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Abstract: A brain–computer interface (BCI) allows users to control external devices through brain
activity. Portable neuroimaging techniques, such as near-infrared (NIR) imaging, are suitable for this
goal. NIR imaging has been used to measure rapid changes in brain optical properties associated with
neuronal activation, namely fast optical signals (FOS) with good spatiotemporal resolution. However,
FOS have a low signal-to-noise ratio, limiting their BCI application. Here FOS were acquired with a
frequency-domain optical system from the visual cortex during visual stimulation consisting of a
rotating checkerboard wedge, flickering at 5 Hz. We used measures of photon count (Direct Current,
DC light intensity) and time of flight (phase) at two NIR wavelengths (690 nm and 830 nm) combined
with a machine learning approach for fast estimation of visual-field quadrant stimulation. The input
features of a cross-validated support vector machine classifier were computed as the average modulus
of the wavelet coherence between each channel and the average response among all channels in
512 ms time windows. An above chance performance was obtained when differentiating visual
stimulation quadrants (left vs. right or top vs. bottom) with the best classification accuracy of ~63%
(information transfer rate of ~6 bits/min) when classifying the superior and inferior stimulation
quadrants using DC at 830 nm. The method is the first attempt to provide generalizable retinotopy
classification relying on FOS, paving the way for the use of FOS in real-time BCI.

Keywords: fast optical signals (FOS); event-related optical signals (EROS); brain–computer interface
(BCI); retinotopy; machine learning (ML)

1. Introduction

Brain–computer interfaces (BCIs) are technologies that connect the central nervous
system to a computer or another device [1,2]. BCIs can be used in humans for mapping
brain functions, state monitoring, and enhancing or repairing cognitive and sensory–motor
abilities. In contrast to conventional input devices such as a keyboard, pen, or mouse, BCI
connects the human brain to peripheral devices by establishing a direct, interactive, and
bidirectional link between the brain and the external environment [3,4]. A comprehensive
BCI system typically consists of four components, a brain signal collector, an algorithm
identifying and classifying incoming data, an algorithm transmitting decoded commands
to the controlling equipment, and a device transmitting back feedback. Hence, the brain
generates signals reflecting the user’s intentions, and the BCI system converts these signals
into output commands for controlling external devices. In brain–machine fusion, BCI is an
essential component of the exchange of information [4].
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Portable and wearable neuroimaging techniques, such as electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS), are preferred as signal collectors
in BCIs, as they do not restrict users’ ambulation. The EEG evaluates the macroscopic
dynamics of brain electrical activity via passive voltage measures on the scalp, with informa-
tion characterized by low spatial resolution (of the order of centimeters) but high temporal
resolution (of the order of milliseconds) [5], which is a great advantage for real-time BCI
applications [6,7]. fNIRS is instead a diffuse optical imaging technique that estimates hemo-
dynamic changes in oxy- (HbO) and deoxyhemoglobin (HbR) concentration, associated
with the functional hyperemia following brain activity, and it is characterized by a lower
temporal resolution than EEG due to the slow time course of hemodynamic fluctuations,
and a higher spatial resolution (around 1 cm) [8,9].

In addition to fNIRS, diffuse optical imaging has been used to measure rapid changes
in optical brain properties directly associated with neuronal activity. This method would
allow for circumventing the restrictions imposed by the limited temporal resolution of
fNIRS, while maintaining a high spatial resolution, by simply using the same technology
employed for fNIRS but focusing on higher frequency ranges of the signal modulation.
As demonstrated in vitro, the electrical activity of neurons is coupled with synchronous
changes in Near Infrared (NIR) light scattering [10,11]. Moreover, changes in the inten-
sity of NIR light transmitted through rat brain tissue have been observed in response to
suprathreshold electrical stimulation [12]. In humans, Gratton and colleagues (1995) were
the first to demonstrate that fast optical signals (FOS, also known as event-related optical
signals, EROS), as assessed by means of modulation in light intensity or through changes
in the average photons time of flight in the tissue, could detect localized brain activity with
a temporal resolution of about 20 ms [13]. Notably, a proper FOS recording requires certain
precautions. In the first place, temporal and spatial sampling could play a crucial role
because signals are localized in both time and space. Moreover, FOS are characterized by a
low signal-to-noise ratio (SNR) [14], which could be overcome by measuring a great number
of trials and then calculating average responses. To enhance FOS’ detectability, multiple
data analysis strategies have been proposed such as spectrum analysis [14], Independent
Component Analysis (ICA) [15,16], and Generalized Linear Model (GLM) analysis [17].
FOS are typically recorded using longer (above 800 nm) wavelengths in the NIR spectrum
because of the lower absorption characteristics of longer wavelengths, resulting in a higher
SNR [18]. Studies employing a broad spectrum of NIR wavelengths show that longer
wavelengths are more sensitive to FOS [12]. FOS has been measured during a variety of
event-related tasks involving sensory, motor, auditory, and prefrontal cortices [13,18,19], as
well as visual tasks [20]. Regarding the latter, FOS measured over the visual cortex can be
used to create retinotopic maps [17].

The ability to estimate a retinotopic map shows the high temporal resolution of FOS,
making this method ideally suited for BCI applications based on visual stimuli. FOS has
rarely been used to feed data-driven machine learning (ML) approaches to classify cortical
activation and deliver a successful classification of brain signals. In BCI systems, ML tech-
niques play a dominant role in data analysis since they help with learning, comprehending,
and interpreting complex brain activities [21]. Among the variety of classifiers available, the
support vector machine (SVM) has been demonstrated to be highly effective for classifying
brain signals [22–27]. Proulx et al. (2018), for example, used SVM and Linear Discriminant
Analysis (LDA) using FOS (light intensity and phase delay, a measure of average pho-
tons time of flight using frequency-domain NIR systems) to distinguish between unusual
and common responses [28]. The outcomes were combined using a weighted majority
vote. FOS responses to rare and common images were classified among participants ei-
ther offline, obtaining an average balanced accuracy of 62.5%, or online, with an average
balanced accuracy of 63.6% [28]. The current study aimed to investigate the capability
of combining FOS with SVM for single-trial retinotopy estimation in BCI applications.
In particular, features computed through a wavelet coherence procedure applied to FOS
were used as input for an SVM classifier in order to provide a classification of the visual
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quadrants relying on single-trial recordings. Figure 1 reports the block diagram of the
proposed method.
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Figure 1. Schematic overview of the proposed method. The figure is created with BioRender.com
(https://app.biorender.com/, accessed on: 26 April 2023).

2. Materials and Methods

This section describes participant enrollment and the experimental paradigm. In
addition, a description of the optical instrumentation used to record FOS is provided, along
with an explanation of the preprocessing of the signals and the ML analysis.

2.1. Participants

Forty-one healthy volunteers (age: 25–40 years, mean: 26 years, 18 males and
23 females) were enrolled in the experiment. Participants were right-handed, native
English speakers, with normal or corrected to normal vision and hearing, and reported
themselves in good health and free of medications known to affect the central nervous
system. All participants were informed about the methodologies of the study and provided
written informed consent. The study was approved by the University of Illinois at Urbana-
Champaign Institutional Review Board, and it was performed according with the ethical
standards of the Helsinki Declaration.

2.2. Visual Stimulation

The visual stimulus was a wedge of a reversing black and white checkerboard rotating
counterclockwise around a gray fixation cross-located at the center of the screen. Partici-
pants were asked to focus on the fixation and silently count the number of times the fixation
turned white. The wedge made a complete revolution in 48 s (1/48 Hz) and the checker-
board flickered at 5 Hz. Eight revolutions per subject were presented. Participants were
sat comfortably in front of a computer screen located at a distance of 113 cm. Experiments
were carried out in a dimly illuminated room.

2.3. Optical Imaging Recording

Optical signals were recorded using an integrated set of 6 frequency-domain oxime-
ters (Imagent, ISS Inc., 1602 Newton Dr, Champaign, IL, USA). The system consisted of
32 sources (16 laser diodes emitting at 690 nm and 16 emitting at 830 nm) and
16 Photomultiplier Tube (PMT) detectors, 8 of which were used for the current study.

https://app.biorender.com/


Bioengineering 2023, 10, 553 4 of 14

The light emitted by the sources was time-multiplexed and modulated at 110 MHz. To
generate a 6.25 kHz heterodyne detection, the current supplying the PMTs was modulated
at 110.00625 MHz. In addition, a Fast Fourier Transform (FFT) was applied to the 50 kHz
sampled output current of the PMTs. Transformation to frequency domain enabled the
recording of the average signal intensity (Direct Current, DC), modulated signal intensity
(Alternating Current, AC), and phase delay (PH). Because of multiplexing across sources,
the effective sampling rate for each channel (source–detector combination) was set at
39.0625 Hz, which is suitable for FOS recording [29]. To assess FOS responses to visual
stimulation, we measured optical signals from the occipital region (centered around the Oz
electrode location based on the standard 10–20 EEG system) using a custom helmet con-
sisting of 16 source fibers (each source fiber composed of two sources at 690 nm and
830 nm of wavelength) and 16 detectors (Figure 2a). The optodes were arranged to
create 256 overlapping channels (128 per wavelength) at different source–detector dis-
tances ranging from 20 to 70 mm. This montage allowed for different depth sensitivities
covering the visual cortex. The average sensitivity map is reported in Figure 2b in a
representative subject.
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(b) Average sensitivity map obtained through the optical pad employed in an exemplary subject of
the study.

2.4. Fast Optical Signal Preprocessing

We used DC intensity and phase signals at the two wavelengths recorded and mea-
sured continuously over recording blocks lasting 6.26 min, beginning 1 s before the stim-
ulation started, and lasting 1 s after the stimulation ended. For all signals, a zero-phase
distortion FIR digital high-pass filter (2 Hz cutoff frequency) was applied to whole-block
data. The high-pass cutoff frequency allowed for the elimination of slow drifts, and
hemodynamic effects, and significantly reduced cardiac artifacts. Changes in phase signal
expressed in degrees (FOSPH) were converted into changes in the average time of flight of
photons using the following equation.
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∆t = ∆PH·π/(360π·Modulation) (1)

where Modulation is the frequency of light modulation (110 MHz). Changes in signal DC
intensity were evaluated by converting the signals in optical densities (FOSDC) using the
following equation:

FOSDC = log(
DC

DCaveraged over block
) (2)

where DCaveraged over block is the average value of DC across the whole block. Signals
recorded from all available channels were fed to the classifier.

2.5. Machine Learning Approach

For both the DC and phase components at the two wavelengths, feature extraction
was performed by exploiting the temporal locking of the signals in the different optical
channels during the response to the stimulus. Specifically, the average (over time and
frequency) of the modulus of the wavelet coherence between the single channel and the
average response among all channels was computed for each channel. This analysis was
performed on individual trials in an integration time window of 512 ms (i.e., 20 sampling
points) maximizing the overlap between the wavelet Cone Of Influence (COI) and the
concatenated responses of two trials of 400 ms length [30].

The label associated with each 512 ms signal was assigned depending on the position
of the rotating flickering checkerboard wedge on the screen, which represented illumination
of a quadrant of the participants’ visual field since they were fixating the center of the
wedge rotation. The label ‘top’ or ‘bottom’ was assigned if the center of the wedge was,
respectively, between −45◦ and 45◦ quadrant or between 135◦ and 225◦ quadrant (with
a counterclockwise rotation) (these angles were relative to the vertical meridian of the
screen/visual field). The label ‘right’ or ‘left’ was assigned if the center of the wedge was,
respectively, between 45◦ and 135◦ quadrant or between 225◦ and 315◦ quadrant.

All trials from all subjects were concatenated; hence, the SVM input matrix dimensions
were 19,680 (number of trials in a single quadrant considering all subjects × 2 quadrants)
× 128 (number of channels). The data were normalized (z-scored) with a label of 0 and
1 for the two classes considered for the specific classification required (either top vs. bottom
or right vs. left quadrants). The SVM algorithm employed was a non-linear classifier
using a Radial Basis Function (RBF) kernel, with the exponent γ (hyperparameter of the
model) set to a standard value for z-scored inputs of γ = 0.5. The machinery was evaluated
using 5-fold cross-validation. To avoid overfitting effects in the test sets, the folds were
constructed by gathering all the data from the same subject in the same fold.

To test the performance of the classifier, the confusion matrix of each approach was
computed, delivering sensitivity, specificity, and accuracy of the classification. Moreover, a
Receiver Operating Characteristic (ROC) analysis was implemented, and the Area Under
the ROC curve (AUC) was evaluated. The statistical significance of the AUC was computed
by estimating the null hypothesis distribution through random shuffling of the output
vector (1 million iterations).

Finally, the information transfer rate (ITR), which is a general evaluation metric for BCI
systems that measures the quantity of information conveyed by the output of the system,
was computed from the accuracy and the method response time (512 ms) to evaluate the
performance of the classification for BCI applications.

The processing pipeline is described in the flowchart reported in Figure 3.
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Figure 3. Flowchart describing the FOS processing pipeline for the visual quadrants’ classification.

3. Results

Figure 4 reports the ROC curves and the confusion matrices for the optimized cutoff
point obtained for the cross-validated classification performance of the top and bottom
quadrants, for both the DC and PH at 830 nm and 690 nm wavelengths. The higher AUC
(AUC = 0.64) was obtained by the model fed using the features computed from the DC at
830 nm, whereas the lower AUC was obtained by the model taking as input the features
from the PH at 690 nm (AUC = 0.56). Note that all these values refer to the whole sample
of 41 participants.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 14 
 

 
Figure 3. Flowchart describing the FOS processing pipeline for the visual quadrants’ classification. 

3. Results 
Figure 4 reports the ROC curves and the confusion matrices for the optimized cut-

off point obtained for the cross-validated classification performance of the top and bot-
tom quadrants, for both the DC and PH at 830 nm and 690 nm wavelengths. The higher 
AUC (AUC = 0.64) was obtained by the model fed using the features computed from the 
DC at 830 nm, whereas the lower AUC was obtained by the model taking as input the 
features from the PH at 690 nm (AUC = 0.56). Note that all these values refer to the 
whole sample of 41 participants. 

 

Figure 4. ROC curves and confusion matrices for the top vs. bottom quadrants’ classification ob-
tained through SVM applied to (a) PH of the 830 nm wavelength, (b) DC of the 830 nm wave-
length, (c) PH of the 690 nm wavelength, and (d) DC of the 690 nm wavelength. 

Figure 5 reports the ROC curves and the confusion matrices for the best cutoff point 
delivered by the cross-validated classification of the right and left quadrants for the DC 
and PH at 830 nm and 690 nm wavelengths. The results refer to the whole study sample. 
The model fed with the features computed from the DC at 830 nm yielded the highest 
AUC (0.64), while the model fed with the features computed from the PH at 830 nm 
yielded the lowest AUC (0.55). 

Figure 4. ROC curves and confusion matrices for the top vs. bottom quadrants’ classification obtained
through SVM applied to (a) PH of the 830 nm wavelength, (b) DC of the 830 nm wavelength, (c) PH
of the 690 nm wavelength, and (d) DC of the 690 nm wavelength.



Bioengineering 2023, 10, 553 7 of 14

Figure 5 reports the ROC curves and the confusion matrices for the best cutoff point
delivered by the cross-validated classification of the right and left quadrants for the DC
and PH at 830 nm and 690 nm wavelengths. The results refer to the whole study sample.
The model fed with the features computed from the DC at 830 nm yielded the highest AUC
(0.64), while the model fed with the features computed from the PH at 830 nm yielded the
lowest AUC (0.55).
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of the 690 nm wavelength, and (d) DC of the 690 nm wavelength.

Table 1 reports all classification accuracies (100× number of correctly classified tri-
als/total number of trials) obtained and the associated ITR. Note that almost all classi-
fications were significantly better than chance (above 50%, p < 0.05), with two having
a tendency towards significance (p < 0.1). The best classification was obtained for top
vs. bottom quadrant classification assessed using the DC intensity using 830 nm light.
The classification accuracy was qualitatively greater for DC intensity than for phase mea-
sures (58.79% vs. 56.55%, respectively), 830 nm than 690 nm light (58.79% vs. 56.55%,
respectively), and for top–bottom than left–right discrimination (58.97% vs. 56.36%, respec-
tively). The advantages for DC intensity and 830 nm light may both correspond to a higher
signal-to-noise ratio for these measures, and was therefore predictable.
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Table 1. Accuracies and ITR obtained by the SVM in classifying the quadrants from the different
optical metrics.

Contrast Optical Metric Accuracy (%) p-Value ITR (bpm)

Top vs. bottom PH 830 59.20 0.005 2.82
Top vs. bottom DC 830 62.95 0.001 5.92
Top vs. bottom PH 690 55.75 0.071 1.25
Top vs. bottom DC 690 58.00 0.021 2.23
Left vs. right PH 830 55.00 0.082 0.87
Left vs. right DC 830 58.00 0.016 2.23
Left vs. right PH 690 56.25 0.037 1.70
Left vs. right DC 690 56.20 0.039 1.70

Figure 6 describes the distribution of accuracies across all the participants for the
classification of the top vs. bottom quadrants for all the optical signals considered. The
figure shows that the model provides an above chance classification accuracy for the
majority of the participants.
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Figure 7 depicts the accuracy distribution associated with the left vs. right quadrants’
classification for each optical signal taken into consideration. Additionally in this case, the
model provides a classification accuracy above chance for most of the participants.

Notably, the processing computation time provided by the proposed pipeline analysis
was only 0.071 ± 0.007 s.



Bioengineering 2023, 10, 553 9 of 14

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 14 
 

 
Figure 6. Distribution of the accuracy (%) across all the participants for the classification of the top 
and bottom quadrants. The red dashed line represents the above chance threshold. 

Figure 7 depicts the accuracy distribution associated with the left vs. right quad-
rants’ classification for each optical signal taken into consideration. Additionally in this 
case, the model provides a classification accuracy above chance for most of the partici-
pants. 

 
Figure 7. Distribution of the accuracy across all the participants for the classification of the left vs. 
right quadrants. The red dashed line represents the above chance threshold. 

Notably, the processing computation time provided by the proposed pipeline anal-
ysis was only 0.071 ± 0.007 s. 

4. Discussion 
FOS can monitor cortical activity with high temporal and spatial resolutions. Dif-

ferently from fNIRS, FOS does not measure the slow hemodynamic response following 
brain activation but directly measures the fast changes in optical properties that are syn-
chronous with neuron depolarization. Hence, FOS might provide higher ITR than fNIRS 
for real-time BCI applications. However, FOS are characterized by a lower SNR with re-
spect to fNIRS requiring appropriate data analysis strategies to enhance their perfor-
mance in BCI. 

Figure 7. Distribution of the accuracy across all the participants for the classification of the left vs.
right quadrants. The red dashed line represents the above chance threshold.

4. Discussion

FOS can monitor cortical activity with high temporal and spatial resolutions. Differ-
ently from fNIRS, FOS does not measure the slow hemodynamic response following brain
activation but directly measures the fast changes in optical properties that are synchronous
with neuron depolarization. Hence, FOS might provide higher ITR than fNIRS for real-time
BCI applications. However, FOS are characterized by a lower SNR with respect to fNIRS
requiring appropriate data analysis strategies to enhance their performance in BCI.

In this study, a retinotopy FOS-based framework was investigated for BCI imple-
mentations. Fast modulations in DC light intensity and phase shift at both 690 nm and
830 nm wavelengths were analyzed. The framework included a feature extraction algo-
rithm based on the evaluation of the wavelet coherence of the signal in each channel (all
over the visual cortex) with the average signal among channels. This approach highlighted
the signal synchronization among channels soon after the stimulus. The average amplitude
across time and frequency of the wavelet coherence was used to feed a cross-validated
(5-fold) SVM classifier. The classifier was trained and tested to distinguish between the
top and bottom visual stimulation quadrants, as well as the left and right stimulation
quadrants. We demonstrated the feasibility of employing FOS for retinotopy mapping in
BCI, obtaining classification accuracies above chance. The 830 nm wavelength FOS feature
set produced significantly better classification results than the 690 nm wavelength [12,31].
Consistently with our findings, Lee and Kim (2010) demonstrated that FOS are more sen-
sitive to neural activity when using light with a longer wavelength [12]. This finding is
related to the increased spectral absorption at a shorter wavelength, which results in fewer
photons reaching the detector and a lower SNR [32]. Notably, the wavelength-dependent
classification outcomes imply that the findings are not associated with motion artifacts, as
motion artifacts would have affected the paired-wavelength sources in the same way.

Interestingly, the performance of intensity data was found to be superior to that of
phase. A previous study reporting on the FOS identification for BCI applications identified
that the classification relying on DC intensity signals performed better than classifiers
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based on phase delay. These results are also in line with previous studies reporting the
ability to detect FOS using DC signals but not using phase [33,34]. Moreover, using
Monte Carlo simulations, Franceschini et al. demonstrated that changes in scattering
caused smaller changes in phase delay than in intensity, which explains why phase delay
has a lower SNR than intensity [35]. However, it should be mentioned that previous FOS
investigations [31,36] demonstrated that phase delay is more accurate than DC for detecting
FOS, and it was hypothesized that external noise sources, such as ambient light, could
influence the FOS DC result [37]. However, the use of a 2 Hz high-pass filter in our study
may help suppress some of these problems and improve the signal-to-noise ratio of the DC
intensity signals.

We hypothesize that the lower classification performance of our phase data might
be attributed to the variability in the locations of the optodes with respect to the brains
across participants. Phase delay signals have larger gradients of spatial sensitivities and,
consequently, are more affected by modifications in the channel locations [29]. This issue
may be overcome by aligning optical channels with brain anatomy using subject-specific
structural images (e.g., based on anatomical magnetic resonance images), reconstructing
voxel-space single-trial data through inversion algorithms [38]. However, to support the
use of DC data for FOS detection, it should be highlighted that systems able to produce
a quick classification of cortical states without a precise co-registration with anatomy are
advantageous for BCI.

Classification accuracy was also greater for top–bottom vs. left–right classification.
This contrasts with the fact that the distance between regions of the primary visual cortex
associated with the left and right visual fields is more distant than that associated with
the top and bottom areas of the visual field. At first glance, this should make left–right
discrimination easier than top–bottom discrimination. It is to be noted, however, that the
optical montage used in the current study was based largely on optodes oriented in the
left–right direction rather than the top–bottom direction over the occipital region. This
arrangement meant that different channels covered higher and lower occipital regions
(corresponding to the top–bottom dimension of the screen/visual field). At the same time,
most channels collected data from relatively different regions in the horizontal (left–right)
axis (corresponding to the left–right dimension of the screen/visual field). This may have
translated into a different spatial resolution of the measure along the two axes. To test
whether this is the case, the experiment should be re-run using montages with different
dominant orientations. In other words, specific montages may generate quite different
power levels for discriminating between brain activities, depending on how the individual
channels overlap with the critical brain regions involved.

It should be noted that the average classification accuracy did not reach the threshold
of 70%, which is considered the lower bound of accuracy for effective BCI communica-
tion [39]. However, in this study, single trials for FOS were considered without averaging,
representing an improvement when compared to previous FOS studies, where at least
15 trials were averaged for FOS detection [28]. Moreover, Figure 6 clearly shows that a
substantial proportion of participants (>20%) achieved a classification accuracy of >70%
for the top–bottom quadrants’ classification. Moreover, for both the top–bottom and left–
right classifications, the vast majority (>90%) of the participants had better than chance
classifications.

Accurate signal augmentation, signal categorization, and noise reduction may be
implemented to improve the performance of the method. The signal integrity can be
improved by selecting the optimal light wavelengths and improving light injection and
detection chains [40], whereas information can be enhanced by combining optical signals
with other fast brain monitoring modalities, such as EEG [41,42]. Importantly, optical
systems are ideal for multimodal acquisitions since they generally do not interfere with
magnetic or electrical fields.

Notably, physiological noise may impair brain state classification, causing both false
negatives and false positives [43]; however, FOS should be less affected by physiological
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contamination than fNIRS, simply because the FOS spectral bandwidth is at a higher fre-
quency range than most physiological processes. Nonetheless, advanced signal processing
might further mitigate physiological noise. Importantly, the diffuse optical tomography
configuration utilized in this study offers multiple inter-optode distances, which would
result in varying penetration depths delivering the ability to isolate the effect on deep brain
layers decoupling them from scalp layers [44].

In addition, it should be noted that the classification performance in this study was
assessed across participants. This practice has the advantage of not requiring training the
classifier on each individual, greatly improving the ease of application of the BCI system.
Indeed, the across-participant approach tends to reduce the reachable classification accuracy
because of the physiological and experimental variability among different individuals [45].
The performances of BCI systems, particularly using EEG, are often assessed on a single-
subject basis to account for inter-subject variability. Preliminary results on the dataset
employed in this study demonstrated that single-subject and across-subject classifications
were not statistically different; hence, the second approach was preferred to increase the
generalization performance of the proposed model. The lower than expected single-subject
classification was probably caused by the limited samples for each subject impairing the
training of the classifier. Experiments using greater numbers of trials should be performed
to evaluate the single-subject classification performance of FOS-based retinotopy. Indeed,
ML frameworks improve their performance with larger datasets. Importantly, in this study,
a nested cross-validation (nCV) was employed to protect the results against overfitting
and generalize the results. In particular, a 5-fold cross-validation was employed. In nCV,
the data are partitioned into folds, and the model is trained iteratively and in a nested
way on all but one fold. The inner loop, as opposed to the exterior loop, which estimates
the model’s performance across iterations (test), determines the optimal hyperparameter
(validation). Hence, the model described in this study was validated using data that were
not used to train the model.

Despite the low SNR of FOS limiting the ITR, the originality of this study lies in the
ability to classify mental states through FOS without trial averaging in a 512 ms time
window (only two trials were considered for each classification). This short time window,
providing a certain level of classification accuracy, contributes to increasing the ITR, which
is a crucial parameter for real-time human–machine interaction in BCI. Moreover, the
average inference time of the proposed method is 0.071 s, thus making the classification
suitable for real-world scenarios.

This result could encourage the use of optical signals in real-time BCI applications.
Finally, more complex ML techniques investigating high-order non-linearities on larger data
samples, such as deep learning, could be utilized to improve classification performance.

5. Conclusions

This study reports on a retinotopy frequency-domain FOS-based method for BCI
applications. The method was tested across subjects by cross-validation. The procedure,
exploiting the locking of the signal modulations among optical channels all located on
the visual cortex and implementing a data-driven machine learning approach for dis-
crimination, delivered a beyond chance performance when classifying visual stimulation
quadrants for all signals (intensity or phase) and NIR wavelengths considered (690 nm
and 830 nm). The best classification performance of around 63% accuracy was obtained
when discriminating between the superior and inferior quadrants using light intensity
modulation at the longer wavelength. The classification performances were obtained using
a response time of only 512 ms with the best performance information transfer rate of
around 6 bits per min. Although an increase in accuracy would be ideal for effective BCI,
this approach is indeed the first attempt to develop a model for a generalizable retinotopy
classification based on FOS without averaging the signal across several trials, highlighting
the potentialities of FOS for real-time BCI.
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Nomenclature

AC Alternating Current light intensity
AUC Area Under the Curve
BCI Brain–computer interface
DC Direct Current light intensity
EEG Electroencephalography
fNIRS Functional near-infrared spectroscopy
FOS Fast optical signals
ITR Information transfer rate
ML Machine learning
PH Phase delay
RBF Radial Basis Function
ROC Receiver Operating Characteristic
SNR Signal-to-noise ratio
SVM Support vector machine
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