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Abstract: The aim of the paper is to identify a suitable method for the construction of a 3D city model
from stereo satellite imagery. In order to reach this goal, it is necessary to build a workflow consisting
of three main steps: (1) Increasing the geometric resolution of the color images through the use of pan-
sharpening techniques, (2) identification of the buildings’ footprint through deep-learning techniques
and, finally, (3) building an algorithm in GIS (Geographic Information System) for the extraction
of the elevation of buildings. The developed method was applied to stereo imagery acquired by
WorldView-2 (WV-2), a commercial Earth-observation satellite. The comparison of the different
pan-sharpening techniques showed that the Gram–Schmidt method provided better-quality color
images than the other techniques examined; this result was deduced from both the visual analysis
of the orthophotos and the analysis of quality indices (RMSE, RASE and ERGAS). Subsequently, a
deep-learning technique was applied for pan sharpening an image in order to extract the footprint
of buildings. Performance indices (precision, recall, overall accuracy and the F1 measure) showed an
elevated accuracy in automatic recognition of the buildings. Finally, starting from the Digital Surface
Model (DSM) generated by satellite imagery, an algorithm built in the GIS environment allowed the
extraction of the building height from the elevation model. In this way, it was possible to build a
3D city model where the buildings are represented as prismatic solids with flat roofs, in a fast and
precise way.

Keywords: 3D city model; deep learning; building footprint; pan sharpening; satellite images;
ArcGIS Pro

1. Introduction

3D city modelling represents a fundamental tool for the management and planning of a
territory, especially for the monitoring and management of the built environment. Over the
years, the representation of buildings has moved from a simple graphic model to a digital
and semantic one; this has been possible thanks to the development of information systems
capable of associating, even for 3D and complex geometries, different types of information
with each building. This means that the semantic enrichment of three-dimensional data at
an urban scale allows one to document the characteristics of each building in relation to
the nature of the project and, more generally, to the scale of representation. The amount
of detail, both geometrical and semantical, is managed and described through different
levels of detail (LoDs) [1]. According to Gröger et al., 2008 [2], five consecutive levels
of well-defined detail can be achieved: LOD0—regional, landscape; LOD1—city, region;
LOD2—city neighborhoods, projects; LOD3—architectural models (exterior), landmarks;
and LOD4—architectural models (interior) [3]. CityGML 3.0 includes a revised concept of
LOD. LOD4, which is used to represent the interior of objects (such as interior modelling
for buildings and tunnels) has been removed, with only LODs 0-3 remaining. Instead, the
interior of objects can now be expressed as integrated with LODs 0-3 [4].
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The 3D city model can be built using active and or passive sensors mounted on terres-
trial, aerial or satellite platforms. For example, several city models were built using airborne
laser scanning (ALS) data; Zhang et al., 2006 [5], present a framework that applies a series of
algorithms to automatically extract building footprints from ALS data. This latter approach
is based on three main steps: (i) The ground and nonground LIDAR measurements are
first separated using a progressive morphological filter; (ii) building measurements are
identified from nonground measurements using a region-growing algorithm based on
the plane-fitting technique; (iii) raw footprints for segmented building measurements are
derived from connecting boundary points, and the raw footprints are further simplified
and adjusted to remove noise caused by irregularly spaced LIDAR measurements.

Rubinowicz et al., 2014 [6], discuss the creation of 3D city models in CityGML LoD1
using two data sources available in Poland, i.e., the Database of Topographic Objects
(BDOT10k) and LiDAR data collected within the ISOK project. In particular, the author
developed C++ software capable of handling LoD1 models useful for research and practical
application in spatial, urban and architectural planning. Ortega et al., 2021 [7], propose
a method to identify buildings and roof surfaces within each footprint and classifies
them into one of five roof categories. Therefore, modelling from ALS data has been and
continues to be a valuable sensor for building 3D models. However, as the size of the city
increases, the time required to perform data acquisition increases; furthermore, by using
only hybrid airborne sensors, i.e., sensors with both ALS and cameras (passive sensors),
colorimetric information of the observed area can also be obtained [8]. Recent advances
in the availability of Very High Resolution (VHR) satellite imagery, satellites equipped
with sensors acquiring at a metric and sub-metric spatial resolution and the possibility of
acquiring stereo imagery capable of covering large areas have led to an increasing trend
of their applications in various fields, such as for bathymetry extraction, the construction
of 3D models of urban environments, etc. [9–12]. One of the first approaches using VHR
satellite images for reconstructing urban scenes in LOD1 was the semi-global matching
technique (SGM), which uses a pixelwise, mutual information (Ml)-based matching cost
for compensating radiometric differences of input images [13]. Rajpriya et al., 2014 [14],
have developed a technique for the 3D modelling of buildings for urban area analysis and
to implement the coding standards prescribed in ‘OGC City GML’ for urban features; this
latter approach was used to develop a 3D city model with level of detail 1 (LOD 1) for a
part of Ahmedabad city in the state of Gujarat, India. Partovi et al., 2019 [15], proposed a
new hybrid multistage approach for the reconstruction of the 3-D building model, which is
based on the normalized Digital Surface Models generated from images acquired with the
WorldView-2 satellite. Kumar and Bhardwaj, 2020 [16], through a case study of the dense
urban areas in parts of Chandigarh (India) show a method to extract building imaging
using Pleiades panchromatic and multispectral stereo satellite datasets.

Recently, the use of deep-learning algorithms, notably convolutional neural networks
(CNNs), has shown remarkable success for automatic image interpretation. A typical
CNNS has a series of stages, where in each stage, a set of feature maps are convolved with a
bank of filters that are subject to training, and filter responses are passed through some non-
linear activation function to form new feature maps, which are down-sampled via a pooling
unit to generate output maps with reduced spatial resolution [17]. Xu et al., 2018 [18],
proposed a novel model that designs an image segmentation neural network based on
the deep residual networks and uses a guided filter to extract buildings in remote-sensing
imagery. In this latter paper, the authors divided the process into three main steps: (i) Pre-
processing of the image; (ii) a deep network architecture design is trained with the urban
district remote-sensing image to extract buildings at the pixel level; (iii) a guided filter is
employed to optimize the classification map produced by deep learning. Tripodi et al.,
2020 [19], propose a methodology based on U-net to extract the contour polygons of the
buildings and the combination of optimization techniques and computational geometry
to reconstruct a digital terrain model and a digital height model and to correctly estimate
the position of the building footprints. Rastogi et al. (2020) [20] propose a novel CNN
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architecture termed UNet-AP, inspired by UNet and the concept of Atrous Spatial Pyramid
Pooling, for automatic extraction of a building footprint from very-high-resolution satellite
imagery (Cartosat-2 series).

Therefore, this paper intends to continue along the line of research based on the
use of VHR, by proposing a pragmatic and efficient approach based on the use of deep-
learning algorithms. In order to construct the buildings in 3D, it is necessary to obtain,
first of all, very-high-resolution orthophotos; this task can be obtained by applying pan-
sharpening techniques that allow one to increase the geometric resolution of the WorldView-
2 imagery [21]. Furthermore, considering the potential of stereo satellite imagery in the
building of the DSM [22] and the high degree of geo-information management in a GIS
environment, it is possible to build automatic city modelling [23,24]. The advantage
of the proposed approach lies in the full exploitation of the potential offered by VHR
stereo satellite imagery with deep-learning algorithms, and the development of a suitable
pipeline in a GIS environment allows the management of the various processes leading to
the semi-automatic construction of an urban city model.

2. Materials and Methods
2.1. Study Area

The stereo imagery used for the experimentation was taken by WV-2, a commercial
satellite launched in 2009 by DigitalGlobe, which provides a high-resolution panchromatic
band and eight multispectral bands. WV-2 was the first high-resolution commercial satellite
capable of acquiring, in addition to the four typical Blue, Green, Red and Near Infrared
bands, four additional multi-spectral bands: The Coastal Band, the Yellow Band, the Red
Edge Band and the Near Infrared 2 Band. Regarding spatial resolution, the sensor is able
to acquire 8-band multispectral images with a resolution of 1.8 meters, and panchromatic
images with a resolution of 46 centimeters (marketed at 2 meters and 50 cm, respectively).
In particular, the main features of the sensor can be summarized in Table 1.

Table 1. Features of the WV-2 images used for experimentation.

Features Values

Spectral range

Panchromatic (Pan): 450–800 nm
Multispectral (MS) 8 bands: 400–450 nm (B1-coastal
blue); 450–510 nm (B2-blue); 510–580 nm (B3-green);

585–625 nm (B4-yellow); 630–690 nm (B5-red);
705–745 nm (B6-red edge); 770–895 nm (B7-NIR1);

860–1040 nm (B1-NIR2).

Spatial resolution

Panchromatic (Pan) 0.40 m GSD (Ground Sample
Distance)

Multispectral (MS) 8 bands: 1.6 m GSD (Ground Sample
Distance)

Swath width 16.4 km (multiple adjoining paths can be imaged in a
target area in a single orbit pass due to S/C agility)

Data quantization 11 bit
Geolocation accuracy of imagery ≤ 3 m without any GCP (Ground Control Points)

Acquisition data 6 October 2014
meanSunAz 143.8◦

meanSunEl 55.6◦

meanSatAz 46.3◦

meanSatEl 81.3◦

meanInTrackViewAngle 6.4◦

meanCrossTrackViewAngle 4.9◦

meanOffNadirViewAngle 8.1◦

cloudCover 0

The satellite imagery refers to the Gulf of Oman (Figure 1a) along the northern coast
of the capital Mascate, one of the oldest cities in the Middle East. With a history dating
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back to ancient times, the city alternates between exclusive multi-story shopping centers
and monuments built on top of cliffs, such as the 16th century Portuguese forts of Al Jalali
and Mirani, which dominate the harbor. In particular, the study was focused on the dock
of Al Mouj Marina, as shown in Figure 1b.
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2.2. Method

The proposed method for the geometric construction of the 3D city model in LOD1
can be dived into 3 main steps, namely building a multispectral image at a very high
geometric resolution (pan sharpening), the construction of the buildings’ footprints and
the determination of the height of each building from DSM generated by stereo satellite
imagery.

2.2.1. Pan Sharpening

Pan sharpening allows one to increase the geometric quality of a multispectral image.
It allows the superior geometric resolution of panchromatic images to be fused with the
spectral resolution of multispectral images; consequently, each low-yield multispectral
image (LRMI) is transformed into a high-yield multispectral image (HRMI) [25]. Many
pan-sharpening methods have been studied and developed, such as Brovey, weighted
Brovey, Gram–Schmidt, Intensity–Hue–Saturation (IHS), Fast IHS, Multiplicative, Principal
Component Analysis (PCA), high-pass filtering (HPF), Generalized Laplacian pyramid
(GLP) and Zhang [26,27]. In this paper, IHS, Brovey and Gram–Schmidt were used with
respect to their simplicity of implementation and effectiveness of the algorithms. To
evaluate the quality of pan sharpening, the RMSE, RASE and ERGAS indices can be used.

The root mean square error (RMSE) index is computed using the formula [28]:

RMSE(bandk) =
√

BIASk
2 + σk

2 (1)

where:
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BIAS is the difference between the mean values of the input LRMI and the out-
put (HRMI);

σk is the standard deviation of the difference images LRMI and HRMI.
The relative average spectral error (RASE) index characterizes the average perfor-

mance of a method in the considered spectral bands. This index is calculated including all
multispectral images by following the formula [29]:

RASE =
100
M

√
1
n

n

∑
i=1

RMSE2
i (2)

where M is the mean value of Digital Numbers (DNs) of the n input images (MS).
The ERGAS (Erreur Relative Global Adimensionnelle de Synthèse), also indicated

as a dimensionless Global Relative Error in Synthesis [30] is another index to evaluate
the quality of the pan sharpening. Introduced by Wald [31], it is calculated using the
following formula:

ERGAS = 100
h
l

√√√√ 1
NBands

NBands

∑
k=1

(
RMSE(BandK)

MSk

)2
(3)

where:
h is the spatial resolution of the PAN image;
l is the spatial resolution of the MS image;
NBands is the number of bands of the HRPI image;
MSk is the mean radiance value of the k-th band of the MS image.
The good image quality derived from pan sharpening is characterized by low values of

the RMSE, RASE and ERGAS indices. Therefore, the orthophoto that shows the best-quality
index is used for further processing.

2.2.2. Construction of the Footprint of Buildings by Deep-Learning Approach and
Evaluation of the Quality Using Performance Indicators

There are several ways to generate building footprints, including manual digitization
using tools to draw the outline of each building. However, this is a labor-intensive and
time-consuming process. Therefore, the deep-learning approach (a subset of machine
learning) uses several layers of algorithms in the form of neural networks to detect features
within an image. Indeed, input data are analyzed through different layers of the network,
with each layer defining specific features and patterns in the data. Some algorithms, such as
R-CNN and Fast(er) R-CNN, use an approach that first identifies the regions where objects
are expected to be found and then detects objects only in those regions using convnet.
Other algorithms, such as YOLO (You Only Look Once) and SSD (Single-Shot Detector)
use a fully convolutional approach in which the network is able to find all objects within
an image in a single pass through the convnet.

In ESRI ArcGIS Pro, different algorithms have been implemented to output the proba-
bility and position of an object. In this environment, the workflow leading to the construc-
tion of the building polygon can be schematized in the three main steps: (i) Prepare training
data, (ii) train a model and (iii) detect the object. To prepare training data means to create
training samples in the Label Objects for deep-learning panel and using the Export Training
Data For Deep Learning tool to convert the samples into training data. The output of the tool
is image chips or samples containing training sites to be used to train the deep-learning
model. The image chips are used to train a deep-learning model. A number of model types
and arguments are available to configure the training process. We chose Single Shot Detector
(Object detection) as the model because it is optimized for object detection. The training
process produces an Esri model definition (.emd) file that was used in the object detection
step. The Detect Objects Using Deep Learning tool calls for a third-party deep-learning
Python API and uses the specified Python raster function to process the image. At the
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end of the process, the tool will have generated feature layers that contain a bounding box
around the detected objects in the imagery data.

To evaluate the quality of the object detection, four performance indicators based on
the values derived from the confusion matrix (a matrix for binary classification with actual
values on one axis and predicted on another) are considered. In particular, precision, recall,
overall accuracy, and the F1 measure [32–34] are communally used in this type of analysis.

The performance indicators were generated taking into account the True Positive (TP),
i.e., the number of polygons that belong to a particular class (e.g., buildings); the True
Negative (TN), which is the number of polygons that do not belong to a class but were
wrongly assigned to a class other than theirs; the False Positive (FP), which occurs when
the pixels do not belong to a class but were predicted positively to the class; and the False
Negative (FN), which are the polygons that belong to a class but were not predicted as any
class in the image.

The precision indicates the ratio of the correctly segmented classes that are positive for
each class, which can be measured with TP and FP as shown in the following equation:

Precision =
TP

TP + FP
(4)

The recall is the ratio of the correctly classified positive classes:

Recall =
TP

TP + FN
(5)

The F1 measure is the harmonic mean of the precision and recall:

F1 Measure = 2
Precision·Recall

Precision + Recall
(6)

The overall accuracy is the ratio of the correct prediction over total observation:

Overall Accuracy =
TP + TN

TP + FN + FP + TN
(7)

2.2.3. Building DSM and Extraction of Height of the Buildings

Regarding the determination of the building height, it can be obtained from the DSM
using epipolar images. Epipolar images are stereo pairs that are reprojected so that the left
and right have a common orientation and the corresponding features between the images
appear along a common x-axis. The use of epipolar images increases the speed of the
correlation process and reduces the possibility of mismatches. In addition, the high level of
automation within commercial software allows for the simple and intuitive construction of
the DSM.

The difference between DSM and digital terrain model (DTM) allows one to determine
the elevation of the various objects that make up a scene, i.e., a map of the objects in the
observed scene. The DTM includes only the elevation of the “bare earth” with vegetation,
buildings and other man-made features removed. Consequently, it is necessary to construct
the DTM of the observed area, i.e., transform the DSM into a DTM. This task can be
accomplished in the following steps: (i) Eliminating the pixels on which the buildings fall
from the DSM, or rather a larger area of an amount equal to twice the uncertainty (the
construction of a buffer around the buildings); (ii) editing to manage critical areas near
the buildings (outliers, areas with high vegetation, etc.; (iii) the application of a low-pass
filter; (iv) transformation of the pixel value into a point shape file to create the TIN; (v)
transformation from a triangulated irregular network (TIN) into DTM (raster).

The aim of this procedure is not to extract the DTM over the whole observed area but
to identify a strategy to extract the ground elevation relative to each building.
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Once we have obtained the DTM and, consequently, the height map, we again clip the
buildings. At this point, we have obtained a set of pixels whose values represent the height
of the building.

To obtain a unique value of the height, it is necessary to create an intersection of the
centroid of the building polygon with the height map. With this method, the condition
that must occur is that the centroid, representing the height of the building, falls inside
the polygon. One method of using any geometry is polygon triangulation, which is the
decomposition of a polygon into a set of triangles. The triangulation of a polygon P is its
partition into non-overlapping triangles whose union is P. Over time, several algorithms
have been proposed to triangulate a polygon. One way to triangulate a simple polygon
is based on the two-ear theorem, namely the fact that any simple polygon with at least 4
vertices without holes has at least two ‘ears’, which are triangles with two sides that are
the edges of the polygon and the third completely inside it [35]. There is an algorithm able
to solve this issue (see Chazelle, 1991) [36] but it is so complicated to implement that it has
not yet been employed in practice.

Therefore, to overcome the limitations imposed by this algorithm, it is necessary for
polygons to be convex. A polygon is said to be convex if its interior is a convex set; given a
set S of n points in the Euclidean plane, it is convex if, and only if, for every pair of points in
n, the line segment joining them is interior to S. In the case of convex polygons, the centroid
falls within their contour, as is easy and intuitive when thinking of simple elementary
figures such as a rectangle, rhombus or square. However, this approach imposes two major
limitations, namely, the use of simple figures for the representation of the footprint of
buildings is unlikely to be realized and is also statistically insignificant.

A method to overcome these problems is to use a statistical approach that consists
of calculating the average of the values of the cells contained within the polygon (single
building). The pixels taken into consideration are those of both the DSM and the DTM;
therefore, the average value of the pixels (elevation values) of the raster difference between
DSM and DTM allows one to obtain the value of the height of each building. Practically, a
field “height” is associated with each geometry (feature). In this way, it is possible to build,
in a GIS environment, the 3D geometry of each building in LOD1.

2.2.4. Workflow of Tasks and Software Used for the Experimentation

In order to produce a useful 3D model for planning and design purposes, various
software is used. In particular, for the construction of the building footprint and for the
construction of the 3D model, ArcGIS Pro software was used.

To build the Digital Elevation Model (DEM), Catalyst (PCI Geomatics brand) software
was used. Catalyst offers proven algorithms rooted in photogrammetry and remote sensing.
Indeed, it is a comprehensive suite of products designed for performing the tasks required
in producing high-quality, seamless digital orthophoto imagery products from aerial
(standard and digital) and commercial satellite imagery.

In order to assess the reliability of the different processes, a quality analysis (QA)
was carried out. QA allows one to analyze the quality of a process using appropriate and
effective indices for the analysis of a specific process. The data analysis was carried out
using Microsoft Excel.

More generally, the pipeline that was developed for the construction of the 3D city
model, in relation to the software used, is shown in Figure 2.
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2.3. Identification of the Best Pan-Sharpening Technique

The first step in building the 3D city model was to perform the pan-sharpening
task. Pan sharpening fuses a high-resolution panchromatic raster with a low-resolution
multiband raster dataset to create a red–green–blue (RGB) raster with the resolution of the
panchromatic raster. The weights assigned in the several pan-sharpening methods for the
red, green and blue band were IHS (0.334; 0.333; 0.333), Brovey (0.334; 0.333; 0.333) and
Gram–Schmidt (0.390; 0.230; 0.210). In this way, in an easy and simple way, it was possible
to generate three images at a high geometric resolution.

Visual comparison of the different images generated through the different pan-
sharpening methods is shown in Figure 3, where it can be seen that all the pan-sharpening
methods and weights adopted showed an improved resolution of the fused image.
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The quality indexes (RMSE, RASE and ERGAS) obtained on WV-2 images and calcu-
lated in Microsoft Excel can be summarized in Table 2.
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Table 2. Quality indexes obtained from WV-2 image.

Method Band RMSE RASE ERGAS

IHS
red 15.860

1.853 1.357green 14.856
blue 15.064

Brovey
red 16.075

1.850 1.344green 14.659
blue 14.950

Gram-Schmidt
red 13.718

1.636 1.211green 13.658
blue 13.047

From the observation of Figure 3 and Table 2, it is possible to note better quality values
for the Gram–Schmidt method; in fact, the tool that uses this last method allows one to also
set the type of sensor. The orthophoto generated based on the Gram–Schmidt method was
used for further processing.

2.4. Applying Deep-Learning Approach to Building Detection

Once the high-resolution orthophoto generated by the pan-sharpening process was
obtained, it was possible to use this geospatial data in order to build the footprint of the
building in an automatic way using a deep-learning approach developed in ArcGIS Pro
software.

The pipeline to extract the building footprint can be schematized in six phases
(Figure 1a). The first one prepares the input image for the deep-learning processes, the
second to fifth phases are used to identify the building footprints with the deep-learning
methods and in the sixth phase, the footprints are regularized.

• Phase 1: Image management

In the image-management phase, the multispectral image was transformed into RGB
colors (bands 5, 3, 2) to make it possible to apply deep-learning techniques.

• Phase 2: Labelling

In the labelling phase, by applying the “Label Object for Deep Learning” of the ArcGis
Pro, 44 sample buildings were selected to be used as training data for the neural network.

• Phase 3: Data preparation

The sample data were transformed into training data using the “Export Training Data
For Deep Learning”. Using this tool, a folder containing image chips, labels, statistics and
metadata was created to train the deep-learning model. The format of the metadata must
be carefully selected to be compatible with the deep-learning model that will be used in
the following phases. In this case, the RCNN Mask format was chosen.

• Phase 4: train model

The training data generated in the previous phase were used in the ArcGis Pro tool
“Train Deep Learning Model” to train the Mask R-CNN deep-learning model.

In this tool, it was possible to set several parameters, such as the max epochs (the
maximum number of epochs for which the model will be trained), the model type and
the batch size (the number of training samples to be processed for training at one time).
In the project, we used a value of 25 max epochs, the Single Shot Detector as the model
and a value of 32 for the batch size. In addition, when the Single Shot Detector is chosen as
the model type parameter value, the model arguments parameter will be populated with
the following arguments: Grids (the number of grids the image will be divided into for
processing), zoom (the number of zoom levels each grid cell will be scaled up or down)
and ratios (list of aspect ratios to be used for anchor boxes).
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• Phase 5: Inferencing

In the inference phase, using the previously trained deep-learning model, the building
footprints in the input image are identified and segmented with a mask. The “Detect
Objects Using Deep Learning” tool of ArcGis Pro was used to perform this task. In this tool,
it was possible to set several parameters; for example, a parameter that affects both the
quantity (number of recognized buildings) and quality (characterization of the footprint) is
the threshold value. Decreasing the threshold value increases the number of recognized
buildings, but the footprint of the buildings moves away from the true form. In fact,
several buildings are merged. In order to find the optimal threshold value, it is desirable
to work on a portion of the image and then adopt this valley on the whole scene. In
this experimentation, a threshold value of 50% was adopted. The footprint buildings
extracted are shown in Figure 4b. As shown in Figure 4b, it is possible to note how an
important number of buildings were recognized in the correct way. Major difficulties
were encountered in the recognition of complex building shapes; indeed, in some areas, a
polygon comprised several buildings.
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• Phase 6: regularization of the building footprint

The automatically generated building footprint polygons showed a rather irregular
shape; the ArcGis Pro tool “Regularize Building Footprint” was used to regularize their
shape. In this way, it was possible to normalize the footprint of building polygons by
eliminating undesirable artefacts in their geometry using the polyline compression algo-
rithm [32] developed in ArcGIS Pro. The application of this tool on some buildings present
in the observed scene is shown in Figure 4c.
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2.5. Building DEM and Calculation of Building Height by GIS Approach

In order to build the DEM of the study area, OrthoEngine software, which is a tool
implemented in Catalyst software, was used. The first step for the construction of the DEM
was to upload the stereo images and choose the reference system. On the OrthoEngine
toolbar, selecting the tool called “DEM from stereo” and selecting the left and right images,
the software generates the epipolar image. Subsequently, by inserting it in a special
window for the input data of the satellite images or type of extraction method, the DEM
at a geometric resolution 0.4 m × 0.4 m is generated. The software allows two options:
SGM (Semi Global Matching) and NCC (Normalized Cross-Correlation). To evaluate
the difference between the two generated DEMs, both methods were used. Concerning
the difference between the two DEMs, no significant differences in heights were found.
However, the DEM made with SGG appears to be less noisy. For this reason, we opted
to use the DEM (Figure 5) generated by the SGG method for the extraction of the height
of buildings.

ISPRS Int. J. Geo‐Inf. 2021, 10, x FOR PEER REVIEW  11  of  17 
 

 

2.5. Building DEM and Calculation of Building Height by GIS Approach 

In order to build the DEM of the study area, OrthoEngine software, which is a tool 

implemented in Catalyst software, was used. The first step for the construction of the DEM 

was to upload the stereo images and choose the reference system. On the OrthoEngine 

toolbar, selecting the tool called “DEM from stereo” and selecting the left and right im‐

ages, the software generates the epipolar image. Subsequently, by inserting it in a special 

window for the input data of the satellite images or type of extraction method, the DEM 

at a geometric resolution 0.4 m × 0.4 m  is generated. The software allows  two options: 

SGM (Semi Global Matching) and NCC (Normalized Cross‐Correlation). To evaluate the 

difference between the two generated DEMs, both methods were used. Concerning the 

difference between the two DEMs, no significant differences in heights were found. How‐

ever, the DEM made with SGG appears to be less noisy. For this reason, we opted to use 

the DEM (Figure 5) generated by the SGG method for the extraction of the height of build‐

ings. 

 

Figure 5. Part of the DEM of the study area performed using the SGG method and visualized in Global Mapper software. 

The calculation of the building height was performed in ArcGIS Pro software using 

the raster calculator tool and, in particular, through the difference between DSM and DTM 

of  the area within  the polygon of  the buildings. Therefore,  it  is necessary to obtain the 

ground elevation of each building. To achieve this goal, it was necessary to consider the 

pixels outside the buildings, or rather a buffer area around the building polygon to ac‐

count  for  the error  in  the position of  the building. Next,  the pixel elevation value was 

transformed  into a point shape file  in order to create a TIN model. The transformation 

from TIN to raster and the application to this last raster of a low filter allowed us to obtain 

the DTM. 

Performing  the difference between  the  two  rasters,  that  is,  the difference between 

DSM and DTM, we obtained the height difference map. Since, even within the same build‐

ing, it is possible to obtain different heights, it was necessary to homogenize this value. 

To achieve this aim, a tool called the “statistical zone” was used, which is able to calculate 

the average value of the height of each building. 

Subsequently, by using the ‘join’ function, the height of each building was related to 

its relative geometry. 

Figure 5. Part of the DEM of the study area performed using the SGG method and visualized in Global Mapper software.

The calculation of the building height was performed in ArcGIS Pro software using
the raster calculator tool and, in particular, through the difference between DSM and DTM
of the area within the polygon of the buildings. Therefore, it is necessary to obtain the
ground elevation of each building. To achieve this goal, it was necessary to consider the
pixels outside the buildings, or rather a buffer area around the building polygon to account
for the error in the position of the building. Next, the pixel elevation value was transformed
into a point shape file in order to create a TIN model. The transformation from TIN to raster
and the application to this last raster of a low filter allowed us to obtain the DTM.

Performing the difference between the two rasters, that is, the difference between DSM
and DTM, we obtained the height difference map. Since, even within the same building,
it is possible to obtain different heights, it was necessary to homogenize this value. To
achieve this aim, a tool called the “statistical zone” was used, which is able to calculate the
average value of the height of each building.

Subsequently, by using the ‘join’ function, the height of each building was related to
its relative geometry.

The several steps described were performed using a ModelBuilder (a visual program-
ming language) developed in ArcGIS Pro software. In this way, all processing was carried
out in a controlled and automatic mode.
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3. Results

This section shows the main results as regards the quality of 3D modelling and
practical applications.

Section 3.1 analyzes the metric quality of the deep-learning approach in recognizing
the footprint of buildings and the DEM generated by stereo satellite imagery against a
reference model.

Section 3.2 shows the potential of the 3D city model for the planning and design of
urban areas.

3.1. Quality of the 3D Model

Once the Esri shapefile (type polygon) of the footprint of buildings with a field
containing the attributed height was built, it was possible to build the 3D city model of the
area of interest.

In the GIS environment, using a specific tool (elevation field, implemented in the
software), it was easy to extrude the 2D shape of buildings. In this way, it is not only
possible to obtain a 3D visualization of the observed scene but also to produce thematic
maps in relation to a specific theme (type of building, height, state of conservation, type of
use, energy category, etc.) (Figure 6).
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Figure 6. 3D city model represented in color scale in relation to height generated in GIS software.

The 3D city model created in this way can be categorized by adding further fields
(intended use, state of preservation, etc.) or by connecting the geo-spatial information with
other databases. Moreover, this model can be exported and managed in other platforms
for 3D management of urban elements, such as Google Earth Pro.

In order to assess the metric quality of the 3D model, it is necessary to carry out a
geometric analysis of the building volumes; this means analyzing the process of producing
the footprint of each building and the quality of the DEM. With regard to the generated
footprint of the building, the analysis was conducted using the precision, recall, overall
accuracy and F1 measure indices.

The values of performance indicators of the buildings class can be summarized
in Table 3.

Table 3. Result of model performance obtained from confusion matrix.

Precision Recall F1 Measure Overall Accuracy

0.957 0.882 0.918 0.852

While the performance indices provide encouraging values, it must be taken into
account that these values also include buildings that have not been recognized in their
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true geometry; in other words, several buildings have been recognized as such, but in a
simplified form that does not take into account their complexity, and several buildings
have been recognized as a single block.

With regard to the quality analysis of the height model generated by means of stereo
satellite imagery, a comparison with another reference DEM was performed.

For example, DEMs generated by ALS systems are suitable for comparison. However,
these DEMs are expensive to obtain and therefore not widely available on a regional and
global scale.

For the study area, the best available DEM was the Space Shuttle Radar Topography
Mission (SRTM). SRTM has collected, using synthetic aperture radar and interferometry, a
digital elevation model of the Earth at 1 arc-second (30 meters) for over 80% of the Earth’s
surface [37,38]. It is available in 5◦ × 5◦ tiles, in geographic decimal degree (Latitude and
Longitude) projection.

In order to use this DEM, the first step was to transform the DEM into UTM coordi-
nates; this task was carried out using Global Mapper software.

In the mapping application, vertical accuracy is generally computed by the mean and
Vertical Root Mean Square Error (VRMSE). Taking into account a number (n) of ground
check points evenly distributed over the study area and considering evi, the difference
between the reference elevation at point i and DEM elevation at point i, it is possible to
write the following equation [39]:

VRMSE = ∓
√

1
n

n

∑
i=1

e2
vi (8)

For the study area, a mean value of 0.46 m and VRMSE of 5.98 m were achieved. These
values are coherent with other works present in the literature [40,41]. In addition, it was
possible to build a histogram of errors where it was possible to note that most errors are
arranged around the value zero, according to a Gaussian distribution. In particular, 83% of
the points have an error of between −1 m and 1 m.

3.2. Contribution of the 3D Model in the Evaluation of a Project

In order to generate renders to support new designs using two different techniques,
namely the use of decals and the import/realization of a new building design to verify its
appearance in the existing skyline, integration into BIM (Building Information Modeling)
software was evaluated.

The import from GIS to CAD (Computer-Aided Design) required intermediate pro-
cessing through the Meshlab software, which is an open-source system for processing
and editing 3D triangular meshes; in this software, it was possible to import the model
generated by ArcScene (in the .wrl format) and exporting it, in turn, as a dxf (Drawing
Exchange Format) file format.

Once the file was imported into Autodesk Revit (enables design using parametric
modelling and drawing elements), it was possible to build a BIM model useful for planning
a specific area. Indeed, BIM is the basis for digital transformation in the architecture,
engineering and construction (AEC) sector. For example, it was possible to evaluate a
coastal regeneration project within a 3D city model in LOD1, as shown in Figure 7.
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BIM design is not limited to visual information or renderings but specifies the func-
tionality and performance of each BIM object in the project or the elaborated building
interior; in this way, it is possible to quickly and accurately update the area concerned for
the redevelopment of the city.

4. Discussion and Conclusions

The paper showed a novel method for the construction of a 3D city model starting
from VHR stereo satellite imagery and based on the use of a deep-learning approach for the
identification of buildings’ footprints, the use of geomatics software for the construction
of the DEM and an algorithm implemented in the GIS environment for the extraction
of the elevation of each building from the DEM. The innovative aspect of the proposed
method with respect to what is present in the literature concerns the identification of a
suitable workflow able to exploit the potential offered by deep-learning algorithms for
the construction of the footprint of buildings and the availability of many tools in the GIS
environment that allows the construction of a 3D city model in a rather quick and effective
way. To achieve this aim, the first step was to apply the pan-sharpening technique to obtain
a multispectral orthophoto of the area of interest at a high geometric resolution.
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From the comparison of the different pan-sharpening techniques, Brovey’s method
was the one that provided the best results. This orthophoto was particularly useful for fur-
ther processing, i.e., for the automatic classification of buildings. Indeed, the deep-learning
approach allowed, once the training data and an adequate model were created, the auto-
matic recognition of the building footprints. This task was performed in semi-automatically
by using ArcGIS Pro software. The performance indicators generated by the confusion
matrix showed very good quality of the classification level (overall accuracy equal to 0.852).
These results are consistent with findings by other authors such as Pan et al. [42] who used
a deep-learning approach and Worldview-2 satellite imagery on a dense urban area in
the Tianhe District of Guangzhou City (Southern China). In particular, very encouraging
results were obtained where the shape of buildings is geometrically linear and well defined.
In the case where the structures are aggregates of several buildings and form more complex
and articulated geometries, the deep-learning algorithms do not allow for an adequate re-
construction of the footprint of the buildings. Compared to manual recognition of building
footprints, the automatic classification process showed some limitations in some urban
areas; this occurred due to the images (perspective) or to natural and anthropic elements
present in the scene (vegetation, temporary structures, etc.).

With regard to the construction of the DEM, the approach implemented in Catalyst
software made it possible to create the DEM from stereoscopic imagery in a quick, automatic
and accurate way. In addition, the implementation of an algorithm for height extraction in
the GIS environment allowed the extraction of building heights from the DEM. Therefore,
once the building geometry was constructed and a ‘height’ field was associated with each
building, a 3D city model in LOD1 was obtained.

In addition, it is important to emphasize that the approach described in the paper
(the use of deep learning for building the footprint, extracting the height from the DEM
and building the 3D model) can also be used on images acquired from a UAV (Unmanned
Aerial Vehicle) or aircraft. Indeed, thanks to the recent developments of structure from
motion and multi-view stereo algorithms, it is possible to obtain both high-resolution
orthophotos and DEMs. Another possible and efficient way of using this approach is
based on using aerial hybrid sensors (color cameras and ALS), sensors capable of using the
camera to construct the orthophoto and ALS to generate a high-resolution DEM.

Finally, by combining the data produced by the national statistical institutes for build-
ing surveys, concerning building permits and building extensions, and those from local
authorities concerning the new energy efficiency provisions, it is possible to thematize the
3D model in order to identify buildings that have started or completed energy interven-
tions, or those that would need such interventions. Further information to be thematized
in the 3D model could be that concerning the structural earthquake adaptation. These
themes would make it possible to produce maps for the definition of heat islands or seismic
risk areas. In this way, it is possible to construct a 3D city model that makes it possible to
identify the energy and structural state of each building and, more generally, of the entire
urban environment according to the objectives of the 2030 Agenda on “sustainable cities
and communities” (goal 11).

Therefore, the possibility of realizing portions or entire urban areas, starting from
satellite images and through the use of deep-learning algorithms, allows for digital re-
construction of a highly performant 3D model to support professionals, companies and
public administrations engaged in the planning and design sector [43]. The interoperability
of these models, with the most common BIM software [44], not only increases the level
of detail of the design but also allows one, by combining a series of heterogeneous data
(technical data, geospatial positioning, point clouds, digital images, etc.), to perform and
share analyses on 3D and 4D models during the different phases of the planning cycle at a
large and medium scale. Hence, the fields of application of the 3D city model are manifold;
in fact, a further application concerns the cadastral field [45] where 3D digital models, such
as BIM and 3D GIS, could be utilized for the accurate identification of property units, better
representation of cadastral boundaries and detailed visualization of complex buildings.
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