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A B S T R A C T   

Gliomas disturb brain functions, contributing to abnormal neuronal activity and connectivity changes that can be 
effectively investigated using magnetoencephalography (MEG). In this work, we used MEG to evaluate 
frequency-specific alterations of brain activity and functional connectivity in glioma patients. Two consecutive 5- 
min sessions of eyes-closed resting-state brain activity were recorded from ten glioma patients and ten age- 
matched healthy subjects. Modulations of power and functional connectivity, within the patient group and be-
tween patients and the healthy control group, were assessed in terms of the Neural Activity Index and the 
Multivariate Interaction Measure, respectively. These quantities were calculated in individualized frequency 
bands (delta, theta, lower alpha, upper alpha and beta) to account for changes in spectral peaks in patients. 

We report a decrease in power in tumor and peri-tumor regions in the upper-alpha and beta bands with respect 
to the rest of the brain, paired to a decrease in lower and upper-alpha band functional connectivity of the tumor 
and peri-tumor regions. In comparison with healthy subjects, we observe a global enhancement in power in 
lower-alpha in patients. 

Overall, our study shows that glioma infiltration can widely influence brain local and long-range synchrony in 
an individualized frequency-specific manner.   

1. Introduction 

Gliomas alter brain electromagnetic signals, indexing abnormal 
neuronal activity and connectivity changes that can be effectively 
investigated using non-invasive electrophysiological techniques, such as 
Electroencephalography (EEG) and magnetoencephalography (MEG). In 
particular, MEG reflects the intracellular electric current flow in the 
brain and is thus able to provide direct information of neural activity by 
non-invasively recording the magnetic fields (Baillet, 2017). This tech-
nique has unique profits, such as its safeness, a temporal resolution 
better than 1 ms and a reasonable spatial resolution (in the order of 
millimeters) (Hämäläinen et al., 1993; Pizzella et al., 2014). 

To date, MEG signals have been used to assess abnormal brain 
functions under various pathological conditions (for reviews see Hari 
et al., 2018; Bagić et al., 2020). In the framework of brain tumors, 
studies have shown that patients demonstrate pathological slow waves 
in MEG recordings, indicating an alteration in local synchronization 

processes in specific brain areas (e.g., Vieth et al., 1996; De Jongh et al., 
2003; Baayen et al., 2003; Butz et al., 2004; Bartolomei et al., 2006a; 
Bosma et al., 2008a,b). MEG is also an excellent tool for the investigation 
of long-range brain synchronization (Marzetti et al., 2019) measured by 
functional connectivity during task execution and in the absence of an 
externally cued task, i.e., in the so-called ‘resting-state’. The mapping of 
functional connectivity and brain networks in the resting-state has a 
long-lasting tradition in MEG (Stam et al., 2006; Schnitzler and Gross, 
2005; Brookes et al., 2011; de Pasquale et al., 2012; Hillebrand et al., 
2012; Marzetti et al., 2013). MEG resting-state functional connectivity 
analysis has characterized not only the level of co-activation between 
brain regions but also the phase coupling of their respective oscillatory 
signals (Engel et al., 2013), a measure of interaction between brain re-
gions sharing the same excitability state (Fries, 2005). 

Among the different metrics based on phase synchronization of 
oscillatory signals, the Multivariate Interaction Measure (MIM) (Ewald 
et al., 2011) detects functional connectivity between multivariate time 
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series, including e.g. neural generators estimated from measured MEG 
activity. Indeed, MEG activity in one brain region has multiple time 
series associated with it. For the estimation of functional connectivity, 
these multiple time series are typically reduced to a single time series 
that summarizes the activity in the regions of interest, with potential loss 
of information. Conversely, relying on multivariate connectivity metrics 
to assess the coupling between the two regions avoids this potential bias 
(Basti et al., 2018, 2020). 

Alterations of resting-state MEG connectivity are used as a marker of 
pathology in a number of neurological diseases and neuropsychiatric 
disorders (e.g., Stam et al., 2006; Greicius, 2008; Gómez et al., 2009; 
Brunetti et al., 2017; Alamian et al., 2017). Specifically, glioma patients 
show alterations in functional connectivity (e.g., Bartolomei et al., 
2006b; Guggisberg et al., 2008). These alterations are not only restricted 
to the tumor area but also spread to remote even contralateral areas 
(Bartolomei et al., 2006b). Despite the interesting findings on spatially 
specific alterations of activity and connectivity, these studies consider 
standard frequency bands or broad bands, thus making the interpreta-
tion of the results in terms of local and long-range synchronization 
disputable. In fact, using broad bands does not allow to characterize the 
functional role of such synchronizations and using fixed bands might 
bias the results (Donoghue et al., 2021) given the large variability of the 
e.g. alpha peak frequency across individuals (Haegens et al., 2014), 
especially when considering subjects with brain lesions (Gloor et al., 
1968; Goldensohn, 1979) or in the elderly (Wang and Busse, 1969). 

In the present study, we aimed at assessing frequency-specific al-
terations in brain activity and functional connectivity of the tumor tissue 
from MEG source space data taking into account individualized fre-
quency bands within the patient group and between patients and age- 
matched healthy control subjects. 

2. Materials and methods 

2.1. Participants 

Ten consecutive patients (age mean ± st.dev.: 56.3 ± 14.0 years) 
with a suspected brain glioma on the basis of a MR study participated in 
this study. Histological diagnosis was obtained by surgical resection or 
biopsy in all the patients. Patients were eligible if they were adult (≥18 
years). Patients’ characteristics are summarized in Table 1. In addition, 
ten age-matched healthy control subjects (age mean ± st.dev.: 54.4 ±
15.0 years) were recruited for the study. Healthy control subjects’ 
characteristics are summarized in Table SM1 of the supplementary 
material. Age matching between the patient group and the healthy- 
control-subject group was assessed by using an independent-sample 

Wilcoxon rank sum test (p = 0.705; two-sided test). This research 
work was conducted in accordance with the Declaration of Helsinki and 
all procedures were approved by the local Ethics Committee of the 
University of Chieti-Pescara. All participants (patients and healthy 
subjects) gave their written informed consent before participation in the 
experiment. 

2.2. MEG data acquisition 

MEG recordings were acquired by using the whole-head MEG system 
installed at the Institute for Advanced Biomedical Technologies (ITAB), 
University of Chieti-Pescara. This system comprises 153 dcSQUID inte-
grated magnetometers arranged on a helmet-shaped sensor array 
covering the whole head (Pizzella et al., 2001; Chella et al., 2012). 
Before entering the MEG shielded room, each participant was asked to 
remove, as much as possible, metal objects to avoid artifacts during the 
recording. Five head position indicator (HPI) coils were placed on the 
participant’s head for off-line head-to-MEG-sensor co-registration. To 
facilitate and speed up the procedure of mounting HPI coils on the pa-
tients’ head and to induce minimal discomfort, a cap with pre-attached 
HPI coils was built for this experiment. The positions of the HPI coils 
relative to three anatomical landmarks (nasion, right and left 
pre-auricular points) were measured using a Polhemus FastTrack 3D 
digitizer (Polhemus, Colchester, VT). Two consecutive sessions of 5-min 
eyes-closed resting-state MEG recordings were acquired, sampled at 
1025 Hz; for one patient, only the first session was considered for the 
analysis since the patient was not able to complete the second session. 
Each session was followed by 30-s recordings of the magnetic fields 
generated by the HPI coils. Eye movements and blinks were controlled 
using vertical electro-oculogram (EOG) recordings, while the heartbeat 
was monitored through electrocardiogram (ECG) recorded by two 
electrodes positioned horizontally along the fifth intercostal space in the 
right and left mid axillary line. 

2.3. MRI data acquisition 

Magnetic resonance (MR) images were acquired using the 3-T Philips 
Achieva scanner (Philips Medical Systems, Best, The Netherlands) 
installed at the Institute for Advanced Biomedical Technologies (ITAB), 
University of Chieti-Pescara. Imaging protocol is reported in Table 2. 

All MR images were first registered to the T1-weighted FFE image 
without contrast enhancement, and finally co-registered with the MEG 
data by aligning the anatomical landmarks (nasion, right and left pre- 
auricular points) identified in the two imaging modalities (MEG and 
MRI) by using the FieldTrip software toolbox (Oostenveld et al., 2011). 

Table 1 
Demographic and clinical characteristics of tumor patients. M = male; F = female; R = right; L = left; PL = parietal lobe; TPL = temporo-parietal lobe; FPL = fronto- 
parietal lobe; FL = frontal lobe; S = splenium; POL = parieto-occipital lobe; TOL = temporo-occipital lobe; TL = temporal lobe; FTL = fronto-temporal lobe; I = insula; 
IDH = isocitrate dehydrogenase.  

Patient no. Gender Age (y) Tumor side Tumor volume (mm3) Tumor location Tumor type Tumor grade 

1 M 76 R 7039 TL Glioblastoma; 
IDH wild-type 

IV 

2 M 49 L 16046 FPL Oligodendroglioma; IDH mutant III 
3 F 54 L/R 24516 POL, FL, S Glioblastoma; 

IDH wild-type 
IV 

4 F 52 L 17390 FL Astrocytoma II 
5 M 39 L/R 37072 PL, FL Glioblastoma; 

IDH wild-type; 
IV 

6 M 59 L 56545 FTL, I Oligodendroglioma; IDH mutant III 
7 M 51 L 21988 TPL Glioblastoma; 

IDH wild-type 
IV 

8 F 57 L 960 FL – II 
9 F 84 L 20449 TOL Glioblastoma; 

IDH wild-type 
IV 

10 M 42 R 1123 FL Glioblastoma; 
IDH wild-type 

IV  
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2.4. MEG data analysis 

The following subparagraphs summarize the main steps of the MEG 
data analysis pipeline performed in this study. Most analyses (i.e., from 
pre-processing to source estimation) were performed using the FieldTrip 
software toolbox. An in-house made Matlab code was employed for MEG 
source functional connectivity analysis. 

2.4.1. MEG data pre-processing 
Raw MEG signals were band-pass filtered at 1–100 Hz. Notch filters 

at 50 and 100 Hz were also used to suppress power line interference. The 
filtered MEG signals were visually inspected, and the segments of signal 
containing large artifacts originating from eye movements, blinks, 
muscular activity or SQUID jumps were removed (Gross et al., 2013). An 
independent component analysis (ICA) (Hyvärinen and Oja, 2000) was 
also applied for instrumental and biological artifact removal. Specif-
ically, ICA was performed by using the FastICA algorithm, with defla-
tionary orthogonalization and tanh non-linearity. ICA was repeated 
multiple times (i.e., 40) starting from different randomly generated 
initial conditions. For each repetition, the extracted independent com-
ponents (ICs) were classified as artifactual components or components of 
brain origin by using a custom-made adaptation of the Human Con-
nectome Project fully-automated classification procedure (Larson-Prior 
et al., 2013), followed by visual inspection to correct possible IC mis-
classifications. The repetition with the largest number of brain compo-
nents and the lowest artifact residual was retained as the best IC 
decomposition and used for artifact removal. The average number of ICs 
classified as artifactual components was 9.9 (range: [minimum, 
maximum] = [5, 20]). The clean MEG signals were used as input to 
subsequent steps of the analysis pipeline. 

2.4.2. MEG forward model 
Building the MEG forward model is the first step toward the esti-

mation of the neural sources that generated the observed MEG signals. It 
involves the calculation of the magnetic fields generated from known 
current sources. In this study, the MEG forward model was built for 
current-dipole-like sources located within the brain volume, by using a 
realistically shaped head model and the Boundary Element Method 
(BEM) approach (Hämaläinen and Sarvas, 1989; Mosher et al., 1999). To 
this end, surface meshes for the outer boundaries of the scalp, skull, and 
intracranial volume were extracted from the segmentation of 
T1-weighted FFE images. From these meshes, a realistically shaped 
three-shell head model was constructed, comprising the intracranial 
volume (i.e., the brain and CSF), the skull, and the scalp. Tissue con-
ductivities were set to 0.33 S/m for the scalp, 0.0066 S/m for the skull, 
and 0.33 S/m for the intracranial volume. The MEG forward model was 
finally built for three unit-strength orthogonal dipoles located at each 
vertex of a 4-mm-spaced grid covering the intracranial volume by using 
the BEM solver implemented in FieldTrip (Gramfort et al., 2010), 
resulting in a lead field matrix whose columns contain the sensor to-
pographies of the magnetic field generated by each dipolar source. The 
average number of source-grid vertices across subjects was 24342 
(range: [minimum, maximum] = [18325, 31281]). 

2.4.3. MEG source estimation 
Brain source activity was estimated from the clean MEG signals using 

a vector-type minimum-variance (MV) beamformer with unit-noise-gain 
constraint (Borgiotti and Kaplan, 1979). This approach was chosen since 
it has no location bias and it attains a significantly larger spatial reso-
lution than other MV beamformer approaches (Sekihara and Nagarajan, 
2008). We emphasize that a vector-type formulation of the beamformer 
results in a vector-type activity with three components, i.e., one for each 
orthogonal spatial direction, at each source location. 

For each source element i (that is, for each vertex of the 4-mm-spaced 
source grid), a Nch × 3 vector-type spatial filter Wi, with Nch being the 
number of MEG channels, was constructed by using an estimate of the 
measurement covariance matrix in the frequency range 1–30 Hz, as 
(Sekihara et al., 2001; Sekihara and Nagarajan, 2008) 

Wi =C− 1 Li
[
LT

i C− 1 Li
]− 1

⎡

⎢
⎢
⎢
⎣

Υ− 1/2
11 0 0

0 Υ− 1/2
22 0

0 0 Υ− 1/2
33

⎤

⎥
⎥
⎥
⎦

(1)  

where the Nch × 3 matrix Li is the local lead-field matrix (i.e., a three- 
column matrix whose columns contain the sensor topographies of the 
magnetic field generated by three unit-strength orthogonal dipoles at 
location i), C is the Nch × Nch measurement covariance matrix, the su-
perscripts T and − 1 denote the transpose and inverse operator, respec-
tively, and Υ11, Υ22 and Υ33 are the diagonal entries of the 3 × 3 matrix 

Υ=
[
LT

i C− 1 Li
]− 1 LT

i C− 2 Li
[
LT

i C− 1 Li
]− 1 (2) 

The vector-type activity of source element i at a given time instant t 
was finally estimated as weighted sum of sensor measurements x(t), i.e., 

si(t)=WT
i x(t) (3)  

where the vectors x(t) and si(t) have dimensions Nch × 1 and 3 × 1, 
respectively. 

2.4.4. MEG source power analysis 
Source power estimated by using the MV beamformer with unit- 

noise-gain constraint is equal to the power of the source activity 
normalized by the power of source-level noise due to additive sensor 
noise (Sekihara et al., 2001). For each component of the vector-type 
source activity in equation (3), this is equivalent to the neural activity 
index (NAI) introduced by Van Veen et al. (1997) in the case of uncor-
related white sensor noise. For this reason, we will hereinafter refer to 
the estimated source power as NAI. 

To estimate source NAI in a frequency band of interest F (see section 
2.5.1 for the selection of frequency bands), we first computed the Nch ×

Nch data cross-spectral density matrix, Sx(F), by using a multi-taper 
approach (i.e., orthogonal Slepian tapers) which is optimal for aver-
aging spectral estimates over a frequency range (Percival and Walden, 
1993). We then projected cross-spectral density from the sensor-level to 
the source-level through the beamformer spatial filters, i.e., 

Sii(F)= WT
i Sx(F) Wi (4)  

for the 3 × 3 cross-spectral density matrix of the vector-type activity of 
source element i, or 

Sij(F)= WT
i Sx(F) Wj (5)  

for the 3 × 3 cross-spectral density matrix between the vector-type ac-
tivities of source elements i and j. 

For each source element i, NAI was estimated as follows: 

NAIi(F)= Tr{ Sii(F) } (6)  

where Tr{ ⋅} denotes the trace operator. 

Table 2 
Imaging protocol parameters.  

Sequence Parameters 

Pre- and post-gadolinium enhanced 
three-dimensional fast-field-echo 
(FFE) T1-weighted 

Sagittal acquisition; repetition time 
(ms)/echo time (ms), 7.6/3.7; slice 
thickness, 1 mm; matrix, 256 × 256 

Fluid-attenuated inversion recovery 3-mm axial acquisition; 11000/125; 
inversion time (ms), 2800; matrix, 320 
× 200  
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2.4.5. MEG source connectivity analysis 
Functional connectivity between brain sources was assessed in terms 

of Multivariate Interaction Measure (MIM) (Ewald et al., 2011). This 
method is a generalization of the imaginary part of coherence (Nolte 
et al., 2004) for estimating functional connectivity between multivariate 
time series, such as vector-type activity estimated at each source loca-
tion in this study. This method does not catch non-linear cross-frequency 
brain functional connectivity (e.g., Chella et al., 2017) the detection of 
which id beyond of the scope of this work. 

Similarly to the imaginary part of coherence, MIM does not lead to 
artifactual connectivity detections due to source leakage, crosstalk, or 
volume conduction in EEG and MEG (Marzetti et al., 2019). 

For each pair of source elements i and j, MIM in a frequency band of 
interest F was estimated as follows (Ewald et al. 2011) 

MIMij(F)=Tr
{[

SR
ii (F)

]− 1 SI
ij (F)

[
SR

jj (F)
]− 1 [

SI
ij (F)

]T}
(7)  

where the superscripts R and I denote the real and imaginary parts of a 
complex-valued matrix, respectively. 

2.5. Group analysis and statistics 

2.5.1. Selection of individual frequency bands 
Since a bulk of evidence in the literature demonstrated a ‘slowing 

down’ of the alpha rhythms due to brain lesions or aging (Gloor et al., 
1968; Wang and Busse, 1969; Goldensohn, 1979), frequency bands were 
defined according to the individual alpha frequency (IAF) (Klimesch, 
1999). For each patient or healthy subject, source locations were first 
mapped onto the Automated Anatomical Labeling atlas (Tzour-
io-Mazoyer et al., 2002), and occipital sources were identified as those 
belonging to parcels within the occipital lobe. IAF was then calculated as 
the frequency with maximal NAI in occipital sources in the extended 
alpha range 7–13 Hz, sampled with 0.5 Hz frequency resolution. Based 
on the IAF, the following individual frequency bands were considered: 
delta from 1 Hz to 4 Hz, theta from 4 Hz to IAF-3 Hz, lower alpha from 
IAF-3 Hz to IAF, upper alpha from IAF to IAF+3 Hz, and beta from 
IAF+3 Hz to IAF+17 Hz, subject to the constraint that the upper bound 
of upper alpha (or the lower bound of beta) did not exceed 13 Hz, and 
that the lower bound of lower alpha (or the upper bound of theta) did 
not go below 6 Hz. 

2.5.2. Within-patients analysis 
A board-certificated physician interpreted patients’ contrast- 

enhanced T1-weighted and FLAIR images and provided, for each pa-
tient, a binary segmentation of the tumor volume (tumor mask) by using 
the ITK-SNAP software toolbox (Yushkevich et al., 2016). MRI images 
were then warped to the MNI template brain (Fonov et al., 2009, 2011) 
by using the SPM software toolbox (http://www.fil.ion.ucl.ac.uk). 
Specifically, the non-linear warping transformation was determined 
using the T1-weighted image without contrast enhancement and then 
applied to all the other MR images, including the tumor mask, to bring 
them in the MNI space. Based on MNI-warped images of the brain and of 
the tumor mask, we selected individual regions of interest (ROIs) as 
follows i) a tumor region, identified as the volume covered by the tumor 
mask; ii) a peritumor region, identified as the volume within 20-mm 
distance (measured in the MNI space) from the outer boundary of the 
tumor region (Lizarazu et al., 2020); iii) a contralateral region and a 
peri-contralateral region, identified as the symmetric reflection (in the 
MNI space) with respect to the midsagittal plane of the tumor region and 
the peritumor region, respectively; and iv) the ‘rest of the brain’, iden-
tified as the volume not included in the other ROIs. For patients with 
unilateral tumor (8 out of 10), we checked that the peri-tumor and 
peri-contralateral regions were confined to one hemisphere and did not 
cross to the other hemisphere. For patients with bilateral tumor (2 out of 
10), we checked that the contralateral and peri-contralateral regions did 

not overlap with the tumor and peritumor regions. Fig. 1 shows an 
example of these ROIs in one representative patient. 

To perform a within-patients analysis of brain activity and functional 
connectivity, we computed measures of power and global functional 
connectivity for each of the above selected ROIs. Specifically, for each 
frequency band of interest F, NAI was averaged across source elements 
within the same ROI to get a measure of total ROI power. 

For the analysis of functional connectivity, we first computed a 
global MIM value (GMIM) for each source element i as the average of 
MIM values assessing functional connectivity between the source 
element i and all possible source elements within the ‘rest of the brain’ 
region, i.e., 

GMIMi(F)=
1

NR

∑

j ∈ Rest of the brain
MIMij(F) (8)  

where NR is the number of source elements within the ‘rest of the brain’. 
GMIM values were then averaged across source elements within each 
ROI to get a measure of global functional connectivity between the ROI 
and the ‘rest of the brain’. 

NAI and GMIM values in each ROI were averaged across the two 
recording sessions. We finally looked at the relative difference for NAI 
and GMIM in two given ROIs as 

Relative  difference  for  NAIXY (F)=
NAIX(F) − NAIY(F)
NAIX(F) + NAIY(F)

(9)  

and 

Relative  difference  for  GMIMXY(F)=
GMIMX(F) − GMIMY(F)
GMIMX(F) + GMIMY(F)

(10)  

where X and Y indicate the two ROIs. Specifically, X and Y represent 
target regions (i.e., tumor region, peri-tumor region), and control re-
gions (i.e., the ‘rest of the brain’, tumor and peri-tumor contralateral 
regions). The choice of the tumor and peri-tumor contralateral regions 
as control regions, in addition to the ‘rest of the brain’, has been inspired 
by the consideration that these regions share similar geometrical prop-
erties with the tumor and peri-tumor regions, e.g., spatial extent, depth 
with respect to the MEG sensor array. 

The statistical significance of the observed relative differences for 
NAI or GMIM in two ROIs was assessed by using a paired-sample per-
mutation test (Good, 1994) with 10,000 random permutations. 
Correction for multiple comparison was performed using the 

Fig. 1. Illustrative example of regions of interest (ROIs) in one representative 
patient with a tumor in the left temporo-occipital lobe. The figure shows an 
axial cross-sectional image of the ROIs superimposed on the T1-weighted MR 
image with contrast enhancement. 
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false-discovery-rate (FDR) approach (Benjamini and Yekutieli, 2001). 

2.5.3. Comparison of brain tumor patients with healthy controls 
Tumor patients and healthy subjects were first compared in terms of 

whole-brain band relative power and functional connectivity. Specif-
ically, we considered the whole brain volume as region of interest and, 
for each frequency band, we computed a whole-brain band-relative NAI 
as the average NAI across all sources in the brain, as well as across the 
two recording sessions, eventually normalized by the broadband NAI 
(from 1 Hz to the upper bound of the individual beta band), i.e., 

rNAIwhole brain(F)=
∑

i
NAIi(F)

/
∑

i
NAIi(Fbroad− band) (11)  

where the index i runs over all sources in the brain. The normalization 
with the broadband NAI was required to remove individual absolute 
power biases due, e.g., to the volume conductor properties, that could 
affect the group comparison. Similarly, we computed a whole-brain 
GMIM as the average GMIM across all sources in the brain, as well as 
across the two recording sessions. 

To investigate hemispheric differences in global functional connec-
tivity, we first calculated the average GMIM within each hemisphere, i. 
e., GMIMLH for the left hemisphere and GMIMRH for the right hemi-
sphere, and then we evaluated the differences between the left hemi-
sphere and the right hemisphere as follows 

GMIM  hemispheric  difference= |GMIMLH − GMIMRH|. (12) 

We also evaluated a laterality index (LI) as follows (Seghier, 2008) 

LI=
⃒
⃒
⃒
⃒
GMIMLH − GMIMRH

GMIMLH + GMIMRH

⃒
⃒
⃒
⃒ (13) 

A laterality index near zero indicates nearly symmetrical or bilateral 
global functional connectivity; higher values indicate more lateralized 
global functional connectivity. Of note, both the hemispheric difference 
in the GMIM and the laterality index were considered in absolute value 
in order to pool together patients who either had right- or left- 
hemisphere tumor, as well as healthy control subjects for which no 
impairment exists. 

The statistical significance of the observed differences for whole- 

brain rNAI, whole-brain GMIM, or GMIM hemispheric difference in 
the patient group and healthy control group was assessed by using an 
independent-sample permutation test with 10,000 random permuta-
tions. Correction for multiple comparison was performed using the FDR 
approach. 

3. Results 

3.1. Alpha frequency peak differs between patients and healthy subjects 

The individual alpha frequency (IAF), defined as the frequency with 
maximal NAI in occipital sources in the extended alpha range 7–13 Hz, 
was calculated separately for patients’ and healthy subjects’ groups 
(IAFP and IAFH, respectively) leading to average values (mean ± st. dev.) 
equal to IAFP = (8.8 ± 1.2) Hz and to IAFH = (10.5 ± 0.9) Hz; data are 
shown in figure SM3. The IAF values of the patients were significantly 
lower than those of the control subjects (one-tailed Mann-Whitney U 
test, p = 0.002). 

3.2. Tumor and peri-tumor regions feature lower power in the alpha and 
beta bands with respect to the rest of the brain 

Fig. 2a shows the relative difference for Neural Activity Index (NAI), 
as defined in Eq. (9), between i) the tumor region and peri-tumor regions 
pooled together (i.e., ‘Tumor and Peritumor’) and the rest of the brain (i. 
e., ‘Rest of the brain’); ii) the pooled corresponding contralateral regions 
(i.e., ‘Contralateral’) and the ‘Rest of the brain’; and iii) ‘Tumor and 
Peritumor’ and ‘Contralateral’ for all the frequency bands taken into 
account. Results in Fig. 2a as well as in Fig. 3a, Fig. 4a and b and in the 
SM figures, are visualized using violin-plots (Hintze and Nelson, 1998.), 
an approach that, by visualizing summary statistics and density shape 
into a single plot, provides maximally transparent statistical informa-
tion, in comparison to e.g. plotting mean or median barplots and 
error-bars (Allen et al., 2019). 

Statistical significance was assessed by using a paired-sample per-
mutation test with 10,000 random permutations. The choice of pooling 
together the tumor and peritumor regions as well as their respective 
contralateral regions has been driven by the analysis, reported in 
Figures SM1 and SM2 of the supplementary material, showing that these 

Fig. 2. (a) Violin plots of the relative difference for Neural Activity Index (NAI) in the pooled tumor- and peritumor regions ‘Tumor and Peritumor’ compared to the 
rest of the brain ‘Rest of the brain’ and to contralateral control regions ‘Contralateral’, and in the contralateral control regions compared to the rest of the brain; the 
white dot and the thick whiskers denote the median value across patients and the range from the 25th to the 75th percentile, respectively; the symbol * denotes a 
significant difference at the p < 0.05 level (paired-sample permutation test, one-tail, FDR corrected). (b, c, d): axial cross-sectional maps of the relative difference for 
NAI at each brain location compared to the ‘Rest of the brain’, for the lower alpha, upper alpha and beta frequency bands, in one representative patient with a glioma 
in the left temporo-occipital lobe; the maps are superimposed on the T1-weighted MR image with contrast enhancement. (e, f, g): axial cross-sectional maps from the 
same patient of the relative difference for NAI in each location within the hemisphere ipsilateral to the tumor compared to its homologous location in the hemisphere 
contralateral to the tumor. A substantial decrease in NAI can be observed in the region within and surrounding the tumor compared to the rest of the brain, as well as 
to the contralateral region, in the lower alpha, upper alpha and beta frequency bands. 
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pairs of regions do not exhibit differences in their activity and connec-
tivity in any of the frequency bands. Our results show that ‘Tumor and 
Peritumor’ regions feature a NAI value significantly lower than that of 
the ‘Rest of the brain’ in the upper alpha (p = 0.044, FDR corrected) and 
beta (p = 0.041, FDR corrected) frequency bands; a similar trend was 
observed in the lower alpha band, although this comparison did not 
reach statistical significance. This decrease of NAI is still observed in the 
lower alpha (p = 0.042, FDR corrected), upper alpha (p = 0.041, FDR 
corrected) and beta (p = 0.039, FDR corrected) frequency bands when 
‘Tumor and Peritumor’ regions are compared to ‘Contralateral’, sug-
gesting that, as indicated by the direct comparison between ‘Contralat-
eral’ and the ‘Rest of the brain’, there is no power modulation in the 
‘Contralateral’ regions with respect to the ‘Rest of the brain’ in any of 
these frequency bands. Illustrative examples from one representative 
patient of the maps of the relative difference for NAI are given in 
Fig. 2b–g. 

3.3. Tumor and peri-tumor regions feature an alpha band functional 
connectivity lower than the rest of the brain 

Fig. 3 shows the relative difference for GMIM, as defined in Eq. (10), 
between i) ‘Tumor and Peritumor’ and ‘Rest of the brain’; ii) ‘Contra-
lateral’ and the ‘Rest of the brain’; and iii) ‘Tumor and Peritumor’ and 
‘Contralateral’ for all the frequency bands taken into account. These 
relative differences show that, while for the delta and theta frequency 
bands no relevant spatial modulation of functional connectivity can be 
observed, in the lower and upper alpha bands a clear decrease in func-
tional connectivity within the ‘Tumor and Peritumor’ region compared 
to the ‘Rest of the brain’ is displayed (p = 0.002 and p = 0.003, 
respectively, FDR corrected). This alpha band decrease was confirmed 
when ‘Tumor and Peritumor’ functional connectivity is compared to 
‘Contralateral’ functional connectivity, although this comparison did 
not reach statistical significance. Finally, the beta band functional con-
nectivity within the ‘Tumor and Peritumor’ region showed a trend 
similar to that of lower and upper alpha functional connectivity. Illus-
trative examples from one representative patient of the maps of the 
relative difference for GMIM are given in Fig. 3b–c. 

3.4. Brain tumor patients feature a global enhancement in lower-alpha 
band power with respect to control subjects 

The analysis of Neural Activity Index modulations between control 

subjects and tumor patients shows (Fig. 4, left panel) that whole-brain 
band-relative power in tumor patients is higher than in control sub-
jects in the lower-alpha frequency band (p = 0.02, independent-sample 
permutation test, one-tail, FDR corrected). Additionally, we observed a 
beta band reduction in power in tumor patients with respect to control 
subjects (p = 0.04, independent-sample permutation test, one-tail, un-
corrected), which did not survive FDR correction. For the other fre-
quency bands, differences between tumor patients and control subjects 
did not reach statistical significance even without FDR correction. 

For connectivity analysis, differences in the GMIM calculated for the 
whole brain for the delta, theta, lower alpha, upper alpha, and beta 
frequency bands were tested between brain tumor patients and healthy 
control subjects (Fig. 4, right panel). Overall, our results suggest a theta 
and lower-alpha enhancement in global functional connectivity in 
tumor patients with respect to control subjects (theta: p = 0.02, lower 
alpha: p = 0.04, independent-sample permutation test, one-tail, uncor-
rected), which did not survive FDR correction. 

Additionally, the analysis of hemispheric differences in the GMIM 
shows (Fig. 5, left panel) a significant increase of GMIM hemispheric 
difference in the theta band for tumor patients as compared to control 
subjects (p = 0.04, independent-sample permutation test, one-tail, un-
corrected), which did not survive FDR correction. Modulations of GMIM 
hemispheric difference in the other frequency bands did not reach sta-
tistical significance, even without FDR correction. Interestingly, in 
tumor patients, the increased laterality of GMIM in the theta band is 
negatively correlated with the tumor volume (Spearman’s rho = − 0.62, 
p = 0.03, one-sided Spearman’s rank correlation test). 

4. Discussion 

In the present study, we show that brain tumors affect oscillatory 
brain activity and functional connectivity by decreasing Neural Activity 
Index in tumor and peri-tumor regions in the upper-alpha and beta 
bands, paired to decreasing global Multivariate Interaction Measure of 
the tumor and peri-tumor regions in lower and upper-alpha band. 
Additionally, when compared to age-matched healthy subjects, patients 
feature a global enhancement of power in the lower-alpha band. 

Importantly, in this study, the frequency bands used for power and 
functional connectivity analyses are defined starting from Individual 
Alpha Frequency (IAF). Indeed, in our study occipital IAF values were 
found to be significantly different between patients and controls, with 
values for controls that are in line with previous literature for resting- 

Fig. 3. (a) Violin plots of the relative difference for the Global Multivariate Interaction Measure (GMIM) in the pooled tumor and peritumor regions ‘Tumor and 
Peritumor’ compared to the rest of the brain ‘Rest of the brain’ and to contralateral control regions ‘Contralateral’, and in the contralateral control regions compared 
to the rest of the brain; the white dot and the thick whiskers denote the median value across patients and the range from the 25th to the 75th percentile, respectively; 
the symbol * denotes a significant difference at the p < 0.05 level (paired-sample permutation test, one-tail, FDR corrected). (b, c): axial cross-sectional maps of the 
relative difference for GMIM in each brain location compared to the rest of the brain, for the lower alpha and upper alpha frequency bands, in one representative 
patient with a glioma in the left temporo-occipital lobe; the maps are superimposed on the T1-weighted MR image with contrast enhancement. A substantial decrease 
of GMIM can be observed in the region within and surrounding the tumor compared to rest of the brain in the lower alpha and upper alpha frequency bands. 
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state occipital alpha peak (Haegens et al., 2014) and values for patients 
that are significantly lower, as expected from previous studies on brain 
lesions (Gloor et al., 1968), in line with poorer cognitive functions in 
patients with respect to age-matched healthy subjects (Bosma et al., 
2008b). 

To the best of our knowledge, the vast majority of MEG studies on 
patients with brain tumors either consider broad band activity and 
connectivity (Bartolomei et al., 2006a), making it almost impossible to 
infer the role of the different frequency bands in abnormal brain 
communication (Schnitzler and Gross, 2005), or, when using selected 
frequency bands, do not take into account individualized frequency peak 
values and bands. Additionally, several of these studies consider MEG 
activity and connectivity at channel level, i.e. of sensor level MEG data, 
and infer spatially specific differences by averaging results across sen-
sors in a cluster (e.g., temporal, parietal) without taking into account the 
different spatial location of tumors across patients (Bosma et al., 2008a, 

b; Bartolomei et al., 2006a, b). 
Conversely, in this study, frequency-specific power and functional 

connectivity were calculated in the bands defined on the basis of IAF 
values for patients and control subjects, and for each patient, power and 
connectivity in the tumor and peritumor regions were compared to the 
same quantities for the rest of the brain or for the corresponding 
contralateral regions. 

With this approach, in the patient group, we observed a significant 
decrease in power in tumor and peri-tumor regions in the lower-alpha, 
upper-alpha and beta bands (Fig. 2). These findings are in line with 
the electrocorticographic study by Bandt et al. (2017) where a power 
reduction has been observed within the tumor at the mu and beta fre-
quencies, possibly indexing a thalamico-cortical disconnection. 

Although not significant, we also observed a tendency towards an 
enhancement of delta power in tumor and peritumoral regions consis-
tent with previous literature (e.g., Baayen et al., 2003; De Jongh et al., 

Fig. 4. (a) Violin plots of the average band-relative Neural Activity Index (NAI) in the whole brain for healthy subjects and tumor patients. The white dot and the 
thick whiskers denote the median value across patients and the range from the 25th to the 75th percentile, respectively. The symbol * denotes a significant difference 
at the p < 0.05 level (independent-sample permutation test, one-tail, FDR corrected). A significant increase of average band-relative NAI in the lower-alpha band can 
be observed in the whole brain of tumor patients compared to healthy subjects. (b) Average Global Multivariate Interaction Measure (GMIM) in the whole brain for 
healthy subjects and tumor patients. 
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2003; Oshino et al., 2007). Our beta band power findings are in line with 
van Wijk et al. (2012) showing a decrease in beta power in the primary 
motor area of the tumor hemisphere compared to the contralateral area 
in the resting-state. In contrast to this study, we did not observe an 
enhancement of the mu-rhythm rather a decrease in alpha power, 
possibly driven by occipital alpha rather than by Rolandic alpha 
(mu-rhythm). 

Our results for functional connectivity in the patient group (Fig. 3) 
point towards a significant decrease in the tumor and peritumor regions 
in the lower- and upper-alpha bands with respect to the rest of the brain 
and a tendency in the comparison to the contralateral region. Interest-
ingly, a similar lowering of functional connectivity in tumor and peri-
tumoral regions in the alpha band has been associated with a lower rate 
of post-operative neurological deficits (Guggisberg et al., 2008; Tar-
apore et al., 2012) and to the absence of eloquent cortex during intra-
operative electrical stimulation (Martino et al., 2011). Along the same 
line, resection of brain areas featuring high functional connectivity in 
the alpha-band is related to post-operative deficits in Lee et al. (2020). 
Alpha band connectivity has also been shown to increase in resting-state 
brain networks in patients after tumor resection (van Dellen et al., 
2013). In their study, van Dellen et al. (2013) found that post-resection 
increase in low-alpha band connectivity is positively correlated with 
working memory performance, while post-resection increases in the 
upper-alpha band connectivity is positively correlated with attention. 
Our results for a decrease in functional connectivity in the tumor in 
lower- and upper-alpha bands are in line with the above findings and 
suggest the possibility of improving specific cognitive performance in 
our patient population if the tumor is removed. 

The comparison between patients and age-matched healthy control 
subjects (Fig. 4) highlighted that patients feature a global enhancement 
of power in the lower-alpha band with respect to controls, paired to an 
indication for a global reduction of power in the beta band. 

The comparison between patients and age-matched healthy control 
subjects also suggested a global enhancement of functional connectivity 
in the theta and lower-alpha bands in patients. Of note, this enhance-
ment cannot be explained by antiepileptic drugs (Levetiracetam in 3 
patients) since previous EEG evidence shows that patients taking Leve-
tiracetam feature a reduction of global and regional functional con-
nectivity with respect to controls (Ricci et al., 2021). 

Interestingly, in the theta band, such a global enhancement was 
paired to an increase of the hemispheric difference of functional con-
nectivity. Our finding that the hemispheric lateralization of functional 
connectivity decreases with the tumor volume suggests that the effects 
of the tumor are local and asymmetrically located in the two hemi-
spheres if the tumor is small, and more widespread in the brain if the 
tumor is large. Previous studies along the same line have shown that 
functional connectivity in brain tumor patients is enhanced with respect 

to controls in the delta, alpha, and beta frequency bands and reduced in 
gamma (Bartolomei et al., 2006b), and in the theta frequency band 
(Bartolomei et al., 2006b). Nevertheless, the gamma band used by 
Bartolomei et al. (2006b) partly overlaps to our definition of individual 
beta bands, thus possibly reconciling our beta band findings with their 
gamma band findings. Our findings for lower-alpha functional connec-
tivity decrease in the tumor and peri-tumor regions suggest that the 
whole-brain connectivity increase observed with respect to control 
subjects is possibly due to increased functional connectivity in 
non-tumor (and non-peri-tumor) regions. 

It should be noted that considering fixed frequency bands may lead 
to different results and conclusions compared to those obtained 
considering individualized frequency bands. In figure SM4 of the sup-
plementary material, we show the results of the comparison between 
patients and healthy control subjects obtained by using the traditional 
frequency bands: delta from 1 Hz to 4 Hz, theta from 4 Hz to 7 Hz, lower 
alpha from 7 Hz to 10 Hz, upper alpha from 10 Hz to 13 Hz, and beta 
from 13 Hz to 30 Hz. Since the IAF of tumor patients is significantly 
lower than the IAF of healthy control subjects (one-tailed Mann-Whitney 
U test, p = 0.002), the traditional frequency bands are differently 
aligned with respect to the IAF in the two groups being compared (i.e., 
tumor patients and healthy control subjects). Moreover, since the IAF of 
tumor patients is significantly lower than 10 Hz (one-sided Wilcoxon 
signed rank test, p = 0.012), the traditional upper-alpha band misses 
most of the real upper-alpha band and contains part of the real beta 
band; similarly, the traditional theta band misses part of the real theta 
band and contains part of the real lower-alpha band. On the other hand, 
the IAF of healthy control subjects does not significantly differ from 10 
Hz (one-sided Wilcoxon signed rank test, p = 0.082). As a consequence, 
the traditional bands firstly suggest an upper-alpha reduction in global 
functional connectivity in tumor patients with respect to control subjects 
(p = 0.02, independent-sample permutation test, one-tail, uncorrected) 
which is not revealed by the individual frequency bands (p = 0.17, 
independent-sample permutation test, one-tail, uncorrected); secondly, 
they miss the theta enhancement in global functional connectivity in 
tumor patients with respect to control subjects (p = 0.091, independent- 
sample permutation test, one-tail, uncorrected) which is only revealed 
by the individual frequency bands (p = 0.02, independent-sample per-
mutation test, one-tail, uncorrected); lastly, they suggest a trend of 
upper-alpha reduction in power in tumor patients with respect to control 
subjects (Figure SM4a), which is the opposite of the upper-alpha 
enhancement revealed by the individual frequency bands (Fig. 4a). 
Overall, the choice of fixed frequency bands has smaller effects on the 
results of the within-patient analysis (see Figure SM5) as compared to 
those of the comparison between patients and healthy subjects, since the 
90% of the tumor patients has the IAF within the traditional lower-alpha 
band (8–10 Hz) and, thus, the within group variability for IAF is smaller 

Fig. 5. (a) Violin plots of the GMIM hemispheric difference for healthy subjects and tumor patients. (b) Negative correlation of GMIM laterality index in the theta 
band with the tumor volume (Spearman’s rho = − 0.62, p = 0.03, one-sided Spearman’s rank correlation test). 
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than the between group variability (ANOVA: mean square between 
groups = 1.09, mean square between groups = 14.45). 

Altogether, the present study supports the idea that gliomas affect 
not only brain activity and connectivity in the proximity of the tumor, 
but also impact on oscillatory power and functional connectivity in re-
gions located remotely from the tumor, suggesting a network level effect 
induced by a spatially confined lesion. The frequency specificity of our 
findings is possibly related to different altered cognitive domains. 
Indeed, about 90% of brain tumor patients experience severe neuro-
psychological impairments both for HGG (Klein et al., 2001, 2003) and 
for LGG patients (Reijneveld et al., 2001; Taphoorn et al., 1994; 
Taphoorn and Klein, 2004). These disturbances are usually global and 
can hardly be explained only by a local damage caused by the tumor 
rather by a network level effect. 

It has been shown that brain tumor tissue exhibits a different con-
ductivity than healthy brain tissue; in general, the conductivity of low- 
grade gliomas is higher than the one of healthy tissue, while the con-
ductivity of higher-grade gliomas is lower (Rajshekhar, 1992; Latikka 
and Eskola, 2019). Despite these differences, in the present study we 
neglected any heterogeneity of brain tissues and we limited ourselves to 
a realistically-shaped three-shell head model comprising homogeneous 
compartments for the skin, the skull, and the intracranial volume, for the 
following reasons. Firstly, due to properties of magnetic fields in 
near-spherical geometry, MEG mainly reflects the primary neuronal (or 
intracellular) currents and to a lesser extent the volume (or extracel-
lular) currents (Hämäläinen et al., 1993; Niedermeyer and Lopes da 
Silva, 2005). This makes MEG less sensitive to forward modeling errors 
as compared to EEG (Stenroos et al., 2014). To date, the standard 
approach to head modeling in experimental MEG studies is to use a 
realistically-shaped single-shell model comprising only one homoge-
neous compartment for the intracranial volume.; this model has been 
shown to be sufficiently accurate in most practical situations 
(Hämaläinen and Sarvas, 1989); it is also the recommended MEG head 
model in the Fieldtrip (Oostenveld et al., 2020) and MNE software 
toolboxes (Hämäläinen, 2010). In this respect, the realistically-shaped 
three-shell model used in this study already represents a step forward 
towards a more realistic head modeling, which is expected to improve 
the accuracy of source reconstruction and connectivity analysis. 

Secondly, in-vivo measurements of brain tumor tissue resistivity 
showed a large variance of resistivity values, even within the same 
tumor type, as compared to normal tissue (Latikka and Eskola, 2019). 
Such a variability is conceivably caused by biological variation, such as 
heterogeneity of tumor cells, presence of edemas, inflammation, ne-
crosis, tumor size, age, etc., and it makes it impossible to assign a single 
impedance value to a particular pathology (Rajshekhar, 1992) or to give 
any general model for brain tumor resistivity. To obtain correct re-
sistivity values, individual in-vivo measurements are required (Latikka 
and Eskola, 2019). In our study, individual measurements of tumor 
tissue resistivity (or conductivity) were not available; we therefore did 
not include brain tissue inhomogeneity in head modeling. The main 
limitation of our study is in the sample size and heterogeneity. Our 
population allowed us to assess only some aspects of the tumor effect on 
power and brain connectivity, but not e.g. tumor location or tumor 
grade. A further limitation of this study is that patient cognitive per-
formance was not assessed during the clinical screening. 

Nevertheless, using MEG source-space data and individualized fre-
quency bands, we can conclude that gliomas can widely influence local 
and long-range brain synchrony, conceivably resulting in alteration in 
brain function and changes in brain physiology, with a possible role of 
tumor grade in this process. Differences between our results and previ-
ous studies might have arisen due to different inclusion criteria and 
different selection of the frequency bands. For the future, it seems 
therefore crucial to perform studies in a larger sample of patients and 
with standardized protocol and analysis pipeline, which minimize 
possible confounds (Hari et al., 2018) and enhance confidence in the 
observed differences. Additionally, cognitive tests would allow us to 

investigate the relationship between power and connectivity modula-
tions in different frequency bands and impairment in different cognitive 
domains. 
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Hämäläinen, M.S., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. 
Magnetoencephalography—theory, instrumentation, and applications to 
noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413. https:// 
doi.org/10.1103/RevModPhys.65.413. 

Hari, R., Baillet, S., Barnes, G., Burgess, R., Forss, N., Gross, J., Hämäläinen, M., 
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functional connectivity through phase coupling of neuronal oscillations: a 
perspective from magnetoencephalography. Front. Neurosci. 13, 964. https://doi. 
org/10.3389/fnins.2019.00964. 

Mosher, J.C., Leahy, R.M., Lewis, P.S., 1999. EEG and MEG: forward solutions for inverse 
methods. IEEE Trans. Biomed. Eng. 46, 245–259. https://doi.org/10.1109/ 
10.748978. 

Niedermeyer, E., Lopes da Silva, F., 2005. Electroencephalography: basic principles, 
clinical applications, and related fields. Lippincott Williams and Wilkins), 
Philadelphia, PA.  

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M., 2004. Identifying true 
brain interaction from EEG data using the imaginary part of coherency. Clin. 
Neurophysiol. 115, 2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029. 

F. Shekoohishooli et al.                                                                                                                                                                                                                        

https://doi.org/10.1371/journal.pone.0173448
https://doi.org/10.1002/ana.20710
https://doi.org/10.1002/ana.20710
https://doi.org/10.1016/j.clinph.2006.05.018
https://doi.org/10.1016/j.neuroimage.2018.03.004
https://doi.org/10.1016/j.neuroimage.2018.03.004
https://doi.org/10.1016/j.neuroimage.2020.117179
https://doi.org/10.1016/j.neuroimage.2020.117179
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref11
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref11
https://doi.org/10.1109/TAP.1979.1142176
https://doi.org/10.1109/TAP.1979.1142176
https://doi.org/10.1007/s11060-008-9535-3
https://doi.org/10.1007/s11060-008-9535-3
https://doi.org/10.1215/15228517-2008-034
https://doi.org/10.1073/pnas.1112685108
https://doi.org/10.1016/j.pnpbp.2017.04.010
https://doi.org/10.1016/j.pnpbp.2017.04.010
https://doi.org/10.1016/j.neulet.2003.10.065
https://doi.org/10.1016/j.neulet.2003.10.065
https://doi.org/10.1088/0031-9155/57/15/4855
https://doi.org/10.3389/fnins.2017.00262
https://doi.org/10.1016/j.neuroimage.2003.07.030
https://doi.org/10.1016/j.neuron.2012.03.031
https://doi.org/10.1016/j.neuron.2012.03.031
https://doi.org/10.1111/ejn.15361
https://doi.org/10.1111/ejn.15361
https://doi.org/10.1016/j.neuron.2013.09.038
https://doi.org/10.1016/j.neuron.2013.09.038
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1093/brain/91.4.779
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref29
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref29
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref29
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref30
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref30
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref30
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref31
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref31
https://doi.org/10.1186/1475-925X-9-45
https://doi.org/10.1186/1475-925X-9-45
https://doi.org/10.1097/WCO.0b013e328306f2c5
https://doi.org/10.1097/WCO.0b013e328306f2c5
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1002/ana.21224
https://doi.org/10.1016/j.neuroimage.2014.01.049
https://doi.org/10.1016/j.neuroimage.2014.01.049
https://mne.tools/mne-c-manual/MNE-manual-2.7.3.pdf
https://mne.tools/mne-c-manual/MNE-manual-2.7.3.pdf
https://doi.org/10.1109/10.16463
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1016/j.clinph.2018.03.042
https://doi.org/10.1016/j.clinph.2018.03.042
http://refhub.elsevier.com/S2666-9560(21)00049-0/optc8IvOv8XVL
http://refhub.elsevier.com/S2666-9560(21)00049-0/optc8IvOv8XVL
http://refhub.elsevier.com/S2666-9560(21)00049-0/optc8IvOv8XVL
https://doi.org/10.1080/00031305.1998.10480559
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref42
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref42
https://doi.org/10.1200/JCO.2001.19.20.4037
https://doi.org/10.1212/01.wnl.0000098892.33018.4c
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/j.neuroimage.2013.05.056
https://doi.org/10.1007/s10439-018-02189-7
https://doi.org/10.3171/2020.1.JNS192267
https://doi.org/10.1016/j.bandl.2019.104741
https://doi.org/10.1016/j.bandl.2019.104741
https://doi.org/10.1002/ana.22167
https://doi.org/10.1016/j.neuroimage.2011.11.084
https://doi.org/10.1016/j.neuroimage.2011.11.084
https://doi.org/10.1016/j.neuroimage.2013.04.062
https://doi.org/10.3389/fnins.2019.00964
https://doi.org/10.3389/fnins.2019.00964
https://doi.org/10.1109/10.748978
https://doi.org/10.1109/10.748978
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref57
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref57
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref57
https://doi.org/10.1016/j.clinph.2004.04.029


Neuroimage: Reports 1 (2021) 100051

11

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source 
software for advanced analysis of MEG, EEG, and invasive electrophysiological data. 
Comput. Intell. Neurosci. 156869. https://doi.org/10.1155/2011/156869, 2011.  

Oostenveld, R., Schoffelen, J.-M., Spaak, E., 2020. Creating a volume conduction model 
of the head for source-reconstruction of MEG data. https://www.fieldtriptoolbox. 
org/tutorial/headmodel_meg/. (Accessed 1 June 2021). 

Oshino, S., Kato, A., Wakayama, A., Taniguchi, M., Hirata, M., Yoshimine, T., 2007. 
Magnetoencephalographic analysis of cortical oscillatory activity in patients with 
brain tumors: synthetic aperture magnetography (SAM) functional imaging of delta 
band activity. Neuroimage 34, 957–964. https://doi.org/10.1016/j. 
neuroimage.2006.08.054. 

Percival, D.B., Walden, A.T., 1993. Spectral Analysis for Physical Applications: 
Multitaper and Conventional Univariate Techniques. Cambridge University Press, 
Cambridge.  

Pizzella, V., Della Penna, S., Del Gratta, C., Romani, G.L., 2001. SQUID systems for 
biomagnetic imaging. Supercond. Sci. Technol. 14, R79–R114. https://doi.org/ 
10.1088/0953-2048/14/7/201. 

Pizzella, V., Marzetti, L., Della Penna, S., de Pasquale, F., Zappasodi, F., Romani, G.L., 
2014. Magnetoencephalography in the study of brain dynamics. Funct. Neurol. 29, 
241–253. 

Rajshekhar, V., 1992. Continuous impedance monitoring during CT-guided stereotactic 
surgery: relative value in cystic and solid lesions. Br. J. Neurosurg. 6, 439–444. 

Reijneveld, J.C., Sitskoorn, M.M., Klein, M., Nuyen, J., Taphoorn, M.J., 2001. Cognitive 
status and quality of life in patients with suspected versus proven low-grade gliomas. 
Neurology 56 (5), 618–623. https://doi.org/10.1212/wnl.56.5.618. 

Ricci, L., Assenza, G., Pulitano, P., Simonelli, V., Vollero, L., Lanzone, J., Mecarelli, O., Di 
Lazzaro, V., Tombini, M., 2021. Measuring the effects of first antiepileptic 
medication in Temporal Lobe Epilepsy: predictive value of quantitative-EEG 
analysis. Clin. Neurophysiol. 132 (1), 25–35. https://doi.org/10.1016/j. 
clinph.2020.10.020. 

Schnitzler, A., Gross, J., 2005. Normal and pathological oscillatory communication in the 
brain. Nat. Rev. Neurosci. 285–296. https://doi.org/10.1038/nrn1650. 

Seghier, M.L., 2008. Laterality index in functional MRI: methodological issues. Magn. 
Reson. Imag. 26 (5), 594–601. https://doi.org/10.1016/j.mri.2007.10.010. 

Sekihara, K., Nagarajan, S.S., 2008. Adaptive spatial filters for electromagnetic brain 
imaging. In: In: Series in Biomedical Engineering. Springer-Verlag, Berlin 
Heidelberg. https://doi.org/10.1007/978-3-540-79370-0.  

Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., Miyashita, Y., 2001. 
Reconstructing spatio-temporal activities of neural sources using an MEG vector 
beamformer technique. IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 48 (7), 
760–771. https://doi.org/10.1109/10.930901. 

Stam, C., Jones, B., Manshanden, I., Cappellen, M., Montez, T., Verbunt, J., et al., 2006. 
Magnetoencephalographic evaluation of resting-state functional connectivity in 
Alzheimer’s disease. Neuroimage 32, 1335–1344. https://doi.org/10.1016/j. 
neuroimage.2006.05.033. 

Stenroos, M., Hunold, A., Haueisen, J., 2014. Comparison of three-shell and simplified 
volume conductor models in magnetoencephalography. Neuroimage 94, 337–348. 
https://doi.org/10.1016/j.neuroimage.2014.01.006. PMID: 24434678.  

Taphoorn, M.J., Klein, M., 2004. Cognitive deficits in adult patients with brain tumours. 
Lancet Neurol. 3 (3), 159–168. https://doi.org/10.1016/0360-3016(94)90423-5. 

Taphoorn, M.J., Heimans, J.J., Snoek, F.J., Lindeboom, J., Karim, A.B., 1994. Quality of 
life and neuropsychological functions in long-term low-grade glioma survivors. Int. 
J. Radiat. Oncol. Biol. Phys. 29 (5), 1201–1202, 20.  

Tarapore, P.E., Martino, J., Guggisberg, A.G., Owen, J., Honma, S.M., Findlay, A., et al., 
2012. Magnetoencephalographic imaging of resting-state functional connectivity 
predicts postsurgical neurological outcome in brain gliomas. Neurosurgery 71, 
1012–1022. https://doi.org/10.1227/NEU.0b013e31826d2b78. 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., 
Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of 
activations in SPM using a macroscopic anatomical parcellation of the MNI MRI 
single-subject brain. Neuroimage 15 (1), 273–289. https://doi.org/10.1006/ 
nimg.2001.0978. 

van Dellen, E., de Witt Hamer, P.C., Douw, L., Klein, M., Heimans, J.J., Stam, C.J., 
Reijneveld, J.C., Hillebrand, A., 2013. Connectivity in MEG resting-state networks 
increases after resective surgery for low-grade glioma and correlates with improved 
cognitive performance. Neuroimage: Clinical 2, 1–7. https://doi.org/10.1016/j. 
nicl.2012.10.007. 

Van Veen, B.D., Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain 
electrical activity via linearly constrained minimum variance spatial filtering. IEEE 
Trans. Biomed. Eng. 44, 867–880. https://doi.org/10.1109/10.623056. 

van Wijk, B.C., Willemse, R.B., Vandertop, W.P., Daffertshofer, A., 2012. Slowing of M1 
oscillations in brain tumor patients in resting state and during movement. Clin. 
Neurophysiol. 123, 2212–2219. https://doi.org/10.1016/j.clinph.2012.04.012. 

Vieth, J.B., Kober, H., Grummich, P., 1996. Sources of spontaneous slow waves 
associated with brain lesions, localized by using the MEG. Brain Topogr. 8, 215–221. 
https://doi.org/10.1007/BF01184772. 

Wang, H.S., Busse, E.W., 1969. EEG of healthy old persons—a longitudinal study. I. 
Dominant background activity and occipital rhythm. J. Gerontol. 24 (4), 419–426. 
https://doi.org/10.1093/geronj/24.4.419. 

Yushkevich, P., Gao, Y., Gerig, G., 2016. ITK-SNAP: an interactive tool for semi- 
automatic segmentation of multi-modality biomedical images. Conf Proc IEEE Eng 
Med Biol Soc 3342–3345. https://doi.org/10.1109/EMBC.2016.7591443, 2016.  

F. Shekoohishooli et al.                                                                                                                                                                                                                        

https://doi.org/10.1155/2011/156869
https://www.fieldtriptoolbox.org/tutorial/headmodel_meg/
https://www.fieldtriptoolbox.org/tutorial/headmodel_meg/
https://doi.org/10.1016/j.neuroimage.2006.08.054
https://doi.org/10.1016/j.neuroimage.2006.08.054
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref62
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref62
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref62
https://doi.org/10.1088/0953-2048/14/7/201
https://doi.org/10.1088/0953-2048/14/7/201
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref64
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref64
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref64
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref65
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref65
https://doi.org/10.1212/wnl.56.5.618
https://doi.org/10.1016/j.clinph.2020.10.020
https://doi.org/10.1016/j.clinph.2020.10.020
https://doi.org/10.1038/nrn1650
https://doi.org/10.1016/j.mri.2007.10.010
https://doi.org/10.1007/978-3-540-79370-0
https://doi.org/10.1109/10.930901
https://doi.org/10.1016/j.neuroimage.2006.05.033
https://doi.org/10.1016/j.neuroimage.2006.05.033
https://doi.org/10.1016/j.neuroimage.2014.01.006
https://doi.org/10.1016/0360-3016(94)90423-5
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref75
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref75
http://refhub.elsevier.com/S2666-9560(21)00049-0/sref75
https://doi.org/10.1227/NEU.0b013e31826d2b78
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.nicl.2012.10.007
https://doi.org/10.1016/j.nicl.2012.10.007
https://doi.org/10.1109/10.623056
https://doi.org/10.1016/j.clinph.2012.04.012
https://doi.org/10.1007/BF01184772
https://doi.org/10.1093/geronj/24.4.419
https://doi.org/10.1109/EMBC.2016.7591443

	The impact of gliomas on resting-state oscillatory activity and connectivity: A magnetoencephalography study
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 MEG data acquisition
	2.3 MRI data acquisition
	2.4 MEG data analysis
	2.4.1 MEG data pre-processing
	2.4.2 MEG forward model
	2.4.3 MEG source estimation
	2.4.4 MEG source power analysis
	2.4.5 MEG source connectivity analysis

	2.5 Group analysis and statistics
	2.5.1 Selection of individual frequency bands
	2.5.2 Within-patients analysis
	2.5.3 Comparison of brain tumor patients with healthy controls


	3 Results
	3.1 Alpha frequency peak differs between patients and healthy subjects
	3.2 Tumor and peri-tumor regions feature lower power in the alpha and beta bands with respect to the rest of the brain
	3.3 Tumor and peri-tumor regions feature an alpha band functional connectivity lower than the rest of the brain
	3.4 Brain tumor patients feature a global enhancement in lower-alpha band power with respect to control subjects

	4 Discussion
	Funding
	Declaration of compecting interest
	Acknowledgments
	Appendix A Supplementary data
	Availability of data and material
	Code availability
	Author contributions
	References


