles (4 months post-extraction)

Fickl S., 2013 [166] PER Derma
Possible use to replace autologous material;

complete root coverage only in 42.86% of the defects
(6 and 12 months post-surgery)
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Table 6. Cont.

Reference Clinical
Indication Biomaterial Results

Esposito M., 2015 [167] PER Gen-Os®, Evolution
Significant better results than open flap debridement

in PAL gain, PPD reduction, and RAD gain in
defects deeper than 3 mm

Attia A., 2017 [168] PER Gen-Os®
Significant clinical improvements of PI, GI, PD, and
CAL: improved bone density and reduction in defect

depth (6 and 12 months after surgery)

Aslan S., 2017 [169] PER Gen-Os®

Complete and uneventful wound healing with
excellent clinical results: limited wound failure in
the early phase; stabilization of blood clot in deep

intra-bone defects, avoiding the exposure of
regenerative biomaterials (one-year follow-up)

Aslan S., 2017 [170] PER Gen-Os® Uneventful and complete wound healing of the
interdental papilla (8-month follow-up)

Fischer K., 2014 [171] TIS Derma

Successful replacement of autologous grafts: less
morbidity; less chair time; complete and uneventful
wound healing and augmented ridge contour with

ADM; successful gain of keratinized mucosa
with CM

Matoh U., 2019 [172] TIS Derma
CM is a valid alternative to CTG: complete

correction in 7/10 of sites and 85% +/− 24% of root
coverage (12 months after treatment)

Fischer K., 2019 [173] TIS Derma

Significant soft tissue augmentation during all the
follow-up period, despite graft shrinkage in the first

6 months; uneventful healing (6- and 24-month
follow-up)

Verardi S., 2020 [174] TIS Derma
Significant thicker peri-implant soft tissues and

more vertical gain with the porcine dermal matrix
(6 months after placement)

Baldi N., 2020 [175] TIS Derma

Autologous connective tissue graft provided
significant facial soft tissue gain and width

augmentation of keratinized mucosa; uneventful
healing (6-month follow-up)

Table 7. Bone regeneration procedures with collagenated porcine xenografts: Laboratory
Tests (in vitro studies) (LAB), Laboratory Tests/Experimental Studies (LAB/EXP) and Laboratory
Tests/Lateral Access Sinus Lift (LAB/LASL).

Reference Clinical
Indication Biomaterial Results

Trubiani O., 2007 [176] LAB Apatos®
At 30 days, PDL-MSCs were completely integrated into
the 3D bio-scaffold; the biomaterial perfectly mimed the

human bone and was osteoconductive

Figueiredo M., 2010 [20] LAB Gen-Os®

The biomaterials had different particle sizes, shapes,
surface areas, organic material content, and total

porosity (mainly submicron pores); Biocoral® density
values were similar to those of hydroxyapatite, while

the values of the collagenated samples were lower; most
of the samples were hydroxyapatite based
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Table 7. Cont.

Reference Clinical
Indication Biomaterial Results

Brunelli G., 2011 [21] LAB Apatos®

Up-regulation of SPP1 and ALPL in ADSCs and hOBs
and of COL1A1 in hOBs: active resorption of the
biomaterial by human osteoclasts; osteoinductive

properties; matrix synthesis and deposition in hOBs in
the late differentiation (15 days of treatment)

Kolmas J., 2012 [177] LAB Gen-Os®, Apatos®

The biomaterials were mainly constituted by
nanocrystalline apatite mineral, organic collagenous
matrix, and water; crystal sizes and specific surfaces

areas were similar tothose in bone mineral

Manescu A., 2016 [178] LAB Dual-Block
New mineralized bone formation from the second week
of culture in basal and differentiating media, but more
in the trabecular portion and in differentiating media

Rombouts C., 2016 [26] LAB Gen-Os®

Both Gen-Os® (of equine and porcine origin) grafting
materials showed a significant increase in VEGF

secretion by PDLCs, endothelial cell proliferation,
and angiogenesis

Barone A., 2014 [179] LAB Lamina®

Osteogenic phenotype induction in hMSCs grown on
titanium discs but not on xenogenic bone; up-regulation

of DLX5 and down-regulation of RUNX1 in cells
cultured on titanium; up-regulation of DLX5, CTNNB1,

and RUNX1, and SP7 down-regulation in OICs

De Marco P., 2017 [180] LAB Derma

Coated membranes did not release GO or induce
inflammation, and were biocompatible; GO changed
stiffness and membrane-AFM tip adhesion, increased

the roughness and the total surface exposed to the cells

Radunovic M., 2017 [181] LAB Derma

Improved proliferation and differentiation of DPSCs,
higher compatibility, higher expression of BMP2 and
RUNX2, and lower PGE2, COX2, and TNFα levels on

GO coated membranes at 14 and 28 days

Canullo L., 2018 [182] LAB Sp-Block, Lamina® Increase in murine osteoblasts adhesion and protein
adsorption in all grafted materials

Brunelli G., 2012 [183] LAB Apatos®
Induction of osteoblast differentiation in DPSCs,

increasing FOSL1, RUNX2, and SPP1 and decreasing
ENG; involvement in bone resorption

Mazzoni S., 2017 [184] LAB Dual-Block
Guided osteogenic differentiation of hPDLSCs in
xeno-free cultures, showing an acceleration of the

process of mineralization

Lauritano D., 2012 [185] LAB Apatos®

Biocompatibility; promotion of osteoblast differentiation
and bone regeneration: up-regulation of FOSL1, SPP1,

SP7, and ALPL, down-regulation of ENG, COL1A1,
and COL3A1

Maté Sanchez de Val J.,
2018 [186] LAB Gen-Os®

Different microstructure, similar high porosity (intra
and interparticle) and crystallinity between synthetic

and organic materials; higher density for the
synthetic materials

Genova T., 2019 [187] LAB Sp-Block, Lamina®
No significant differences in degrees of contamination of

bone grafts, providing the required sterility of
the surface

Di Carlo R., 2019 [188] LAB Lamina®
Increase in calcium phosphate deposition, DPSCs

proliferation, and roughness of Lamina®, reduction in
toxicity, preservation of DPSCs membrane integrity
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Table 7. Cont.

Reference Clinical
Indication Biomaterial Results

Caballé Serrano J., 2019
[189] LAB Lamina®, Evolution

Increase in hydration in porcine-derived barrier
membranes and wettability in rough surfaces; higher

stiffness in bone Lamina®

Ambrozewicz E., 2019
[190] LAB Gen-Os®, Apatos®

Vitamins D3 and K could protect osteoblasts from redox
imbalance and lipid peroxidation, support cell growth,

increasing DNA biosynthesis

Jeanneau C., 2020 [23] LAB Gen-Os®
Gen-Os® material better increased C5a secretion and
MSCs proliferation and recruitment toward injured

PDLCs, also leading to bone regeneration

Canullo L., 2020 [191] LAB Lamina®, Sp-Block

PAT increased the early stage osteoconductivity and
osseointegration of the bone grafting materials:
improved osteoblast adhesion without affecting

macrophage viability

Toledano M., 2020 [192] LAB Derma, Evolution

Derma was the most resistant to all degradation
techniques; the most aggressive test was the bacterial

collagenase solution (complete degradation of all
membranes by 21 d)

Ettorre V., 2016 [193] LAB/EXP Apatos®

The homogeneous GO-coated PB granules were more
resistant to fracture load, biocompatible did not trigger

inflammatory responses in an animal study, and lost
small GO particles

Mijiritsky E., 2017 [194] LAB/EXP Gen-Os®
The controlled release of bioactive growth factors from
bone granules promoted bone regeneration in vivo and

the increase in VEGF and bFGF markers in vitro

Diomede F., 2018 [195] LAB/EXP Evolution

CM + EVO membranes + hPDLSCs up-regulated
COL5A1, COL16A1, and TGF β1 and down-regulated

26 genes involved in bone regeneration in vitro and
showed a better osteogenic ability in calvaria repair

in vivo

Diomede F., 2016 [196] LAB/EXP Dual-Block
DB showed biocompatibility, osteoinductive and

osteoconductive properties in vitro and a precocious
osteointegration and vascularization in mouse calvaria

Diomede F., 2018 [197] LAB/EXP Evolution
EVO + PEI-EVs + hPDLSCs showed biocompatibility
and an osteogenic potential in vitro and in vivo for the

treatment of calvarium and ossification trauma defects

Bergmann M., 2020 [198] LAB/EXP Gen-Os®

Complement components secreted by cultured pulp
fibroblasts eliminate bacteria and support the early steps

of dental tissue regeneration, and those secreted by
cultured PLC induced BMMSC recruitment

Fernandez M., 2017 [199] LAB/LASL mp3®, Evolution

Typical HA structure with intraparticle pores; significant
porosity, crystallinity, and calcium/phosphate

differences; excellent biocompatibility and similarity to
natural bone; greater osteoconductivity, but fewer
resorption properties for sintered HA xenografts

Fernandez M., 2017 [200] LAB/LASL mp3®

Significant decrease in Ca2+/P ratio, high porosity, low
crystallinity, low density, large surface area, poor
stability, and a high resorption rate in the residual

biomaterial of the low-temperature sintered group (6
months after surgery)
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Table 8. Bone regeneration procedures with collagenated porcine xenografts: Experimental Studies (EXP).

Reference Clinical
Indication Biomaterial Results

Nannmark U., 2008 [25] EXP mp3®, Gen-Os®, Evolution

Mixing collagen gel did not affect bone tissue
responses: direct bone formation on the particles,

increased bone area within 8 weeks, PCPB
resorption with osteons formation, and PCPB area

decrease within 8 weeks for both groups

Nannmark U., 2010 [201] EXP Putty, Gel 40
No differences in bone tissue response after

changing collagen/CPB ratios: high bone formation
rate and initial resorption after 8 weeks

Figueiredo A., 2013 [202] EXP Gen-Os®

OsteoBiol® granules were larger, irregular,
sharp-edge tips and for that triggered less

inflammatory response; a bone-like structure
and composition

Fickl S., 2015 [203] EXP Derma
No significant differences in foreign body reaction,

tissue thickness, and height between the two groups
(4-month follow-up)

Fischer K., 2015 [204] EXP Gen-Os®

Delayed healing of the extraction socket; reduced
post-extraction horizontal bone width; obstruction of

the resorption of the porcine bone substitute by
pamidronate

Cakir M., 2015 [205] EXP Apatos®, Evolution

High biocompatibility of the materials; accelerated
bone healing, bone formation, and graft

degeneration with ABS alone or combined with
CHBG; osteoconductive properties of CHBG (1, 4,

and 8 weeks after surgery)

Scarano A., 2016 [206] EXP Gen-Os®, mp3®, Sp-Block,
Evolution

Faster and higher bone regeneration and higher
biocompatibility with scaffold of particulate porcine
bone mix and porcine corticocancellous collagenated

pre-hydrated bone mix (4 months after surgery)

Scarano A., 2017 [207] EXP C-Block Higher bone regeneration with BDPSCs-BPB
scaffolds (3 months after surgery)

Iida T., 2017 [208] EXP Gen-Os®, Evolution

No significant morphometric difference after
placement of a collagen membrane subjacent the

sinus mucosa; no complete resorption of the
collagen membrane after 8 weeks (2, 4, and 8 weeks

after surgery)

Omori Y., 2018 [209] EXP Gen-Os®, Evolution

No difference in bone augmentation area and bone
density in respect to the coverage of the antrostomy

fixed with a cyanoacrylate; incorporation of the
repositioned bone plate after 8 weeks; residual

defects in both groups (2, 4 and 8 weeks
after surgery)

Develioglu H., 2018 [210] EXP Gen-Os®, Gel 40
Higher bone formation and osteoconductivity in
both test groups, mostly in Gel 40 group, despite

mild inflammation and graft resorption

Nemtoi A., 2017 [211] EXP mp3®, Lamina

Biocompatibility and osteoconductive capacity, mild
inflammation in the early phase, partial and

sequential graft resorption with collagenated porcine
bone grafts in both healthy subjects and those with

controlled diabetes; similar results in diabetic
patients treated with Insulin and strontium ranelate
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Table 8. Cont.

Reference Clinical
Indication Biomaterial Results

Iida T., 2018 [212] EXP Gen-Os®, Evolution

Increased bone formation, mostly close to the sinus
bone walls in histological analyses; more bone
formation in the middle regions with micro-CT

analyses, especially after 2 weeks (2, 4, and 8 weeks
after surgery)

Diker N., 2018 [213] EXP Gen-Os®

Xenogenic graft augmentation combined with EPO
treatment significantly increased bone formation
and vascularization; EPO helped the regenerative

process of critical size bone defects

Kizilaslan S., 2020 [214] EXP Gen-Os®
Higher bone healing rate with xenogenous graft
combined with CGF both in healthy and diabetic

patients (6 weeks after surgery)

Favero G., 2020 [215] EXP Gen-Os®, Evolution

Small increase in bone formation after placement of
autogenous bone and significant increase in the

subjacent close-to-window region (1 and 8 weeks
after surgery)

Giuliani A., 2020 [216] EXP Evolution

The use of CM, EVs, and PEI-EVs often fastened
bone remodeling kinetics and the mineralization

process (COL-hPDLSCs-PEI-EVs and
PLA-hGMSCs-CM); better osteogenic capacity with

CM (6 weeks after grating)

Fischer K., 2020 [217] EXP Gen-Os®, Derma, Lamina®

Uneventful healing; Lamina® stability allowed bone
formation and the inhibition of soft tissue invasion

and was degradated; Gen-Os® allowed bone
regeneration and was resorbed (4 months

after surgery)

Aragoneses J., 2021 [218] EXP Derma
Thicker keratinized tissue with MD: higher values at
15 d, decreased values at 45 d, and similar to control

at 90 d (15, 45, and 90 d after surgery)

In summary, all the in vitro, experimental, and clinical results described in Tables 1–8
suggested that, during the last 20 years, the OsteoBiol® collagenated biomaterials have
shown reliable outcomes in terms of biocompatibility, morbidity, new bone formation, and
bone and soft tissue regeneration, according to expert surgeons’ experience.

4. Discussion

The number of studies reporting surgical techniques for bone regeneration and the clinical
effectiveness of bone substitutes and xenografts has greatly increased over the last years, with
high predictability and stability of the regenerated alveolar bone ridges [9,18,219]. The treatment
of bone defects represents a clinical occurrence that requires optimal management of the three-
dimensional stability of the grafts and regenerative spaces. In this way, blood-clot stability plays
a key role in new bone formation and the morphological restoration of the atrophied bone
ridge [220].

The effectiveness of graft implantation is affected by a biunivocal biological rela-
tionship between the host tissue and the bone substitutes that has been investigated by
numerous histological studies on retrieved biopsies [221].

In many ex vivo studies conducted by using porcine graft specimens, the histologic and
histomorphometric evaluations reported newly formed bone in contact with the scaffolds
and an evident presence of cells in the osteocyte lacunae [7,24,25,27,222].

This evidence has been corroborated by the clinical success of these biomaterials, which
confirmed the histologic and histomorphometric findings and showed an intimate apposition
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of newly formed bone in contact with the porous porcine-derived biomaterials, especially in
maxillary sinus augmentation procedures [28,85,89,90,93,97,99–101,110,111,116,117,119].

In addition, the results obtained from ex vivo and clinical data have been
supported by in vitro studies, which demonstrated the osteoblast differentiation and bone
regeneration capabilities together with the angiogenic potential of the OsteoBiol® bone
matrix [21,23,26,178,183–185,194,197].

With reference to graft resorption, many studies revealed the nearly complete sub-
stitution of membranes and the ongoing resorption of collagenated bone particles within
6 months. Especially, Wachtel et al. [123] reported that the biodegradation of the cortical
bone Lamina® was almost complete after 6 months, with varying degrees of residual graft
particles. Cardaropoli et al. [30] confirmed the presence of a marginal residual graft rate
(24.5%) of Gen-Os® biomaterial, covered by Evolution® collagen membrane to preserve
the bone socket, just after 4 months from implant insertion. Additionally, another clinical
study [95] reported a high resorption rate of mp3®, with 13.55% of residual grafting mate-
rial after 5 months, that reached 12.3% within 12 months [24]. Considering that the limit
for the residual volume of bone grafts for successful implant placement is set at 40% [223],
these values are considerably lower.

Regarding the aforementioned residual graft limit, it should be considered that only
Apatos Cortical® showed a higher residue percentage (around 30%) after many years from
the surgery, although it stayed within 40%, comparable to the different types of xenografts
present in the market [96,224].

However, these histological findings allow for adequate preservation of the grafted
volume and do not appear to negatively affect the predictability of regenerative procedures
and the survival rate of the dental implant in regenerated sites [225].

Overall, based on the data discussed, it appears clear that, due to the unique properties
of these xenografts, an adequate preservation of graft volume and an improved new bone
formation have been achieved.

In addition, the literature proved that OsteoBiol® materials could be used alone or in
combination both for the regeneration of bone defects and soft tissue augmentation. For
example, in the latter case, membranes, such as Derma, can be used alone as an alternative to
connective tissue graft to improve the quality of keratinized tissues [166,171–174]. Apatos®,
instead, is a universal filler that can be employed to treat peri-implant defects and two-wall
defects [68,74]. Moreover, thanks to its granulometry, Apatos® fits well in big sockets, e.g.,
after molar extractions [41]. For this reason, sinus lift procedures (with crestal or lateral
access) [85,91] can be performed with Apatos® as a bone substitute, as well as surgeries for
horizontal regenerations. Finally, as an example of a combination of materials, Apatos®

grafts can be protected with Evolution membrane [59] to reach a better ridge preservation
compared to non-preserved size.

Although the effectiveness of using these biomaterials has been summarized in the re-
sults (Tables 1–8) and discussed in this section, it is necessary to recognize that this narrative
review has potential weaknesses. The main limitations include: (i) the manuscript does not
contain all the reports in the field of “effectiveness of bone regeneration procedures with
collagenated porcine grafts”, but only some selected publications that concern OsteoBiol®

biomaterials; (ii) the collected articles come from studies not only conducted by the authors
of this review, but also by several other authors; (iii) the manuscript describes the individ-
ual works but does not quantify the results, and no statistical analysis is performed here;
(iv) the manuscript does not compare the effectiveness of OsteoBiol® products with other
competitors, which are also successfully used for bone and soft tissue regeneration within
the craniofacial area. However, our main goal was to summarize the achievements of these
specific materials over the years.

Despite these limitations, we can conclude that the 20-year translational research expe-
rience showed the safety of these specific porcine bone substitutes and demonstrated their
capability to improve the biological response and predictability of regenerative protocols
for the treatment of alveolar and maxillofacial defects. For future perspectives, it will
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certainly be useful to extend the number of included studies, analyze and compare the
success rate of each product, and perform longer-term histological and histomorphometric
studies in order to better understand the resorption times of all these biomaterials. In this
way, a systematic review could be performed to better highlight the advantages of using
OsteoBiol® collagenated porcine bone grafts with respect to other porcine substitutes.
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