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Abstract

An electrically-tunable metamaterial is herein designed for the active control of damped elastic
waves. The periodic device is conceived including both elastic phases and a piezoelectric phase,
shunted by a dissipative electric circuit whose impedance/admittance can be adjusted on demand. As
a consequence, the frequency band structure of the metamaterial can be modified to meet design re-
quirements, possibly changing over time. A significant issue is that in the presence of a dissipative
circuit, the frequency spectra are obtained by solving eigen-problems with rational terms. This cir-
cumstance makes the problem particularly difficult to treat, either resorting to analytical or numerical
techniques. In this context, a new derationalization strategy is proposed to overcome some limitations
of standard approaches. The starting point is an infinite-dimensional rational eigen-problem, obtained
by expanding in their Fourier series the periodic terms involved in the governing dynamic equations.
A special derationalization is then applied to the truncated eigen-problem. The key idea is exploiting
a LU factorization of the matrix collecting the rational terms. The method allows to considerably
reduce the size of the problem to solve with respect to available techniques in literature. This strategy
is successfully applied to the case of a three-phase metamaterial shunted by a series RLC circuit with
rational admittance.

Keywords: tunable metamaterials, active control, dissipative shunted circuits

1. Introduction

Metamaterials are engineered structured materials, typically incorporating sub-wavelength arrays of
resonant unit cells, specially designed to achieve exotic properties well beyond what is possible with
conventional materials. Applications, including sound filtering [1–3], antennas [4, 5], seismic pro-
tection [6–11], guided mode manipulation [12, 13], energy harvesting [14–17], as well as cloacking
devices [18–23] and superlenses [24–26], span from optics to elastodynamics and acoustics. With
reference to the last two mentioned areas of interest, the key concept to achieving smart mechani-
cal properties is to appropriately design the microstructure (shape, geometry, size, orientation and
arrangement) of metamaterials also possibly including active phases. The resulting microstructured
materials are capable of showing fascinating behaviours such as ultra-stiffness/super-strength [27–29],
high fracture toughness [30, 31], ultra-lightness [32–34], auxeticity [35–39], as well as extreme con-
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stitutive behaviours [40–42] and wave manipulation properties [43–46]. The rising attention, shown
in last years in this field, testifies to the growing interest to pushing the existing limits of the mechan-
ics of materials in order to design increasingly versatile and efficient metadevices. In this regard, the
potential of 3D printing can often be exploited to advantage [47–50].
In this context, an intriguing idea, which can be favourably leveraged in the design of high-performance
metamaterials properly conceived for the wave propagation control, is the use of active phases respon-
sible for multi-field couplings, such as the electro-, thermo-, chemo- or the magneto-mechanical one
[51]. In other terms, by harnessing field responsive materials in the design of the micorstructure, a
broad range of mechanical responses are possible without changing the mass of the system. Among
others, the electro-mechanical coupling provided by piezoelectric materials has been successfully ex-
ploited and gave rise to many applications comprehensively listed in review papers [41, 52, 53]. A
first contribution in this area dates back to the end of the seventies with the seminal work by Forward
[54] demonstrating the effectiveness of using external electronic circuits to damp mechanical vibra-
tions in optical systems. The basic principle is the use of piezoelectric elements shunted by electrical
networks (shunted piezoelectric phases), resorting to either active or passive control schemes. In the
latter case, the piezoelectric phases are shunted to passive electrical circuits[55–58]. From a techno-
logical point of view, shunting can be achieved either by applying patches of piezoelectric material on
host structures [59–69] or directly by including a shunted phase in the topology of the composite ma-
terial [70–74]. Interesting studies also relate to spatially reversible and programmable piezoelectric
metamaterial [75–77], as well graded piezoelectric shunted [78]. On the other hand a detailed review
of different active mechanical metamaterials can be found in [79, 80].
Focusing on the research targeted to realize tunable mechanical metamaterials, in this paper we pro-
pose a paradigm to design electrically-tunable active metamaterials for the propagation control of
damped elastic waves. In [73] a three phase periodic metamaterial characterized by a phononic crystal
coupled to local resonators has been proposed with a phase shunted by an electrical circuit. The con-
stitutive relations derived are valid in general, independent of the type of electrical circuit considered,
whether it is dissipative or non-dissipative. Nevertheless the range of explored applications focuses on
the case of a purely capacitive, non-dissipative circuit. This circumstance is because, in the presence
of a dissipative circuit, the analysis of wave propagation involves rational eigen-problems which are
very difficult to attack, both resorting to analytical and computational methods. To overcome these
difficulties and being able to consider dissipative circuits, i.e. rational eigenvalue problems as well,
a possible way out is the use of derationalization techniques. More specifically, with reference to a
rational eigenvalue problem composed by a polynomial part and a rational part where the rational
part is the sum of scalar rational functions multiplying certain constant matrices, a possible classical
way to resolve it is considering a linearization of the rational part as described in [81]. The term
linearization means that the derationalization can be carried out by multiplying the entire problem by
the product of the scalar functions. This results in a polynomial eigenvalue problem of higher degree
which can be resolved by a linearization process as the ones described in [82, 83] and their references
within. This approach can only be applied to small-scaled problems. Another strategy to attack the

2



(a)

Electrically tunable

(b)

piezoelectric phase

Figure 1: (a) Portion of a sample periodic shunted metamaterial; (b) Detail of the corresponding Periodic Cell containing
the shunted piezoelectric material.

rational eigenvalue problem is to consider it as a general nonlinear eigenvalue problem and solve it
by using some nonlinear eigensolver as the ones in [84] or the more recent [85] and their references
within. Regrettably, this strategy can be only exploited to find an approximate solution of the original
problem and requires a reliable convergence analysis.
Based on this context, in this paper we propose a novel enhanced derationalization technique, inspired
by [86], that proves to be efficient also in the case of large-scaled problems. The main idea is to lin-
earize the eigenproblem matrix through LU factorization, so that the linearized problem becomes
significantly smaller, leading to a faster computation of the eigenvalues. The proposed methodologi-
cal advance allows the study of metafilters with piezoelectric phases shunted by general RLC circuit
(with rational admittance) and to explore the intriguing field of wave propagation control in the pres-
ence of damped elastic waves.
The paper is organized as follows. In Section 2 the dynamic balance equations governing the in-plane
behaviour of the periodic tunable metamaterial are introduced, with a emphasis on the constitutive
equations specialized for either linear elastic or shunted piezoelectric phases. Section 3 is devoted
to wave propagation and frequency band structure determination in the case of general dissipative
circuits. Within the validity of the Floquet theory, the Fourier series expansion of the periodic terms
intervening in the balance equations leads to rational infinite dimensional rational eigen-problem. In
Section 4 such eigen-problem is truncated and derationalizated via the newly proposed approach.
Moreover, Section 5 focuses on the particularization of the enhanced derationalization technique to
the case of a specific example of RLC series circuit. In Section 6 numerical experiments are presented
with the aim of investigating the effects of the tuning parameters of the electrical circuit on the overall
behaviour of the designed metamaterial. Finally in Section 7 final remarks are drawn together with
possible future developments.
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2. Governing equations of the periodic tunable metamaterial

We focus on a periodic heterogeneous metamaterial, made of different phases distinguished between
elastic and a piezoelectric phase shunted by generic electrical circuits. The metamaterial is made
by the in-plane regular repetition of a periodic cell A, along its periodicity vectors. It follows that
the periodic metamaterial is associated with a periodic lattice defined by the discrete subgroup X B
{X : X = nrvr; nr ∈ Z, r = 1, 2} ∈ R2, being vr = vr

j e j, j = 1, 2 the in-plane independent periodicity
vectors. The dynamic balance equations of the infinite metamaterial, in transformed Laplace space,
are obtained in the context of in-plane linear theory as

∂
⌢
σi j

∂x j
+
⌢

bi = ρs2⌢ui, (1)

where ⌢
σi j are the in-plane stress components, ⌢ui are the in-plane displacement components,

⌢

bi and ρ
are the transformed source term and the mass density, respectively, s is the complex Laplace variable
and x j are the components of the in-plane position vector x = x je j, j = 1, 2. In transformed Laplace
space, the constitutive relations read

⌢
σi j = C✧

i jkl(s)
∂
⌢uk

∂xl
, (2)

being C✧
i jkl the components of the constitutive tensor. By substituting (2) in (1), the dynamic equation

results

∂

∂x j

(
C✧

i jkl(s)
∂
⌢uk

∂xl

)
+
⌢

bi − ρs2⌢ui = 0. (3)

Both constitutive tensors and the mass density are A-periodic fulfilling the following relations

C✧
i jkl (x + nrvr, s) = C✧

i jkl (x, s) ,

ρ (x + nrvr) = ρ (x) , ∀x ∈ A. (4)

Concerning the constitutive tensor components C✧
i jkl, it stands to reason that those related to the linear

elastic phases are s-independent, while those of the shunting piezoelectric phase, polarized along the
out-of-plane direction and denoted by EL, are in general s-dependent and, accordingly with [73], take
the following form

CEL
i jkl(λ(s)) = Ci jhl +

ei j3̃e3hl

βEL
33 (λ(s))

−

(
Ci j33 +

ei j3̃e333

βEL
33 (λ(s))

) C33hk +
e333ẽ3hl
βEL

33 (λ(s))

C3333 +
e333ẽ333
βEL

33 (λ(s))

 , (5)

being, with reference to the piezoelectric material, Ci jhl the fourth order elasticity tensor components,
ei j3 the third order stress-charge coupling tensor components and ẽpqs = eqsp its transpose. Moreover,
the auxiliary s-dependent function βEL

33 (λ(s)) = β33 (1 + λ(s)) is introduced, being β33 the second order
4



permittivity tensor component and being λ(s) = L(P)YS
33(s)/(s β33 A(P)) the so-called tuning function

with linear dependence on the generic equivalent shunting admittance YS
33(s), which is expressed in

terms of one or more tuning parameters defining the properties of the generic RLC electrical circuit
at hand. Note that in the case of RLC electrical circuits YS

33(s) turns out to be a rational function
of the variable s. In addition A(P) is the in-plane area, and L(P) is the out of plane thickness of
the piezoelectric phase. It is worth-noting that the constitutive relation of the shunted piezoelectric
material, in equation (5), is obtained from an in-plane condensation of those associated to a three-
dimensional orthotropic piezoelectric material with polarization along the out-of-plane direction. It
results in-plane uncoupled constitutive equations, formally equivalent to the equations of a linearly
elastic dieletric material. It also emerges that the elastic tensor of the shunting piezoelectric phase
satisfies the major and minor symmetries.

3. Wave propagation and frequency band structure

According to the Floquet-Bloch theory, it is possible to decompose ûi as

ûi = ũie−ι(k·x), (6)

where ũi are A-periodic Bloch amplitude components, i.e. they fulfil the following relation

ũi (x + nrvr,k, s) = ũi (x,k, s) , ∀x ∈ A, (7)

and k = k je j, j = 1, 2, is the wave vector, spanning all points of the reciprocal space, also known
as k-space. Due to the periodicity of the metamaterial, besides X defined in the physical space, it
is possible to uniquely identify a periodic reciprocal lattice defined in turn by the discrete subgroup
G B

{
G : G = msps; ms ∈ Z, s = 1, 2

}
∈ R2, being ps = ps

j e j, j = 1, 2, the periodicity vectors of the
reciprocal lattice that can be determined as

pα = 2π
Qvβ

vα · Qvβ
, (8)

where Q is the π/2 rotation matrix, and α , β = 1, 2, α , β, so that that the scalar product vr ·ps = 2πδrs

holds. More specifically, also in the reciprocal space it is possible to identify an elementary periodic
cell also known as first Brillouin zone B. Therefore, by plugging equation (6) in (3) after proper
manipulations we get

∂

∂x j

(
C✧

i jhℓ
∂ũh

∂xℓ

)
− ιkℓ

(C✧
i jhℓ +C✧

iℓh j

) ∂ũh

∂x j
+
∂C✧

i jhℓ

∂x j
ũh

 − (
k jkℓC✧

i jhℓ + ρs
2δih

)
ũh = 0. (9)

Due to the A-periodicity of the constitutive tensor components C✧
i jhℓ, of the mass density ρ and of the

Bloch amplitude components ũi, they can be expanded in their Fourier series in terms of G, defined
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as

ũi =
∑
n∈Z2

[ũi]n eιG(n)·x, [ũi]n =
1
|A|

∫
A

ũie−ιG(n)·x dx, (10a)

ρ =
∑
v∈Z2

[ρ]v eιG(v)·x, [ρ]v =
1
|A|

∫
A

ρe−ιG(v)·x dx, (10b)

C✧
i jhℓ =

∑
v∈Z2

[C✧
i jhℓ]v eιG(v)·x, [C✧

i jhℓ]v =
1
|A|

∫
A

C✧
i jhℓe

−ιG(v)·x dx, (10c)

where n = (n1, n2), v = (v1, v2) with n, v ∈ Z2, and |A| the area of the periodic cell. The derivatives
involved in (9) are accordingly defined as

∂ũi

∂x j
=

∑
n∈Z2

ι(nr pr
j)[ũi]n eιG(n)·x, (11a)

∂2ũi

∂xℓ∂x j
= −

∑
n∈Z2

(nr pr
j)(ns ps

ℓ)[ũi]n eιG(n)·x, (11b)

∂C✧
i jhℓ

∂x j
=

∑
v∈Z2

ι(vr pr
j)[C

✧
i jhℓ]v eιG(v)·x. (11c)

Consequently, once we substitute equations (10), (11) into (9), we get the following equation∑
n∈Z2

∑
v∈Z2

(
− (vr pr

j)(ns ps
ℓ)[C

✧
i jhℓ]v[ũh]n − (nr pr

j)(ns ps
ℓ)[C

✧
i jhℓ]v[ũh]n + (nr pr

j)kℓ[C
✧
i jhℓ]v[ũh]n (12)

+ (nr pr
j)kℓ[C

✧
iℓh j]v[ũh]n + (vr pr

j)kℓ[C
✧
i jhℓ]v[ũh]n − k jkℓ[C✧

i jhℓ]v[ũh]n − [ρ]vs2δih[ũh]n

)
eι(G(n)+G(v))·x = 0.

Notice that in general the terms C✧
i jhℓ, as well as ρ, are piece-wise constant functions, characterizing the

different phases of the metamaterial. With specific reference to the constitutive tensor components,
the s-dependent coefficients of the Fourier series of the shunted piezoelectric phase and those s-
independent of the elastic phases are denoted by [CCi jhℓ]n and [CA\Ci jhℓ ]n, respectively. In this framework,
we indicate C the region of the periodic cell related to the shunted piezoelectric phase, and A\C the
remaining region related to elastic phases. It follows that the Fourier coefficients of C✧

i jhℓ becomes

[C✧
i jhℓ]n = [CA\Ci jhℓ ]n + [CCi jhℓ]n = [CA\Ci jhℓ ]n + ri jhℓ(s)[χC]n, (13)

where ri jhℓ is a generic rational polynomial function of s which depends on the electric circuit con-
nected to the piezoelectric phase and χC is the indicator function related to the set (region) C, and we
include them in equations (12). Therefore, we get the following equations∑

n∈Z2

∑
v∈Z2

(
− (vr pr

j)(ns ps
ℓ)[C

A\C

i jhℓ ]v[ũh]n − (nr pr
j)(ns ps

ℓ)[C
A\C

i jhℓ ]v[ũh]n + (nr pr
j)kℓ[C

A\C

i jhℓ ]v[ũh]n+

+ (nr pr
j)kℓ[C

A\C

iℓh j ]v[ũh]n + (vr pr
j)kℓ[C

A\C

i jhℓ ]v[ũh]n − k jkℓ[C
A\C

i jhℓ ]v[ũh]n + (vr pr
j)kℓ ri jhℓ(s)[χC]v[ũh]n+
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− (vr pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]v[ũh]n − (nr pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]v[ũh]n + (nr pr
j)kℓ ri jhℓ(s)[χC]v[ũh]n+

+ (nr pr
j)kℓ riℓh j(s)[χC]v[ũh]n − k jkℓ ri jhℓ(s)[χC]v[ũh]n − [ρ]vs2δih[ũh]n

)
eι(G(n)+G(v))·x = 0. (14)

Moreover, by defining the multi-index m = v + n, the infinite-dimensional equation (14) becomes∑
n∈Z2

∑
m∈Z2

(
− ((mr − nr)pr

j)(ns ps
ℓ)[C

A\C

i jhℓ ]m−n[ũh]n − (nr pr
j)(ns ps

ℓ)[C
A\C

i jhℓ ]m−n[ũh]n − k jkℓ[C
A\C

i jhℓ ]m−n[ũh]n+

+ (nr pr
j)kℓ ri jhℓ(s)[χC]v[ũh]n + (nr pr

j)kℓ riℓh j(s)[χC]m−n[ũh]n + ((mr − nr)pr
j)kℓ ri jhℓ(s)[χC]m−n[ũh]n+

+ (nr pr
j)kℓ[C

A\C

i jhℓ ]m−n[ũh]n + (nr pr
j)kℓ[C

A\C

iℓh j ]m−n[ũh]n + ((mr − nr)pr
j)kℓ[C

A\C

i jhℓ ]m−n[ũh]n+

− ((mr − nr)pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n − (nr pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n+

− k jkℓ ri jhℓ(s)[χC]m−n[ũh]n − [ρ]m−ns2δih[ũh]n

)
eιG(m)·x = 0. (15)

In order to write the infinite-dimensional equation (15) in a more compact form, we define the infinite-
dimensional linear operators A, B and Ci jhℓ, with i, j, h, ℓ = 1, 2, in terms of the argument ũ introduced
as

ũ = col(u1,u2) ∈ ℓ2(Z2)2, (16)

where u1,u2 are vectors collecting, respectively, the Fourier coefficients [ũ1]n, [ũ2]n, the col operator
stacks its vector arguments column-wise into a single column vector, ℓ2(Z2) denotes the space of
square-summable sequences with two integer indices and ℓ2(Z2)2 is ℓ2(Z2) × ℓ2(Z2). Consequently,
the first operator A : ℓ2(Z2)2 → ℓ2(Z2)2 is described in each infinite part as

A[col(u1,u2)]m 1 =
∑
n∈Z2

(
− ((mr − nr)pr

j)(ns ps
ℓ)[C

A\C

1 jhℓ]m−n[ũh]n − (nr pr
j)(ns ps

ℓ)[C
A\C

1 jhℓ]m−n[ũh]n+

+ (nr pr
j)kℓ[C

A\C

1 jhℓ]m−n[ũh]n + (nr pr
j)kℓ[C

A\C

1ℓh j]m−n[ũh]n+

+ ((mr − nr)pr
j)kℓ[C

A\C

1 jhℓ]m−n[ũh]n − k jkℓ[C
A\C

1 jhℓ]m−n[ũh]n

)
, (17a)

A[col(u1,u2)]m 2 =
∑
n∈Z2

(
− ((mr − nr)pr

j)(ns ps
ℓ)[C

A\C

2 jhℓ]m−n[ũh]n − (nr pr
j)(ns ps

ℓ)[C
A\C

2 jhℓ]m−n[ũh]n+

+ (nr pr
j)kℓ[C

A\C

2 jhℓ]m−n[ũh]n + (nr pr
j)kℓ[C

A\C

2ℓh j]m−n[ũh]n+

+ ((mr − nr)pr
j)kℓ[C

A\C

2 jhℓ]m−n[ũh]n − k jkℓ[C
A\C

2 jhℓ]m−n[ũh]n

)
, (17b)

the second operator B : ℓ2(Z2)2 → ℓ2(Z2)2 results

B[col(u1,u2)]m 1 = −
∑
n∈Z2

[ρ]m−n[ũ1]n, (18a)

B[col(u1,u2)]m 2 = −
∑
n∈Z2

[ρ]m−n[ũ2]n, (18b)
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and the last operators C1 jhℓ,C2 jhℓ : ℓ2(Z2)2 → ℓ2(Z2)2 are defined as

C1 jhℓ[col(u1,u2)]m 1 =
∑
n∈Z2

−((mr − nr)pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n − k jkℓ ri jhℓ(s)[χC]m−n[ũh]n+

− (nr pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n + (nr pr
j)kℓ ri jhℓ(s)[χC]v[ũh]n+

+ (nr pr
j)kℓ riℓh j(s)[χC]m−n[ũh]n + ((mr − nr)pr

j)kℓ ri jhℓ(s)[χC]m−n[ũh]n, (19a)

C1 jhℓ[col(u1,u2)]m 2 = 0, (19b)

C2 jhℓ[col(u1,u2)]m 1 = 0, (19c)

C2 jhℓ[col(u1,u2)]m 2 =
∑
n∈Z2

−((mr − nr)pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n − k jkℓ ri jhℓ(s)[χC]m−n[ũh]n+

− (nr pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n + (nr pr
j)kℓ ri jhℓ(s)[χC]v[ũh]n+

+ (nr pr
j)kℓ riℓh j(s)[χC]m−n[ũh]n + ((mr − nr)pr

j)kℓ ri jhℓ(s)[χC]m−n[ũh]n. (19d)

In this way the compact form of equations (15) is(
A + s2B + r1 jhℓ(s)C1 jhℓ + r2 jhℓ(s)C2 jhℓ

)
ũ = 0, (20)

being an infinite-dimensional rational eigenproblem in terms of the eigenvalue s and the eigenvector
ũ, playing the role of complex frequency and polarization vector of the Bloch wave, respectively.
Notice that, by exploiting the symmetries of the tensor C✧

i jhℓ and, therefore, those of the rational
polynomial functions ri jhℓ as well, we can develop the sum over the repeated indices, so that the
equation (20) takes the form(

A + s2B + r1111(s) C1111 + r1211(s) (3C1211 + C2111) + r1212(s) (2C1212 + 2C2121)+

+ r1122(s) (C1122 + C2211) + r1222(s) (C1222 + 3C2221) + r2222(s) C2222

)
ũ = 0. (21)

In case the rational polynomial ri jhℓ(s) is not in a reduced form we can perform the polynomial division
as

ri jhℓ(s) =
ni jhℓ(s)
qi jhℓ(s)

= di jhℓ(s) +
pi jhℓ(s)
qi jhℓ(s)

, (22)

with di jhℓ, pi jhℓ, qi jhℓ polynomials in s of a certain degree, and reduced the eigen-problem (21) to the
form (

P
(
A, B,Ci jkℓ, di jkℓ(s), s

)
+R

(
Ci jkℓ, pi jkℓ(s), qi jkℓ(s)

))
ũ = 0, (23)

where P is a polynomial part defined as

P =A + s2B + d1111(s)C1111 + d1211(s)
(
3C1211 + C2111

)
+ d1212

(
2C1212 + 2C2121

)
+

8



+ d1122(s)
(
C1122 + C2211

)
+ d1222(s)

(
C1222 + 3C2221

)
+ d2222(s)C2222, (24)

which, if we set as d = max{2, deg(di jhℓ), for i, j, h, ℓ = 1, 2}, we may write it as

P = A0 + sA1 + · · · + sd Ad, (25)

and a rational part taking the form

R =
p1111(s)
q1111(s)

C1111 +
p1211(s)
q1211(s)

(
3C1211 + C2111

)
+

p1212(s)
q1212(s)

(
2C1212 + 2C2121

)
+

+
p1122(s)
q1122(s)

(C1122 + C2211) +
p1222(s)
q1222(s)

(
C1222 + 3C2221

)
+

p2222(s)
q2222(s)

C2222. (26)

For simplicity in the notation the rational part can be rewritten in compact form as

R =

6∑
i=1

pi(s)
qi(s)

Di, (27)

where the assumptions for the s-dependent terms are introduced

p1(s)
q1(s)

B
p1111(s)
q1111(s)

,
p2(s)
q2(s)

B
p1211(s)
q1211(s)

,
p3(s)
q3(s)

B
p1212(s)
q1212(s)

,

p4(s)
q4(s)

B
p1122(s)
q1122(s)

,
p5(s)
q5(s)

B
p1222(s)
q1222(s)

,
p6(s)
q6(s)

B
p2222(s)
q2222(s)

, (28)

as well as the assumption posed for the infinite-dimensional linear operators

D1 B C1111, D2 B 3C1211 + C2111, D3 B 2C1212 + 2C2121,

D4 B C1122 + C2211, D5 B C1222 + 3C2221, D6 B C2222. (29)

Therefore, the infinite dimensional eigen-problem (20) results in the suitable form

(
A0 + · · · + Ad sd +

6∑
i=1

pi(s)
qi(s)

Di

)
ũ = 0. (30)

4. Truncation and derationalisation of the infinite-dimensional rational eigen-problem

The eigenvalue problem (30) is the compact form of the infinite-dimensional algebraic system of
equation (15). For this reason, an approximate solution of the eigen-problem can be found pro-
vided that the system is truncated by restricting the discrete multi-indices m and n to those satisfying
∥m∥∞ , ∥n∥∞ ≤ N for a certain N ∈ N>0, with ∥·∥∞ being the infinity norm. If follows that the equation
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(15) becomes∑
n∈Z2

∥n∥∞≤N

∑
m∈Z2

∥m∥∞≤N

(
− ((mr − nr)pr

j)(ns ps
ℓ)[C

A\C

i jhℓ ]m−n[ũh]n − (nr pr
j)(ns ps

ℓ)[C
A\C

i jhℓ ]m−n[ũh]n − k jkℓ[C
A\C

i jhℓ ]m−n[ũh]n+

+ (nr pr
j)kℓ ri jhℓ(s)[χC]v[ũh]n + (nr pr

j)kℓ riℓh j(s)[χC]m−n[ũh]n + ((mr − nr)pr
j)kℓ ri jhℓ(s)[χC]m−n[ũh]n+

+ (nr pr
j)kℓ[C

A\C

i jhℓ ]m−n[ũh]n + (nr pr
j)kℓ[C

A\C

iℓh j ]m−n[ũh]n + ((mr − nr)pr
j)kℓ[C

A\C

i jhℓ ]m−n[ũh]n+

− ((mr − nr)pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n − (nr pr
j)(ns ps

ℓ) ri jhℓ(s)[χC]m−n[ũh]n+

− k jkℓ ri jhℓ(s)[χC]m−n[ũh]n − [ρ]m−ns2δih[ũh]n

)
eιG(m)·x = 0, (31)

It follows that the infinite operators in the compact form (17)-(19), and (29) are replaced by the
corresponding finite dimensional operators, i.e., are replaced by matrices, denoted by the apex ( f ), so
that the equation (31), by using the same notation in (23) for the corresponding infinite-dimensional
problems, takes the form(

P( f )(A( f ), B( f ),C( f )
i jkℓ, di jkℓ(s), s

)
+R( f )(C( f )

i jkℓ, pi jkℓ(s), qi jkℓ(s)
))

ũ( f ) = 0, (32)

where the vector ũ( f ) collects the finite-dimensional Fourier coefficients of the Bloch amplitude com-
ponents. Specifically the finite-dimensional rational eigen-problem involves matrices of dimension
2M × 2M with M = (2N + 1)2. On the other hand Fourier coefficients associated to the tensors in-
volved in equations (31) are the one related to the multi-indices m− n and, as a consequence, we need
to determine (4N + 1)2 coefficients, i.e. the indices whose norm is smaller than 2N.
It is worth-noting that, dealing with heterogeneous metamaterials, characterized by periodic piece-
wise constant functions C✧

i jhℓ, and ρ, their Fourier series exhibit the so-called Gibbs phenomenon.
Many studies have been developed on methods to mitigate this phenomenon, exploiting polynomial
and rational interpolations [87–90], as well as Fourier series in combination with regularization filters
[91, 92]. In general these techniques are the more effective the greater is the number of harmonic
components necessary to obtain a desired approximation of the periodic functions.
A key point to highlight is that the eigen-problem (32) turns out to be rational and its solution can be
obtained resorting to derationalisation techniques, able to transform the rational eigen-problem into
a polynomial one that in general is simpler to solve. Specifically, since the rational eigen-problem
(32) involves rational polynomials expressed in a reduced form, we propose an enhanced derational-
isation procedure inspired by theoretical investigations on rational eigen-problems detailed in [86].
Specifically it is worth-noting that through this method the rational eigen-problem is transformed in
a linear eigen-problem of a slightly larger size, but in general easily solvable. This method from a
computational point of view can be preferred to the standard derationalisation procedures based on
multiplying the rational problem by the product of the denominators, as used in [93] to solve a rational
eigen-problem of small dimension. In particular, such enhanced method is especially suitable in the
case the degree and the number of the denominators are greater than one.
In this framework, let us consider a generic finite dimensional problem of the same form of (30), that

10



is a rational eigen-problem

(
A( f )

0 + . . . A
( f )
d sd +

k∑
i=1

pi(s)
qi(s)

D( f )
i

)
ũ( f ) = 0, (33)

for a generic finite integer number k ≥ 1, where A( f )
j and D( f )

i are matrices of a certain size n × n, ũ( f )

the related eigenvector of size n and pi, qi are polynomials of certain degrees. Notice, moreover, that
once we have a polynomial fraction of the type pi(s)

qi(s) with deg(pi) < deg(qi) and pi(s) = p(0)
i +· · ·+p(ν)

i sν,
qi(s) = q(0)

i + · · · + q(ν)
i sν + sν+1, it is possible to write it as a product of matrices, in fact (see e.g. [94])

we have that
pi(s)
qi(s)

= (a( f )
i )T (sI( f )

1 − E( f )
i )−1b( f )

i (34)

with

a( f )
i =


p(0)

i

p(1)
i
...

p(ν)
i



T

E( f )
i =



0 1 0 0
0 0 1 0
...

...
...
. . .

...

0 0 0 1
−q(0)

i −q(1)
i −q(2)

i . . . −q(ν)
i


b( f )

i =



0
0
...

0
1


, (35)

and I( f )
1 the identity matrix of the same size of E( f )

i . Therefore, the rational eigen-problem (33) can
be properly specialized by exploiting (34). In this framework we consider the LU decomposition (or
rank revealing LU decomposition to reduce the size of the problem) of the matrix D( f )

i , i.e. D( f )
i =

L( f )
i U( f )

i
T
, so that the rational part of the eigenvalue problem (33) can be written as follows

k∑
i=1

pi(s)
qi(s)

D( f )
i =

k∑
i=1

(a( f )
i )T (sI( f )

1 − E( f )
i

)−1b( f )
i L( f )

i (U( f )
i )T =

=

k∑
i=1

L( f )
i (a( f )

i (I( f )
1 s − E( f )

i )−1b( f )
i I( f )

2 )(U( f )
i )T =

=

k∑
i=1

L( f )
i (I( f )

2 ⊗ a( f )
i )T (sI( f )

2 ⊗ I( f )
1 − I( f )

2 ⊗ E( f )
i )−1(I( f )

2 ⊗ b( f )
i )(U( f )

1 )T =

= L( f )(sF( f ) − G( f ))−1(U( f ))T , (36)

with I( f )
2 the identity matrix of the size of the matrix D( f )

i (or the rank in the case of the rank revealing
decomposition), the symbol ⊗ the Kronecker product and the following s-independent matrices are
defined

L( f ) = [L( f )
1 (I( f )

2 ⊗ a( f )
1 )T , . . . , L( f )

k (I( f )
2 ⊗ a( f )

k )T ],

F( f ) = diag(I( f )
2 ⊗ I( f )

1 , . . . , I
( f )
2 ⊗ I( f )

1 ),

G( f ) = diag(I( f )
2 ⊗ E( f )

1 , . . . , I
( f )
2 ⊗ E( f )

k ),

U( f ) = [U( f )
1 (I( f )

2 ⊗ b( f )
1 )T , . . . ,U( f )

k (I( f )
2 ⊗ b( f )

k )T ]. (37)
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The rational eigen-problem (33) can be thus rewritten in the form(
A( f )

0 + . . . A
( f )
d sd + L( f )(sF( f ) − G( f ))−1(U( f ))T

)
ũ( f ) = 0, (38)

Finally, a linearization of the problem (38) can be performed by introducing the extra vector variable

x( f ) = −(sF( f ) − G( f ))−1(U( f ))T ũ( f ) (39)

and by setting as

M( f ) =



A( f )
d−1 A( f )

d−2 . . . A( f )
0 −L( f )

I( f ) 0 . . . 0
. . .

. . .
...

I( f ) 0
(U( f ))T −G( f )


, N( f ) =



−A( f )
d

I( f )

. . .

I( f )

−F( f )


, y( f ) =



sd−1ũ( f )

sd−2ũ( f )

...

ũ( f )

x( f )


,

(40)
with I( f ) the identity matrix of the same size of A( f )

j , with j = 0, . . . , d, we get that (38) can be
rewritten as a linear eigen-problem in the following form

(M( f ) − sN( f ))y( f ) = 0. (41)

Therefore the eigen-problem (41) involves matrices of size

se = 2M
(
Pe +

k∑
i=1

deg(qi)
)
× 2M

(
Pe +

k∑
i=1

deg(qi)
)
,

with Pe = max{2, deg(pi), i = 1, . . . , k}. It is worth-noting that this size is much smaller than the
size corresponding to matrices involved into the polynomial eigen-problem obtained by exploiting a
standard derationalisation that is

ss = 2MPs × 2MPs,

with Ps = max{2
∏k

i=0 deg(qi), deg(p j)
∏k

i=0 deg(qi), j = 1, . . . , k}. It emerges that the enhanced dera-
tionalisation procedure here proposed turns out to be very effective since it requires the treatment of
matrices of reduced size. The determination of both the eigenvalues and eigenvectors entails a lower
computational burden.
Note that the proposed enhanced derationalization method can also be exploited to study wave prop-
agation in periodic viscoelastic materials where the relaxation kernel is expressed in terms of Prony
series. In fact, even in these cases the propagation is governed by rational eigen-problems and this
procedure is all the more convenient, compared to standard derationalization techniques, the greater
is the number of Prony series terms to be considered for the constitutive characterization of the vis-
coelastic material.
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5. An example of RLC series circuit

Let us consider the case of a metamaterial with a piezoelectric phase characterized by in-plane cubic
symmetry and out-of-plane polarized, that is connected in parallel to a RLC series electrical circuit.
It results that the non vanishing constitutive tensor components CEL

i jkl, introduced in equation 5, are
in general s dependent, except for the component CEL

1212. Therefore, the only rational polynomials
involved in (22) are r1111(s) = r2222(s) and r1122(s).
For the considered electrical circuit, the equivalent shunting admittance, first reported in Section 2,
specializes in the following form

YS
33(s) =

1
RS + sLS + (s CS )−1 =

s CS

s CS RS + s2CS LS + 1
, (42)

being CS the capacitance, RS the resistance and LS is the inductance characterizing the electrical
circuit. The related dimensionless tuning function turns out to be

λ(s) =
L(P)YS

33(s)
s β33A(P) =

L(p)

β33A(P)

CS

s CS RS + s2CS LS + 1
. (43)

For the sake of convenience Eq. (43) can be expressed in terms of the dimensionless complex fre-
quency σ = s/sr as

λ(σ) =
λS

λS (σαS + σ2βS ) + 1
, (44)

where the control parameters λS , αS , and βS are dimensionless capacitance, resistance, and induc-
tance, respectively, defined as follows

λS =
CS

CS r
=

L(p)

β33A(P) CS , αS = srCS rRS , βS = s2
rCS rLS . (45)

Note that λS corresponds to the value of the tuning function λ(σ) evaluated for σ = 0. Therefore, for
the piezoelectric shunted material, the auxiliary s-dependent function βEL

33 takes the form

βEL
33 = β33(1 + λ(σ))) = β33

(
1 +

λS

λS (σαS + σ2βS ) + 1

)
=

= β33

(
λS (σαS + σ

2βS + 1) + 1
λS (σαS + σ2βS ) + 1

)
. (46)

It follows that the constitutive tensor components CEL
i jhl detailed in (5) are fully defined in terms of the

dimensionless frequency σ as well as in terms of λS , αS , and βS characterizing the electrical circuit.
Moreover, the non vanishing rational functions in (22) can be expressed in the form

r1111(σ) = r2222(σ) = d1 +
p1

q1(σ)
, r1122(σ) = d4 +

p4

q4(σ)
, (47)
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where

d1 =
β33C1111C3333 − β33C1133C3311 +C1111e333̃e333 −C1133e333̃e311 −C3311e113̃e333 +C3333e113̃e311

β33C3333 + e333̃e333
,

d4 =
β33C1122C3333 − β33C1133C3322 +C1122e333̃e333 −C1133e333̃e322 −C3322e113̃e333 +C3333e113̃e322

βSλS (β33C3333 + e333̃e333)2 ,

p1 = −
β33(C3333e113 −C1133e333)(C3333̃e311 −C3311̃e333)

βS (β33C3333 + e333̃e333)2 ,

p4 = −
β33(C3333e113 −C1133e333)(C3333̃e311 −C3322̃e333)

βS (β33C3333 + e333̃e333)2 , (48)

and the second order polynomials in σ are

q1(σ) = q4(σ) = q(σ) = σ2 +
αS

βS
σ +
β33C3333λS + β33C3333 + e333̃e333

βSβ33C3333λS + βS e333̃e333λS
=

= σ2 + q(1)σ + q(0). (49)

Therefore the rational eigen-problem (33) can be expressed in the form

(
A( f )

0 + σ
2 A( f )

2 +
1

q(σ)
(2p1 D( f )

1 + p4 D( f )
4 )

)
ũ( f ) = 0, (50)

where A( f )
0 = A( f ) + 2d1 D( f )

1 + d4 D( f )
4 and A( f )

2 = B( f )s2
R. This rational eigen-problem can be tackled

by resorting to the enhanced derationalisation scheme detailed in Section 4. In fact, the rational part
can be rewritten in the following suitable form

1
q(σ)

=
(
1 0

) (
σI( f )

1 −

 0 1
−q(0) −q(1)

 )−1
01

 = (a( f ))T (σI( f )
1 − E( f ))−1b( f ). (51)

Once we consider the LU decomposition of the matrix 2p1 D( f )
1 + p4 D( f )

4 , the eigen-problem (50)
becomes (

A( f )
0 + σ

2 A( f )
2 + (L( f )(σF( f ) − G( f ))−1U( f )T ) ũ( f ) = 0, (52)

with L( f ) = L( f )
1 (I( f )

2 ⊗ a( f ))T , F( f ) = I( f )
2 ⊗ I( f )

1 , G( f ) = I2 ⊗ E( f ) and U( f ) = (I2 ⊗ b( f ))UT
1 resulting in a

specialization of (38). Finally the eigen-problem (52) is linearized as follows

(M( f ) − σN( f ))y( f ) = 0, (53)

where

M( f ) =


0 A( f )

0 −L( f )

I( f ) 0 0
0 U( f )T

−G

 , N( f ) =


−A( f )

2 0 0
0 I( f ) 0
0 0 −F( f )

 , y( f ) =


σũ( f )

ũ( f )

x( f )

 , (54)

with the vector x( f ) defined in (39).
We remark that the considered enhanced derationalisation approach enables one to have a significant
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Figure 2: (a) Spiral ordering of points identified by the 2D-index m = (m1,m2); (b) Linear ordering of the 1D-index
m = (m1) as a result of the linearization procedure.

reduction of the computational burden with respect to the standard derationalisation approach. In fact
in the latter case, we would have a polynomial eigen-problem of degree 4 which would lead to a linear
eigenvalue problem involving matrices considerably bigger than those obtained with the combination
of the enhanced derationalisation approach together with the subsequent linearization procedure.

6. Illustrative example of a tunable metamaterial

We focus on a three phase metamaterial made by the in-plane regular repetition of a periodic cell
along two orthogonal periodicity vectors v1 = de1 and v2 = de2. The periodic cell A is characterized
by a central inner circular disk, of radius r, and by a concentric ring of mean radius R and thickness
h, both are denoted as material phase 1. Between the disk and the ring, the material phase 2 occupies
the remaining annular region. The periodic cell is complemented by a material phase 3 surrounding
the outer ring. We consider both phases 1 and 3 as linear elastic, while the phase 2 is a shunted
piezoelectric phase, whose elastic tensor components where denoted by the apex EL in equation (5).
It follows that, with reference to equation (13), the phase 2 occupies the region C, as well as phases 1
and 3 occupy the region A\C.
In this context, the constitutive tensor components C✧

i jhℓ together with the mass density ρ can be
expressed in the form

C✧
i jhℓ(x) = C(3)

i jhℓ + (C(1)
i jhℓ −C(3)

i jhℓ) χ∥x∥≤r3(x) + (C(2)
i jhℓ −C(1)

i jhℓ) χ∥x∥≤r2(x) + (C(1)
i jhℓ −C(2)

i jhℓ) χ∥x∥≤r1(x),

ρ(x) = ρ(3) + (ρ(1) − ρ(3)) χ∥x∥≤r3(x) + (ρ(2) − ρ(1)) χ∥x∥≤r2(x) + (ρ(1) − ρ(2)) χ∥x∥≤r1(x), ∀x ∈ A, (55)
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being r1 = r, r2 = R − h/2 and r3 = R + h/2, χ the indicator function and taking C(2)
i jhℓ. The corre-

sponding Fourier coefficients can be determined in closed form and result, for n , 0, as

[C✧
i jhℓ]n =

1
|A|

∫
A

C✧
i jhℓ(x)e−

2π
d ι(n·x) dx =

3∑
j=1

A j

d2

∫
∥x∥≤r j

e−
2π
d ι(n·x) dx =

=

3∑
j=1

A jπ(r j)2

d2 0F1

(
; 2;−

(n2
1 + n2

2)π2(r j)2)
d2

)
,

[ρ]n =
1
|A|

∫
A

ρ(x)e−
2π
d ι(n·x) dx =

3∑
j=1

B j

d2

∫
∥x∥≤r j

e−
2π
d ι(n·x) dx =

=

3∑
j=1

B jπ(r j)2

d2 0F1

(
; 2;−

(n2
1 + n2

2)π2(r j)2)
d2

)
, (56)

where A1 = C(1)
i jhℓ − C(2)

i jhℓ, A2 = C(2)
i jhℓ − C(1)

i jhℓ, A3 = C(1)
i jhℓ − C(3)

i jhℓ, B1 = ρ
(1) − ρ(2), B2 = ρ

(2) − ρ(1),
B3 = ρ

(1) − ρ(3), and 0F1 is a generalized hypergeometric function as defined in [95] and briefly
recalled in Appendix A. In the case where n = 0, the coefficients result as

[C✧
i jhℓ]0 =A0 +

3∑
j=1

A j
πr j

d2 ,

[ρ]0 =B0 +

3∑
j=1

B j
πr j

d2 , (57)

where A0 = C(3)
i jhℓ and B0 = ρ

(3).
As a remark, we underline that matrices involved in the eigen-problem (41), including the Fourier

coefficients in (56), are in general dense matrices, so that a convenient linearization of the generic
multi-index m appearing in the finite-dimensional Fourier coefficients can be useful for the sake of
computational efficiency. More specifically, the 2D-indices labelled in spiral order as in Figure 2a are
rectified into 1D-indices as done in Figure 2b, where at the left and at the right of point P0 are ordered
even and odd indices, respectively. Furthermore, note that the multi-index linearization procedure can
be favourably exploited also in the consistent truncation of the infinite-dimensional rational eigen-
problem.
Finally, in order to assess the minimum required truncation order, a proper convergence analysis
is required as the dimension of the linear operators of the truncated eigen-problem increases. All
numerical experiments shown in the next sessions are obtained with converged truncation orders.

6.1. Numerical results

We refer to the three-phase metamaterial introduced in Section 6 to test the proposed enhanced de-
rationalization procedure. The phase 1, related to the internal disk together with the outer ring, is
made of steel with E(1)=210 GPa, ν(1)=0.3 and mass density ρ(1)= 7500 kg/m3. The second elastic
phase, namely phase 3, is made of a passive polymer materials whose commercial name is EPO-
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Figure 3: A set of 3D surface plots of Re
(
C(2)

1111(λS , αS , βS , )
)

in the parameters space.

TEK®301, with E(3)= 3.6 GPa, ν(3)=0.35, and mass density ρ(3)=1150 kg/m3, as in [96]. As it is
well known in the case here considered of plane stress, both these elastic phases are characterized by
four non-vanishing components of the elasticity tensor, defined as C( j)

1111 = C( j)
2222 = E( j)/(1 − (ν( j))2),

C( j)
1122 = ν

( j)E( j)/(1 − (ν( j))2), C( j)
1212 = E( j)/2(1 − (ν( j))2), with j = 1, 3.

Finally the phase 2, associated to the shunted piezoelectric material, is obtained by connecting a
Polyvinylidene fluoride internal ring to a RLC series electrical circuit. The 3D electro-mechanical
properties of PVDF, polarized along the out-of-plane e3 direction, are taken from [97] and are listed
below. Specifically, the non vanishing components of the elasticity tensor are C1111 = C2222 = 4.84
·109 Pa, C3333 = 4.63·109 Pa, C1122 = 2.72·109 Pa, C1133 = C2233 = 2.22·109 Pa, C1212=1.06·109 Pa,
C1313 = C2323 = 5.26·107 Pa. The non vanishing components of the stress-charge coupling tensor are
e113=e223=-1.999 ·10−3 C/m2, e311=e322=4.344 ·10−3 C/m2, e333=-1.099 ·10−1 C/m2. The set of com-
ponents is complemented by the non vanishing components of the dielectric permittivity tensor, i.e.
β11=β22= 6.641 ·10−11 C/Vm, and β33=7.083 ·10−11 C/Vm. Moreover the mass density is ρ(2) = 1780
kg/m3.
As it emerges from Section 5, by modifying the tuning parameters, i.e. the dimensionless capacitance
λS , resistance αS , and inductance βS , the constitutive tensor components, detailed in (5), are changed
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Figure 4: Dispersion curves for αS = 0, and λS = λR as βS varies. (a),(b),(c) Floquet-Bloch spectra together with their
frequency band structure for βS = 10−i, i = 3, 4, 5, respectively.(d),(e),(f) dispersion curves in terms of µ on the unit
cylinder for τ=0.1; (g),(h),(i) dispersion curves in terms of µ on the unit cylinder for τ=1.

in turn. In this respect, with the aim of better understanding the influence of tuning parameters on the
equivalent elastic response of the shunting piezoelectric phase, in Figure 3 the real part of the elastic
tensor component C(2)

1111, i.e. ℜ
(
C(2)

1111(λS , αS , βS , σ)
)
, normalized with respect to the σ-independent

component Cr
1111 = C(2)

1111(λS = 0, αS = 0, βS = 0), is shown in the parameters space and in the com-
plex frequency domain.
In particular, the three plots on the first row refer to αS = 0, that is the case of a non-dissipative
electrical circuit. In Figure 3(a) the 3D surface plot ofℜ

(
C(2)

1111/C
r
1111

)
is shown versus βS and λS , as-

sumingℜ(σ) = 0 and ℑ(σ) = 1. The gray shaded plane corresponds to the σ-independent resonance
value of the tuning parameter λS ≡ λR = −(C3333 β33 + e2

333)/(C3333β33), introduced in [73], occurring
in the case of a purely capacitive circuit characterized by αS = βS = 0. Analogously, in Figure 3(b)
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(a) (b) (c)

Figure 5: Dimensionless magnitude vn
p, with n = e1, of the phase velocity vector versus ℑ(σ) for αS = 0, λS = λR and

βS = 10−i, i = 3, 4, 5.

the 3D surface plot of ℜ
(
C(2)

1111/C
r
1111

)
is shown versus βS and λS , ℜ(σ) = 0 and ℑ(σ) = 1/2. In

addition, in Figure 3(c) the 3D surface plot ofℜ
(
C(2)

1111/C
r
1111

)
is shown versus βS and ℑ(σ) assuming

λS = λR. On the other hand, the three plots on the second row, i.e. (d), (e) and (f), are the same as for
the first row, but referring to a dissipative circuit with αS = 1/80. It emerges that in the plots shown
in the first row, corresponding to the non-dissipative circuit, singularities appear, located on the points
pertaining to the following implicit function

F
(
λS , αS , βS ,ℑ(σ)

)
=

(
A

(
αS , βS ,ℑ(σ)

)
λ2

S + B
(
αS , βS ,ℑ(σ)

)
λS +C

(
αS , βS ,ℑ(σ)

))
= 0, (58)

where the auxiliary coefficients are defined as

A
(
αS , βS ,ℑ(σ)

)
= D1D2βS

2ℑ(σ)4
+

(
D1D2αS

2 + D1D3βS

)
ℑ(σ)2

+ D1C3333
2β33

2,

B
(
αS , βS ,ℑ(σ)

)
= −2 D1D2βSℑ(σ)2 − D1D3,

C
(
αS , βS ,ℑ(σ)

)
= D1D2, (59)

with

D1 = C1111 C3333 β33 + e333
2C1111 −C1133

2β33 − 2 e113 e333 C1133 + e113
2C3333,

D2 = C3333
2β33

2 + 2 C3333 β33 e333
2 + e333

4,

D3 = −2 C3333
2β33

2 − 2 C3333 β33 e333
2. (60)
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 6: Dispersion curves for αS = 10−5, and λS = λR as βS varies. (a),(b),(c) Complex Floquet-Bloch spectra for
βS = 10−i, i = 3, 4, 5, respectively.(d),(e),(f) dispersion curves in terms of µ on the unit cylinder for τ=0.1; (g),(h),(i)
dispersion curves in terms of µ on the unit cylinder for τ=1.

On the other hand, observing the corresponding behavior in the case of a dissipative circuit, i.e. the
second row of the figure, it is noted that the discontinuities turn into peaks. Moreover, in either event
of non dissipative or dissipative circuit, it is worth mentioning that for ℜ(σ) = 0 as ℑ(σ) tends to
zero the singularity/peak tends to move and lie on the gray plane.
In Figure 4(a), (b) and (c), Floquet-Bloch spectra are plot in terms of the dimensionless frequency
σ = s/sr, with sr = d−1

√
CPVDF

3333 /ρ
PVDF a reference frequency, versus the dimensionless abscissa

k1d considering αS = 0 and λs = λR for different values of βS . In this case of non-dissipative circuit
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(a) (b) (c)

Figure 7: Dispersion curves in terms of µ on the unit circle for τ=1, αS = 10−5 λS = λR as βS varies. (a), (b) and (c)
corresponds to βS = 10−i, i = 3, 4, 5, respectively.

shunting the piezoelectric phase the complex frequencies have zero real part. Moving from the highest
value of βS=10−3 (Figure 4(a)), to βS= 10−4 (Figure 4(b)), up to βS=10−5 (Figure 4(c)) it emerges that
the first band gap becomes noticeably wider, as well as overall the spectra tend to get less dense and
new band gaps form at higher frequencies. Other parameters being equal, reducing the βS parameter
results in a better filtering effect. Additionally, the frequency band structures in terms of stop and pass
band amplitudes are plotted in the right part of Figures 4(a), (b), (c). A further representation is shown
in Figures 4(d)-(i) displaying dispersion curves in terms of real and imaginary parts of µ = exp(στ)
versus k1d for α = 0 and λS = λR and a fixed value of the dimensionless time τ = tsr, where t is the
time variable. More specifically, in Figures 4(d)-(f) the dimensionless time is fixed to τ=0.1, at the
same values of βS as the upper row. Analogously, in Figures 4(g)-(i) the dimensionless time is fixed
to τ= 1. In the considered non dissipative case (αS = 0) it is worth-noting that spectra are located on
the unit cylinder. As τ increases, spectra become less narrow and they wrap almost completely on the
unit cylinder. In the considered cases, the control parameter βS is varying in the gray shaded plane
shown in Figure 3(a),(b).
Let us now consider the phase velocity vector vp(n) = (ℑ(s)/k) n of the wave travelling in the direction
n B k/ ∥k∥2 with corresponding wave number k B ∥k∥2. Consistently the dimensionless magnitude
of vp can be defined as vn

p B
∥∥∥vp(n)

∥∥∥
2
/(srd) = ℑ(s)/(kd). Specifically, in Figure 5 the quantity

ve1
p = ℑ(s)/(k1d) specialized when n = e1 is plot in terms of ℑ(σ) for αS = 0, and λS = λR as βS

varies. It emerges that, irrespective of βS , the first two curves at the lowest frequencies are associated
with the corresponding two acoustic branches in Figure 4 (a), (b), (c), respectively. As expected
finite values of the phase velocities are found in this case. In addition, the remaining curves at higher
frequencies are associated with optical branches of the Floquet-Bloch spectra, exhibiting vertical
asymptotes corresponding to infinite velocity values. As a further remark, pass and stop bands are
recognizable along abscissas, as well as it emerges their tunability as parameter λ varies.
Figure 6 reports dispersion curves for the dimensionless resistance αS = 10−5 considering λS = λR

and βS = 10−i, i = 3, 4, 5 from the first to the third column. Due to the presence of this non vanishing
dissipative control parameter αS , the complex Floquet-Bloch spectra are characterized by both non
vanishing real and imaginary parts of the complex dimensionless frequency versus k1d, as can be
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 8: Dispersion curves for αS = 10−3, and λS = λR as βS varies. (a),(b),(c) Complex Floquet-Bloch spectra for
βS = 10−i, i = 3, 4, 5, respectively.(d),(e),(f) dispersion curves in terms of µ on the unit cylinder for τ=0.1; (g),(h),(i)
dispersion curves in terms of µ on the unit cylinder for τ=1.
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(a) (b) (c)

Figure 9: Dispersion curves in terms of µ on the unit circle for τ=1, αS = 10−3 λS = λR as βS varies. (a), (b) and (c)
corresponds to βS = 10−i, i = 3, 4, 5, respectively.

observed in Figures 6(a),(b),(c). It is also evident that, as βs decreases, increasing values of −ℜ(σ)
are found, i.e. an increasing damping behaviour is exhibited. In fact, in the considered case the
control parameter βS moves on the gray shaded plane shown in Figure 3(d),(e) and it emerges that
as βS tends to vanish the real part of the constitutive tensor components of the shunted piezoelectric
material exhibit a peak. In Figures 6(d)-(i) dispersion curves in terms of real and imaginary parts of
µ = exp(ιστ) versus k1d for αS = 10−5, λS = λR and a fixed value of the dimensionless time τ = tsr

are shown. The non vanishing dissipative control parameter αS has a direct effect on the position
of the dispersion curves with respect to the unit cylinder. Indeed as τ increases, for fixed βS values,
the dispersion curves do not remain on the unit cylinder as they wrap, but move inwards. Moreover,
as βS decreases in the range βS = 10−i, i = 3, 4, 5 this effect of moving away from the cylinder is
increasingly evident as clearly appear in the front views of Figure 7.
Analogously, Figure 8 reports dispersion curves for the dimensionless resistance αS = 10−3 consid-
ering λS = λR and βS = 10−i, i = 3, 4, 5 from the first to the third column. Again, the Floquet-Bloch
spectra are characterized by both non vanishing real and imaginary parts of the complex dimension-
less frequency versus k1d, as can be observed in Figure8(a),(b),(c). With respect to these complex
spectra it is well evident that, as the beta decreases, branches occupy ever larger areas in the real field.
In Figures 8(d)-(i) dispersion curves in terms of real and imaginary parts of µ = exp(στ) versus k1d

for αS = 10−3, λS = λR and a fixed value of the dimensionless time τ = tsr are shown. Also in this
case, in Figures 8(d)-(f) the dimensionless time is fixed to τ=0.1, at the same values of βS as the upper
row. In Figures 8(g)-(i) the dimensionless time is fixed to τ= 1. A qualitative behaviour similar to
Figure 6 is observed, but in this case the tendency of the curves to go towards the center of the unit
cylinder as βS decreases is more accentuated, as can be seen in Figure 9 corresponding to τ = 1.
Furthermore, in Figure 10 results corresponding to a dimensionless resistance αS = 10−1, λS = λR and
βS = 10−3 are reported. Also in this case, the Floquet-Bloch spectrum is characterized by both real and
imaginary parts of the complex dimensionless frequency versus k1d, as can be seen in Figure10(a). In
this case Figures 10(b)-(e) show dispersion curves in terms of real and imaginary parts of µ = exp(στ)
versus k1d for λ = λR and a fixed value of the dimensionless time τ = tsr. Figure 10(b) corresponds to
τ=0.1, Figure 10(c) to τ=0.3 and both Figures 10(d)-(e) correspond to τ=3. Dispersion curves move
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(a) (b)

(c)

(d)

(e)

Figure 10: Dispersion curves for αS = 10−1, and λS = λR and βS = 10−3. (a) Floquet-Bloch spectrum. (b),(c),(d)
dispersion curves in terms of µ on the unit cylinder for τ=0.1,1,3, respectively. (e) front view of the dispersion curves for
τ=3.

away from each other as τ increases, concurrently they do not remain on the unit cylinder as they
wrap, but move inwards as clearly emerges from the front view in Figure 10(e). It can be verified that
for this value of αS unnoticeable differences arise in the spectra as βS varies.

As a remark, it is important observing that, as expected, a non monotonic damping behaviour is
exhibited as αs increases. In fact, the range of the real part of the dimensionless complex frequency
has not a monotonic behaviour as the dissipative control parameter αS increases, as shown in [98] and
investigated in Figures 11 and 12. More precisely, the frequency loci as the dimensionless resistance
αs varies are plotted for two discrete values of the dimensionless abscissa k1d. In Figures 11(a), (b),
(c) and Figures 12(a), (b), (c) the 3D plots corresponding to k1d = π/3 and k1d = 2π/3 are shown,
respectively, as beta decreases. In addition Figures 11(d), (e), (f) and 12(d), (e), (f) are a further
representation in which the variability of αs is shown graphically as a logarithmic color scale.

7. Final remarks

The paper is devoted to the design of tunable mechanical metamaterials conceived for the control
of damped elastic wave propagation. The attention is focused on a periodic metamaterial with three
phases, two of which are elastic and the last one is piezoelectric and connected in parallel to a tunable
dissipative electric circuit. By intervening on the electric circuit it is possible to modify the equivalent
stiffness of the piezoelectric phase and, therefore, to obtain a metamaterial whose response spectrum
can be modified according to the needs by opening/closing or widening/translating the band gaps.
Due to the presence of a dissipative electric circuit, the analysis of wave propagation involves a ratio-
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(a)

αs

(d)

(b)

αs

(e)

(c)
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(f)

Figure 11: Locii of the complex frequency for k1d = π/3: (a),(b),(c) 3D plots of real and imaginary parts of the dimen-
sionless complex frequency σ versus αS for βS = 10−i, i = 3, 4, 5, respectively;(d),(e),(f) 2D plots of real and imaginary
parts of the dimensionless complex frequency σ with αS showhn as a logarithmic color scale.
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(a)
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(d)

(b)
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(e)

(c)

αs

(f)

Figure 12: Locii of the complex frequency for k1d = 2π/3: (a),(b),(c) 3D plots of real and imaginary parts of the
dimensionless complex frequency σ versus αS for βS = 10−i, i = 3, 4, 5, respectively;(d),(e),(f) 2D plots of real and
imaginary parts of the dimensionless complex frequency σ with αS showhn as a logarithmic color scale.
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nal eigenvalue problem, the solution of which is very difficult using both analytical and computational
methods available in the literature. In this context, an innovative derationalization technique is herein
proposed. The idea is to start from an infinite-dimensional eigenvalue problem, obtained by exploit-
ing the Fourier series decomposition of all the periodic terms, and then apply a truncation. At this
point the procedure foresees a LU factorization of the matrix that collects the terms of the rational
part of the eigenvalue problem, to then proceed to a subsequent linearization. The proposed method
proves to be effective in obtaining the Floquet-Bloch spectra in a reasonable time and achieving a
good convergence. The rational eigenvalue problem is solved by slightly increasing the size of the
original rational eigenvalue problem and therefore is computationally more efficient than the brute
force approach consisting in multiplying the rational eigenvalue problem by the product of the de-
nominators. This technique is successfully applied to the case of a metamaterial shunted to a series
RLC circuit with rational admittance. The effects of changing control parameters, i.e. the capacitance,
the resistance and the inductance, on the overall dispersive response of the designed metamaterial is
investigated and critically commented.
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Appendix A. Overview of Hypergeometric Functions

The hypergeometric function 0F1 is a particular case of the generalized hypergeometric series

pFq(a1, . . . , ap; b1, . . . , bq; z) which is defined as

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

(a1)k · (ap)k

(b1)k · (bq)k

zk

k!
(A.1)

where ai, b j, z ∈ C, with i = 1, . . . , p, j = 1, . . . , q and (a)k is the Pochhammer symbol, i.e.,

(a)0 = 1, (A.2)

(a)k = a(a + 1) · (a + k − 1), k ≥ 1. (A.3)

We underline that the hypergeometric function 0F1(; b; z) has only one parameter b in the denom-
inator and no parameters ai at the numerator.
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