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Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a
class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks
(CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal
seizures. The proposed model integrates the temporal information of EEG signals with the spatial information
on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional
CNNs are used to automatically develop a feature set that accurately represents the di®erences between
seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to
emphasize the critical channel pairs and information °ow among brain regions. GAT coe±cients were then
used to empirically visualize the important regions during the seizure and nonseizure epochs, which can
provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the
severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are
used. Overall, the ¯nal Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous
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benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and
potential for clinical applications.

Keywords: Electroencephalography (EEG); neonatal seizure detection; attention mechanism; focal loss;
Convolutional Neural Networks (CNN); Graph Attention Networks (GAT).

1. Introduction

Seizures are the most common neurological emer-

gency in newborns and are linked to poor neurode-

velopmental outcomes in hypoxic-ischemic

encephalopathy patients1 as well as in other critical

care situations.2 Hence, the e®ective detection and

diagnosis of seizures are crucial for reducing the risk

of long-term adverse consequences. Electroencepha-

lography (EEG) provides a noninvasive tool for

monitoring the cortical activity of the neonatal brain

and, thus, for the prediction or identi¯cation of sei-

zures in adults and neonates.3–16 Nonetheless, seizure

detection on the neonatal EEG — typically per-

formed by visual inspection of the EEG traces — can

be very challenging because the interpretation of the

continuous EEG must be performed by an on-site

highly trained expert in the Neonatal Intensive Care

Unit (NICU) to be reliable.17 Therefore, seizure de-

tection on neonatal EEG is highly laborious, time-

consuming, and subject to unavoidable personal

interpretation.

Under these circumstances, several algorithms

have been proposed to automate the detection of

neonatal seizures from multi-channel EEG signals

and to support clinical decision-making. Some

existing methods employ heuristic rules or complex

features to extract temporal information from the

EEG recordings over a time span and combine them

with machine learning algorithms to detect

seizures.18–25 These hand-engineered and sometimes

physiologically meaningful rules and features are

expected to capture a wide range of EEG dynamics

characteristics associated with seizures in order to

achieve proper classi¯cation performances.

As a promising alternative to classical machine

learning approaches, deep learning methods, and

more speci¯cally, Convolutional Neural Networks

(CNNs), have demonstrated state-of-the-art results

in several research ¯elds26–29 including neonatal sei-

zure detection.9,10,30,11,31 A hybrid architecture was

developed by Ansari et al.,10: in the ¯rst step, the

feature extraction was done within a CNN and then

the seizures were classi¯ed using a decision tree. This

hybrid method improved the classi¯cation perfor-

mance of previous methods, achieving an area under

the curve (AUC) of 88%. O'Shea et al.,11 proposed

two deep learning algorithms containing 1-dimen-

sional convolution ¯lters. They reached an AUC of

98.5% and 95.5% for seizure detection, respectively,

on the neonatal EEG data from Cork University and

the Helsinki University public databases. However,

these CNN-based approaches might not be well

suited to concurrently leverage both spatial and

temporal information to produce rich representa-

tions of brain activity from the raw multi-channel

EEG recordings. Similarly, most published seizure

detection algorithms work on independent single-

channel EEG recordings, ignoring the valuable spa-

tial information that can be extracted from the

topological organization of the EEG channels. If we

consider the brain as a network in which spatially

segregated areas are synchronously co-activated,32

information on the EEG channels that aggregate and

share multiple sources of neural information contin-

uously can be of great value to identify events such as

seizures.33 A graph representation can be employed

to model the spatial dependencies among the EEG

channels, and these spatial features should be thor-

oughly investigated to develop an ideal seizure clas-

si¯er. In this regard, Graph Neural Networks (GNNs)

would be a suitable method.34 We recently developed

a model based on GNN for the automated detection

of neonatal seizures,35 where the temporal informa-

tion, including features in both time and frequency

domains, was embedded as node features in the graph

representation of the EEG signal epochs. The spatial

information was represented as the functional con-

nectivity among the EEG channels or as maps of

Euclidean distances. On a publicly available Helsinki

dataset, the model performance achieved a median

AUC of 99.1% and a median AUC for speci¯city

values greater than 90% (AUC90) of 96%.
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Advances in generalizing CNN to the graph do-

main can be categorized as spectral34,36 and spatial37

(nonspectral) approaches. Spectral approaches work

with a spectral representation of the graphs, which

needs potentially intense computations and depends

on the graph structure. Spatial methods, on the

other hand, de¯ne convolutions directly on the

graph, operating on groups of spatially close neigh-

bors, and therefore do not rely on the graph

structure.

Recently, attention mechanisms have gained

popularity in many sequence-based tasks.38 Inspired

by these mechanisms, Graph ATtention networks

(GATs) were introduced by Petar et al.39 to perform

node classi¯cation of graph-structured data. The

idea of this spatial approach is to compute each

node's representation by aggregating the repre-

sentations from its neighboring nodes through an

attention strategy. By doing so, the more relevant

information °ow among the nodes of a graph would

be highlighted to perform a speci¯c classi¯cation

task. Moreover, this model is directly applicable

to tasks where the model has to generalize to

completely unseen input data and graph structure,

making it appealing for developing generalizable

EEG classi¯ers. More importantly, GAT is explain-

able, meaning that it provides an e®ective way to

describe and visualize the intrinsic relationship be-

tween neighboring graph nodes using the learned

attention coe±cients. This new approach o®ers the

possibility to both explore the relationships among

the multiple EEG channels during neonatal seizures

and highlight the brain regions with a higher prob-

ability of seizure activity.

Apart from the model's architecture when

addressing the seizure detection task, one common

problem that should also be considered is the severe

class imbalance. Class imbalance refers to a situation

in which the number of samples of one class (e.g.

seizure) is much smaller than the other class (e.g.

nonseizure). This can be challenging in training any

classi¯er because algorithms trained on imbalanced

datasets tend to perform poorly on the minority

class, which is usually the class of interest in seizure

detection. To address the class imbalance problem,

various techniques such as oversampling and

undersampling, or using cost-sensitive learning

techniques such as weighted loss functions and focal

loss can be used. Several works have applied these

techniques to adult seizure detection task from EEG

datasets,5,40,41 but so far, no research group has

worked on this issue for neonatal seizure detection.

Motivated by the aforementioned issues, in this

study, a class imbalance-aware and explainable

Spatio-Temporal Graph Attention Network (ST-

GAT) is developed for neonatal seizure detection.

First, a 1-D CNN is used for the temporal feature

extraction step. By doing so, instead of using

hand-crafted features, the end-to-end network au-

tomatically and repeatedly re¯ne a feature set that

accurately describes the di®erences between EEG

temporal dynamics during seizure and nonseizure

epochs.26 Subsequently, by employing GAT, the at-

tention mechanism in GAT is leveraged to force the

model to automatically pay more attention to more

essential channel pairs and information °ows among

brain regions.39 By stacking GAT layers on top of

the CNN layers, a ST-GAT is developed to capture

both the temporal dynamics and the spatial depen-

dencies of the neonatal EEG signals that should

better di®erentiate between seizure and nonseizure

epochs. The attention coe±cients are used to explain

how ST-GAT performs when classifying seizure and

nonseizure segments. This classi¯cation approach

can highlight the potential seizure locations in the

neonatal brain and therefore it speeds up the review

process by a clinical expert if needed. Moreover, a 2-

step approach is employed to minimize the e®ect of

class imbalance in the dataset: (1) in the preproces-

sing phase the seizure segments are under-sampled

using longer overlaps during segmentation; (2) in the

training phase standard cross-entropy is replaced

with focal loss to put more emphasis on misclassi¯ed

epochs. In summary, the following are the main

contributions of our work:

. An end-to-end ST-GAT is proposed for the ¯rst

time to fully exploit both the temporal dynamics

and the spatial dependencies of the neonatal EEG

for seizure detection.

. Extensive experiments and ablation studies are

conducted to demonstrate the e®ectiveness of our

proposed model architecture.

. The severe class imbalance between seizure and

nonseizure segments is addressed with a 2-step

approach.
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. ST-GAT achieves superior performance over the

state-of-the-art models on neonatal EEG data

from the Helsinki database.

. GAT coe±cients are used to explain and empiri-

cally visualize the importance of neighboring

electrode pairs, which is useful to highlight po-

tential seizure locations in the neonatal brain,

hence facilitating the review process by clinical

experts.

2. Materials and Methods

2.1. Neonatal EEG dataset

The proposed method was applied to the publicly

available neonatal EEG dataset recorded at the

University of Helsinki (Children's Hospital, the

University of Helsinki Central Hospital, Finland)

from 79 neonates.42 EEG recordings from 39 full-

term neonates that had seizures by consensus of

three clinical experts were included in the present

study. On average, each EEG recording in this

dataset has a duration of 85min and contains ap-

proximately nine seizures, resulting in a total of 342

consensus seizures. As only neonates with consensus

seizure were involved in the study, the ¯nal dataset

comprised approximately 10 h of seizure data and

53 h of nonseizure data. The neonatal EEG was

recorded using a 19-channel EEG system with the

international 10–20 system layout and 256Hz sam-

pling frequency. To be consistent with the previously

published papers on the same dataset, a standard

longitudinal bipolar montage was employed for fur-

ther analysis (Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-

F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T4, T4-T6,

T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz,

and Cz-Pz).

2.2. Filtering and segmentation

The neonatal EEG recordings were ¯ltered between

0.5 and 16Hz using a combination of seventh-order

low-pass and high-pass noncausal Butterworth ¯lters

in both forward and backward directions. After-

wards, °at lines and high amplitude °uctuations ð>
200�VÞ that last for several seconds were removed

manually. The ¯ltered signals were down-sampled

to 32Hz to decrease the computational load. The

¯ltered and down-sampled EEG signals were

segmented into epochs of 12 s with an overlap of 11 s

for seizure and 10 s for nonseizure segments to handle

the class imbalance problem. In our classi¯cation

task, class imbalance occurs since there are compar-

atively fewer seizure class segments in the Helsinki

dataset than nonseizure segments. Such class im-

balance leads to a bias in the model's predictions of

the majority class (nonseizure class) and therefore

hinders the classi¯er's performance. Choosing a

larger overlap for seizure segmentation will address

this issue to some extent.43

2.3. Proposed method

The proposed ST-GAT learning model for neonatal

seizure detection is based on CNN and GAT. The

overall pipeline of the proposed method for classify-

ing the EEG epochs that contain seizure events is

outlined in Fig. 1. The method is composed of the

following modules:

(i) A CNN architecture for the extraction of tem-

poral features from EEG signals;

(ii) A graph representation of EEG signals using the

output of CNN;

(a) (b)

(d) (c)

Fig. 1. The overall pipeline of the proposed ST-GAT
method for neonatal seizure detection. Twelve-s EEG
epochs (a) were applied to 1-D CNN to extract temporal
features (b). These features were then used as graph signals
(or nodes' features) to complete the graph representation
of the input EEG epoch (c). Graph convolution layers were
then used to explore spatial information (d). After the
average pooling of the node features, two fully connected
layers perform the classi¯cation task.
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(iii) GAT blocks to explore the spatial information

contained in the constructed graphs and extract

spatial features.

Each module has been thoroughly covered in the

remainder of the section.

2.3.1. CNN architecture

A CNN architecture was proposed for extracting the

temporal features of the EEG signals and, conse-

quently, for capturing their temporal dynamics.

CNN has the advantage of fast training and simple

structures.44 Here, the output of convolutions con-

structs the features of each node in the EEG network

(i.e. the features of the EEG signal segments at each

channel) to complete the graph representation of the

EEG segments. The employed CNN comprises four

types of layers: convolutional, rectifying, pooling,

and normalization layers. Each convolutional block

contains 1-D convolutions with a kernel size of Kl

(kernel size of layer lÞ, followed by a recti¯ed linear

unit (ReLU) as the nonlinearity function45 (please

see the schematic in Table 1 in Sec. 2.4). ReLU was

chosen as the activation function for several reasons:

¯rst, ReLU maintains the positive values of its input

and replaces the negative values with zero. This

property introduces nonlinearity into the model,

allowing it to learn complex and nonlinear features

from the input signal. ReLU is also computationally

e±cient, as it only requires a simple thresholding

operation, which leads to faster convergence during

training. Finally, it has been widely used in CNNs

and has demonstrated strong performance in various

applications.46–48

In each block, 1-D convolutions and ReLU layers

are followed by a max-pooling layer with a stride of

two for downsampling and Batch-normalization

layers for the normalization of the previous layer's

output. Model predictions are based on information

collected from a reasonable receptive ¯eld size

through four stacked CNN blocks.

2.3.2. Graph representation

To generate the graph representation of the EEG

epochs, three elements are required: graph nodes,

graph edges and node features. Here, graph nodes

correspond to EEG channels and the graph edges to

the functional connections among the nodes that

model the brain network (Fig. 2). The node features

are sets of temporal features extracted from EEG

signals recorded at the nodes, and corresponded to

the output of the CNN blocks.

Bullmore and Sporns49 claim that the brain net-

work is structured to strike a balance between reducing

wiring costs and increasing overall e®ectiveness. Local

connections ensure that wiring costs, or the cost of

creating anatomical connections between brain regions,

are kept to aminimum. To replicate this aspect of brain

structure, the proposed model takes into account the

spatial relationships between pairs of EEG channels, in

the bipolar montage. Speci¯cally, the Euclidean dis-

tance between the middle points of the 3D coordinates

of each pair of electrodes on the head surface is calcu-

lated using a standard head model based on the 10–20

system. Then, only the connections with the lower dis-

tances, which correspond to the closest pairs of elec-

trodes, are kept to construct the graph. This enables the

simulation of local connections in the brain network by

connecting neighboring nodes. In Fig. 2, these local

connections are shown in solid black lines.

However, maximizing brain network e±ciency,

i.e. the overall capacity for information transfer

across brain regions, can be achieved through global

connections. As shown in Fig. 2, some global inter-

hemispheric connections are also added to the graph

to improve the network e±ciency. The following

justi¯cations provide credibility to the choice of in-

terhemispheric connections as global connections

(shown in Fig. 2 in dotted lines): (1) Prior studies on

neonatal EEG showed that the degree of inter-

hemispheric symmetry in the neonatal brain is in-

formative in assessing background EEG activity.50,51

(2) The selected symmetric channels covered inter-

hemispheric homologous areas that have several

Fig. 2. Global inter-hemisphere (dashed lines) and local
connections (solid lines) used for constructing graph
representations of the EEG epochs. Red points represent
the position of the middle point of each pair of electrode
used for bipolar montage.
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direct local connections that ease the information °ow

and thus maximize the network e±ciency while keep-

ing wiring costs low. (3) Several con¯gurations were

assessed to select the best-performing graph, and the

one adopted here showed slightly higher performance.

Once the nodes, edges, and node features have

been de¯ned, the graph representation is complete

and can be fed into the GAT blocks for exploring the

spatial information.

2.3.3. GAT blocks

After constructing the graph representation using

the output of CNNs and the generated adjacency

matrix, GAT blocks, as recently proposed in Ref. 39

were applied to explore the spatial information em-

bedded in the constructed graphs. GATs are a spe-

cialized type of neural network designed to handle

graph-structured data. Speci¯cally, GATs are a

variant of Graph Convolutional Networks52 (GCNs)

that incorporate an attention mechanism to enhance

their functionality. GCNs are neural networks ca-

pable of learning representations for nodes and edges

in a graph. Analogous to the way CNNs extract

features from image data using ¯lters and execute

message passing between pixels to propagate infor-

mation throughout the network, GCNs employ ¯l-

ters to extract features from graphs and perform

message passing between nodes to explore and

propagate information.

However, GATs di®er from traditional GCNs by

utilizing an attention mechanism to allocate weights

to messages originating from neighboring nodes (i.e.

features) during the message passing process. The

attention mechanism allows the model to selectively

attend to and learn from task-relevant features in the

graph. By assigning higher weights to more relevant

messages, the GAT network is able to focus on the

most important information, leading to better per-

formance on the task at hand.

Figure 3 visually demonstrates the process by

which each GAT layer leverages message passing to

learn and update individual node features based on

those of neighboring nodes. The attention weights

can be learned as follows. Given the j-th node, the

attention weight to node i can be calculated as

�ij ¼
eijP

k�Ni

eik
ð1Þ

where eij is node j's relevance to node i and Ni

denotes the direct neighbors for node i. In GAT, this

relevance is de¯ned as:

eij ¼ Leaky ReLUðal½W lhl
ijjW lhl

j�Þ ð2Þ
W l is the learnable weight matrix of layer l, which

maps the input features space to a hidden space, jj is
the concatenation operation and al is a learnable

attention vector that is trained jointly with other

network parameters within the optimization process.

Finally, the attention weights �ij of layer l are used

to compute a linear weighted sum of features of a

given node's neighbors. The updated feature vector

of node i can be calculated as:

hlþ1
i ¼ �

X
j2Ni

� l
ijW

lh l
j

 !
ð3Þ

where � is the nonlinearity function.

In the proposed model, three GAT layers are

applied. The main reason for choosing three layers of

GAT is to achieve an optimal spatial receptive ¯eld

that facilitates the °ow of information between every

two nodes of the graph.

In each layer, graph nodes aggregate the ¯rst-

order node features, updating their own node

embeddings. Therefore, by stacking three GAT lay-

ers, aggregation from third-order neighbors is facili-

tated. After each GAT layer, the information is

aggregated from the direct (¯rst-order) neighbors of

each node. The output of the ¯rst layer is updated

based on the node's features in the input as well as

the features from its direct neighbors. This process is

repeated in the second and third layers, ultimately

Fig. 3. Illustration of message passing and aggregation of
features for updating a sample node 0 features ðhl

0Þ of layer
l, using attention weights (� l

01, �
l
02; �

l
03Þ. Di®erent colors

indicate di®erent feature values for each node.
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allowing the model to aggregate information from

third-order neighbors by stacking three GAT layers.

Figure 4 illustrates the spatial receptive ¯eld that

was achieved after stacking these layers. Dark, me-

dium, and light blue in the adjacency matrix indicate

each node's ¯rst, second, and third-order neighbor-

hood. As Fig. 4 clearly shows, the adjacency network

employed in this work and the architecture of

ST-GAT provide an e±cient and low-cost explora-

tion of all spatial information included in multi-

channel EEG epochs.

2.4. Classi¯cation and training
methodology

Following the GAT layers, there is a graph readout

layer. The readout layer collapses node representa-

tions of each graph into a unique graph representa-

tion. Then, by applying two fully connected and

softmax layers, the classi¯cation results are

obtained: a scalar indicating the probability of each

input being a seizure event. After two fully con-

nected layers, for computing the classi¯cation error

focal loss (FL53), is utilized instead of standard cross-

entropy loss function (LCEÞ. Focal loss is de¯ned as:

FLðptÞ ¼ �ð1� ptÞ� logðptÞ; ð4Þ
where pt is the model's predicted probability of the

true class and ð1� ptÞ� is the modulating factor.

Focal loss is designed to address the problem of

class imbalance in tasks — such as seizure detec-

tion — in which one class (nonseizure) is more

prevalent than the other classes (seizure). In such

scenarios, the model may prioritize the majority class

and perform poorly on the minority class. Focal loss

attempts to address this problem by down-weighting

the contribution of easy examples (those that are

already well-classi¯ed: true positives and true nega-

tives) and focusing more on the hard examples (those

that are misclassi¯ed: false positives and false nega-

tives). The focal loss function modi¯es the cross en-

tropy loss by the modulating factor. In general, a

smaller value of � places more emphasis on easy

examples, while a larger value of � places more em-

phasis on hard examples. A value of � ¼ 0 corre-

sponds to the standard cross-entropy loss function.

To train our proposed model, we utilized the Adam

optimization approach,44 a popular algorithm for

training deep learning models.7,54 Adam is known for

its computational e±ciency and convergence speed,

making it suitable for training the proposed deep

learning model. The learning rate was set to 0.001 for

training the model. The learning rate is a crucial

hyperparameter that controls the step size of the

weight updates during optimization. Generally, a

smaller learning rate results in slower convergence

but may achieve better accuracy, while a larger

learning rate speeds up convergence but may cause

the model to overshoot the optimal solution.

In this study, a learning rate of 0.001 provided a

good balance between convergence speed and model

performance. The convolutional blocks and fully

connected layers used dropout45 with a probability of

0.2. Dropout works by randomly setting a fraction of

the input units to zero during training at each

(a) (b) (c)

Fig. 4. (Color online) The spatial receptive ¯eld of the ¯rst, second, and third stacked GAT layers. Dark, medium, and light
blue in the adjacency matrix indicate each node's ¯rst, second, and third-order neighborhood.

A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection
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update. This process helps prevent the model from

relying too heavily on any single input feature (which

can be due to noise) and promotes the learning of

more robust and generalizable features.

Weight decay is another regularization technique

that helps prevent over¯tting by adding a penalty term

to the loss function. These two techniques have been

widely used in the literature.9,14,46,54 In this study, a

weight decay coe±cient of 0.0001 is used. This value

was chosen after experimentation to provide su±cient

regularization without signi¯cantly reducing the mod-

el's capacity to learn from the data. Combined with

dropout, this weight decay value contributes to pre-

venting over¯tting and improving the model's general-

ization performance on unseen data.The con¯guration

of the proposed ST-GAT is detailed in Table 1.

2.5. Performance evaluation

To evaluate the performance of the ST-GAT model,

training and testing were carried out within a leave-

one-subject-out cross-validation (LOSO) scheme.

Based on the 39 neonates in the Helsinki dataset,

the recordings from 38 neonates were used to train

the model, and then the left-out subject was used to

test the performance of the trained network on un-

seen data. This process was repeated until every

subject had been tested.

2.5.1. Evaluation metrics

The following metrics were calculated to evaluate the

performance of the proposed ST-GAT model:

. AUC: The area under the receiver operating

characteristic (ROC) curve is a metric that mea-

sures the performance of a binary classi¯er. AUC

equal to 0.5 denotes random chance classi¯cation,

whereas AUC equal to 1 denotes an ideal classi¯er.

. FPR: False Positive Rate is the average number of

false seizure detection per hour of EEG recording,

calculated as the number of predicted seizure

events in 1 h that have no overlap with actual

reference seizures.

. Kappa: Cohen's Kappa is a statistical measure of

the degree of agreement between the classi¯er

output and the clinical labels. Cohen's Kappa

Table 1. Structure of the proposed ST-GAT model.

Layer Parameters

Input (18� 384)
Conv1 Convolution K = (1, 5), S = 1, N = 4

Convolution K = (1, 5), S = 1, N = 8
Max pooling K = (1,2)

Batch normalization —

Conv2 Convolution K = (1, 5), S = 1, N = 16
Convolution K = (1, 5), S = 1, N = 32
Max pooling K = (1,2)

Batch normalization —

Conv3 Convolution K = (1, 5), S = 1, N = 8
Convolution K = (1, 5), S = 1, N = 8
Max pooling K = (1,2)

Batch normalization
Conv4 Convolution K = (1, 5), S = 1, N = 1

Convolution K = (1, 5), S = 1, N = 1
Max pooling K = (1,2)

GAT1 Graph Attention Out: (18 � 37)
GAT2 Graph Attention Out: (18 � 32)
GAT3 Graph Attention Out: (18� 16)

Average pooling along the spatial dimension Out: (1� 32)
Classi¯er Fully Connected Out: (1� 16)

Fully Connected Out: (1� 1)
Output Softmax Out: (1� 1)

Note: K: Kernel size, S: Stride, N: Number ¯lters in each convolution.

K. Raeisi et al.
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accounts for the class imbalance problem, making

it an appropriate metric for evaluating the per-

formance of seizure detection systems.

. GDR: Good Detection Rate quanti¯es the percent-

age of the seizures that are correctly detected. A

seizure event is correctly detected if the model iden-

ti¯es at least one seizure epoch during the event.

2.5.2. Ablation study

An ablation study was carried out to assess the ef-

fectiveness of the proposed architecture, including

each CNN or GAT block as well as the e®ect of the

receptive ¯eld on seizure classi¯cation.55 The recep-

tive ¯eld is an important factor when developing

CNNs for a particular task and is related to kernel

size and the depth of the CNNs. The kernel size in a

speci¯c convolutional layer decides how much of the

input region is processed in that layer. This region in

the ¯rst layer's input is considered as the receptive

¯eld of that particular layer. For example, for two

stacked convolutional layers, both with a 1� 3 ker-

nel size, the receptive ¯eld of the ¯rst and second

layers are 1� 3 and 1� 5, respectively. A wider re-

ceptive ¯eld guarantees that the network is focused

on more global patterns. In CNN-based studies of

EEG signals, calculating the receptive ¯eld con-

cerning the ¯rst layer's input and evaluating the ef-

fectiveness of each speci¯c block can help to interpret

the network dynamics.56,57

For the ablation study, the outputs of each layer

were used as input of a simple classi¯er block,

including graph readout (in the case of CNN layers),

fully connected, and softmax to classify seizure/

nonseizure EEG epochs. To train this classi¯er block,

the same training data used for the ST-GAT model

were used. The rest of the network remained ¯xed

during this phase. This analysis demonstrates how

each GAT or CNN layer with a speci¯c receptive

¯eld contributes to the ¯nal performance of the ST-

GAT model. Moreover, looking at the receptive ¯eld

and the results of the ablation study simultaneously

would lead to a better interpretation and optimal

choice for window length and depth of the CNN

blocks in the seizure classi¯cation task. Finally, to

assess the appropriateness of GAT for our proposed

network, a study in which GAT layers were replaced

by two other graph convolutional layers (Graph-

Sage37 and GCNN34) is also conducted.

3. Results

Table 2 shows the results of ST-GAT using both

standard cross entropy and focal loss and compares

them with benchmark models on the Helsinki data-

set. Additionally, we have included the results for

training the ST-GAT model on a di®erent level of

imbalanced input data (ST-GAT ImB). In this sce-

nario, the segmentation of both seizure and non-

seizure segments maintains the same overlap,

speci¯cally, 12-s segments with a 10-s overlap. This

analysis not only demonstrates the performance and

robustness of the ST-GAT model when dealing with

Table 2. The overall comparison of di®erent methods' performance on the Helsinki dataset (39 patients with seizures).

AUC (%)

Method Median (IQR) Mean� std FPR (/h) GDR (%) Kappa

Heuristica (Deburchgraeve et al.20) 68.3 (50.0–81.8) 66.0 0.66 —b —

SVM (Temko et al.21) 96.1 (86.9–99.0) 92.3 1.0 89.0 —

SVM (Tapani et al.24) 98.8 (93.1–99.8) 95.7 0.86 — —

CNN (O'Shea et al.11) — 95.6 — — —

MSC-GCNN (Raeisi et al.35) 99.1 (96.8, 99.6) 94.7� 10.9 1.10 96.71 0.80
PLV-GCNN (Raeisi et al.35) 99.0 (95.2, 99.7) 94.1� 10.5 0.89 95.3 0.79
Spatial Dis.-GCNN (Raeisi et al.35) 97.3 (86.3, 99.6) 90.9� 13.5 0.92 96.68 0.71
ST-GAT (ImB) 99.0 (96.3, 99.6) 95.6� 8.5 0.70 94.20 0.79
ST-GAT (CE) 99.1 (96.9, 99.6) 95.9� 8.5 0.71 96.70 0.80
ST-GAT (FL) 99.3 (96.4, 99.5) 96.6� 8.9 0.86 98.0 0.88

Notes: Highest Value of each performance metric is shown in bold.
aAs reported in Ref. 24.
bMissed values are not reported in the references.

A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection
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imbalanced datasets, a common challenge in seizure

detection tasks, but also highlights the impact of

balancing the training data on the performance of

our proposed model.

As it can be seen from the table, our proposed

model with focal loss achieves the best performance

in terms of AUC, kappa and GDR and outperforms

our prior feature-based GCNN (i.e. MSC-GCNN,

PLV-GCNN, Spatial Dis.-GCNN) in all evaluation

metrics. In the best case, the ST-GAT (FL) model

achieved a Kappa value of 0.98, primarily due to a

high true negative rate and a low false positive rate,

whereas in the worst case, the Kappa value dropped

to 0.29, mainly attributable to an increase in false

negatives. The standard deviation of the AUCs for

ST-GAT is lower than that of feature-based models,

demonstrating the relatively higher robustness of

ST-GAT with respect to the inter-subject variability

of neonatal seizures and to the e®ect of background

EEG recordings.

The comparison of the FPR values shows that the

ST-GAT model has the lowest number of false

detections with respect to our prior feature-based

models, with a relative FPR decrease of 0.24, 0.03,

and 0.06 false detections per hour as compared to

MSC-GCNN, PLV-GCNN, and SpatialDis-GCNN,

respectively.

However, the lowest value of FPR is still reported

by Deburchgraeve et al.20 Moreover, when compar-

ing the results obtained by ST-GAT utilizing stan-

dard cross entropy and focal loss, the higher

e®ectiveness of focal loss in our classi¯cation task is

clearly highlighted. The experiments with a di®erent

level of data imbalance (ST-GAT ImB) revealed a

decline in GDR. This outcome aligns with our

expectations: given the diverse types of seizures

present in the dataset, balancing the dataset allows

the network to be exposed more to the broad range of

neonatal seizure types and consequently leading to

an increased GDR.

Table 3 presents the results of the ablation study

conducted on the ST-GAT architecture. As evi-

denced by the AUC and kappa values, each compo-

nent of ST-GAT plays a crucial role in achieving the

¯nal performance, and removing any one of these

blocks substantially degrades the model's perfor-

mance. These ¯ndings not only demonstrate the

signi¯cance of each ST-GAT block but also validate

the carefully considered design choices made in

constructing the ST-GAT architecture for the task of

neonatal seizure detection. Table 4 shows the results

of the comparison between the ST-GAT model and

two other models where the GAT layers were

replaced by GraphSage and GCNN. These results

indicate that the model's performance is reduced

when replacing GAT with any alternative layers.

The training time for one training sample was com-

parable among the three networks, although the

model with GraphSAGE showed a slightly higher

training speed.

To visualize and explain what GAT layers have

learned, in Fig. 5 an example of the results obtained

for a single neonate (subject #4) is shown, summa-

rizing the learned attention coe±cient between each

directly connected channel pair in seizure and non-

seizure segments. The top panel illustrates the true

labels and the predicted probabilities of each sample

(or time instant). The bottom panel shows the

heatmap of attention coe±cient trends across time.

Figure 5 clearly shows how the attention coe±cients

in di®erent connections di®er between seizure and

nonseizure segments of the EEG signals. In non-

seizure areas (NS1, NS2, NS3, and NS4), the

Table 3. Ablation study of the proposed ST-GAT. The
network's name indicates the last block included in the
ablation study.

Results

Network AUC (%) Kappa Receptive ¯eld

Conv2 77.3� 8.3 0.50� 0.13 27 (0.8 s)
Conv3 84.7� 7.1 0.64� 0.16 63 (2.0 s)
Conv4 89.3� 9.3 0.72� 0.30 135 (4.2 s)
GAT1 94.1� 8.0 0.77� 0.19 135 (4.2 s)
GAT2 94.9� 8.9 0.81� 0.10 135 (4.2 s)
ST-GAT 96.6� 8.9 0.88� 0.13 135 (4.2 s)

Table 4. Comparison of models based on di®erent GCNs.

Results

Network AUC (%) Kappa Training time (s)

GCNN 94.6� 9.0 0.75� 0.10 3.89� 10�6

GraphSAGE 95.2� 8.8 0.76� 0.17 3.27� 10�6

ST-GAT 96.6� 8.9 0.88� 0.13 3.61� 10�6

K. Raeisi et al.
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attention coe±cients among di®erent channel pairs

are randomly distributed in mid-range values, i.e.

between 0.2 and 0.3, suggesting that during regular

brain activity, each channel pair connection has the

same importance and that no particular pattern

emerges. On the other hand, the heatmap in the

seizure areas (S1, S2, S3, and S4) shows completely

di®erent and nonrandom patterns: the attention

coe±cients of the top half regions in S1, S2, and S4

vary between 0.2 and 0.3, whereas the bottom half

regions include mainly smaller values — approxi-

mately around 0.1 — but also high values exceeding

0.9 (dark blue and dark pink).

The pattern for S3 shows the same dichotomy as

the patterns of the other three seizure segments but

with reversed values of the attention coe±cients.

In Fig. 6, the circular graphs for attention coe±-

cients of connections in the left and right brain

Fig. 5. (Color online) Visualization of the GAT coe±cients for subject #4. The top panel represents the actual labels (purple)
and predicted probabilities (green). The bottom panel represents the attention coe±cients during the seizures and non-seizure
epochs.

Fig. 6. (Color online) GAT coe±cient between seizure and non-seizure EEG segments in both the left and right hemispheres of
the neonate's brain for subject 4. During non-seizure epochs (NS1, NS2, NS3, and NS4), attention is relatively equal across all
connections (as indicated by the yellow color). However, during seizure epochs, attention values signi¯cantly shift, with a
greater emphasis, placed on the more important hemisphere of the brain (as indicated by red color connections).

A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection
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hemispheres have been outlined to illustrate the lo-

cation of connections that form the two halves of

seizure segments in Fig. 5. Purple and green colors

represent the electrodes in left and right hemi-

spheres, respectively. It can be seen that, unlike

nonseizure segments, during seizures the attention

coe±cient of connections in the left and right hemi-

spheres are asymmetric, and one hemisphere con-

tributes more to the output of the classi¯er, with

some very high values (>0.8). This outcome is in line

with the clinical information on the location of each

seizure segment; meaning that during seizure seg-

ments attention mechanism puts more emphasis on

the potential channels including seizure events. Some

other visualization samples can be found in supple-

mentary materials.

4. Discussion

In this paper, a novel end-to-end explainable ST-

GAT model is proposed for the detection of neonatal

seizures. Previous methods did not incorporate the

spatial topology of multi-channel EEG and have

modeled them as independent single-channel

recordings, which ignores the precious spatial do-

main information. Di®erently, stemming from spatial

topology modeling of the EEG channels and graph

representation of each EEG epoch, our model can

exploit the information in both time and space

domains and use it for training the seizure classi¯er.

The fact that our approach outperforms several

other neonatal seizure detectors demonstrates the

ability of ST-GAT to learn more meaningful and rich

representations of the raw multi-channel EEG

recordings.

As with any other classi¯cation task, de¯ning a

feature set able to properly and exhaustively repre-

sent the time domain information contained in neo-

natal seizures is challenging. These features are

typically very complex, and their computation can

be ine±cient. Unlike our previous feature-based

GCNN,35 ST-GAT is an end-to-end framework that

optimizes the extraction of features and the classi¯er

performance simultaneously through a back-

propagation process. The CNN layers used to com-

plete the graph representation of the EEG epochs,

which replace the a-priori de¯nition of the features

designed for the detection of neonatal seizure, are

more e®ective in leveraging all the time information

contained in the raw EEG signals and in making rich

representations of them. The results indicate that

our proposed architecture learns features with su±-

cient complexity to outperform the engineered fea-

tures that were utilized to train our previous model.

Our ST-GAT performs well in terms of both AUC

and Cohen's Kappa, which is critical for a seizure

detection model to be clinically applicable. Further-

more, several studies have reported values of Cohen's

Kappa ranging from 0.4 to 0.93 among di®erent

experts.58–60 Comparing the Cohen's Kappa

obtained for ST-GAT model, which ranges between

0.29 and 0.98, with these values, a high agreement

was observed between the ST-GAT output and the

human expert, which is desired in clinical practice.

This good performance of ST-GAT is even higher

when using focal loss instead of standard cross en-

tropy for training ST-GAT, suggesting a higher ef-

¯ciency of focal loss in reducing the impact of the

severe class imbalance problem that occurs when the

EEG recorded in neonates with suspicious seizures is

analyzed. This class imbalance problem derives from

the fact that normally the duration of regular non-

seizure brain activity is longer than intervals in-

cluding seizure events.

The other signi¯cant di®erence between ST-GAT

and prior GCNN models is that GAT layers are used

instead of GCNN to extract spatial information from

graph representations. This enhancement o®ers sev-

eral bene¯ts. First, GAT is more computationally

e±cient than GCNN and does not rely on costly

spectral analysis and matrix operations as GCNN

does. Second, as shown in Table 4, despite the simple

architecture of GAT, the performance of ST-GAT is

higher than that of models based on two other graph

convolutions. Third, the attention mechanism in

GAT layers is designed to assign a level of impor-

tance to each node within a node neighborhood. This

characteristic of GAT provides a potential solution

to model interpretability, which is a typical issue

with deep learning models. Although it is not the

primary goal of the current study, the importance

level of each EEG channel for the output of the sei-

zure classi¯er was visualized. The empirical ¯ndings

suggest an asymmetric contribution of connections'

importance in the right and left hemispheres of the

brain during the seizure epochs. These results are in

K. Raeisi et al.
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line with the clinical information on the seizure

locations: the level of importance was higher in the

hemisphere that included the channels with seizure

annotation. Although no spatial information on the

seizure location is provided to the model during the

training phase, the fact that the attention mecha-

nism included in our model embeds information on

the seizure location in an unsupervised manner

makes our ST-GAT model a potential support tool

for clinicians. By suggesting the most probable time

and location of the seizure occurrences, the decision-

making and evaluation process will be accelerated by

the ST-GAT outcome.

Our proposed ST-GAT model o®ers other

advantages for clinical applications. The GAT ar-

chitecture allows to deal with di®erent graph sizes,

thus making the ST-GAT model insensitive to the

number of input channels. It is well known that each

clinical center generally uses a di®erent number and

layout of EEG channels. Therefore, the fact that the

ST-GAT model does not depend on the number of

electrodes would be a bonus for clinical settings. In

fact, the electrode positions in an EEG headset are

¯xed, and the graph representations in our ST-GAT

model are location-based, thus allowing for the gen-

eration of graph representations that can be easily

adapted with any type of EEG recording.

Finally, it should be noted that a balance be-

tween receptive ¯eld and network characteristics

was considered when designing the ST-GAT archi-

tecture. As shown in Table 3, most of the improve-

ment in both AUC and Cohen's Kappa is achieved

using wider temporal receptive ¯elds. However,

expanding the receptive ¯eld needs stacking more

CNN blocks and increasing the number of network

parameters to be tuned. A trade-o® should be con-

sidered between the receptive ¯eld and the network

parameters, as more network parameters need more

computational resources and specialized hardware

to train the model. Moreover, improving a neural

network performance is not necessarily guaranteed

by increasing its depth, which, on the other hand,

would also increase the chance of over¯tting. In fact,

by adding more CNN blocks to the ST-GAT model,

a minor decline in performance was observed.

Hence, by employing the current architecture of

ST-GAT, the desired performance was achieved for

neonatal seizure detection using a relatively low

number of parameters and a su±ciently large re-

ceptive ¯eld.

In terms of limitations, it should be mentioned

that the applicability of our study is a®ected by the

relatively small sample size employed for training the

ST-GAT model. However, it should be underlined

that this problem is common to all deep learning

models, especially if developed for the classi¯cation

of neonatal EEG recordings. In fact, deep learning

models generally require many more training data to

guarantee high performance and generalizability, but

a large number of annotated neonatal EEG record-

ings are typically unavailable at single clinical cen-

ters. The future direction would be to include

neonatal EEG datasets from other centers to

improve the generalizability — and therefore the

applicability — of our proposed ST-GAT model. The

other limitation of the proposed method is the lim-

ited e®ectiveness of GAT when the number of input

channels is very low. In such cases, the bene¯ts of

using GAT may be diminished due to the reduced

complexity of the input data. The proposed neonatal

seizure detection method is more suitable for EEG

data with a higher number of channels, as this allows

for more e®ective utilization of the relationships be-

tween channels.

4.1. Conclusion

The proposed neonatal seizure detection model

integrates the temporal information of individual

EEG signals with the spatial information on the

EEG channels, which are embedded in the graph

representation of the multi-channel EEG data. Here,

by replacing hand-crafted features with 1D-CNNs,

the resulting end-to-end network is capable of auto-

matically and repeatedly developing a feature set

that accurately characterizes the di®erences between

seizure and nonseizure epochs in the time domain.

By employing GAT instead of standard spectral

graph convolutional layers, the attention mechanism

in GAT was utilized to identify the essential channel

pairs and information °ow among brain regions. By

stacking GAT layers on top of the CNN layers, the

¯nal ST-GAT model achieved high performance in

detecting neonatal seizures, outperforming previous

classi¯ers. Additionally, GAT coe±cients were used

to empirically visualize the importance levels of
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neighboring node pairs during the seizure and non-

seizure epochs, which can provide insight into the

location of seizures in the neonatal brain.
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