
Citation: Amoroso, R.; Maccallini, C.;

Bellezza, I. Activators of Nrf2 to

Counteract Neurodegenerative

Diseases. Antioxidants 2023, 12, 778.

https://doi.org/10.3390/

antiox12030778

Academic Editor: Marcel Bonay

Received: 10 February 2023

Revised: 15 March 2023

Accepted: 18 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Activators of Nrf2 to Counteract Neurodegenerative Diseases
Rosa Amoroso 1 , Cristina Maccallini 1,* and Ilaria Bellezza 2

1 Department of Pharmacy, University “G.d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
rosa.amoroso@unich.it

2 Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte,
P.e Lucio Severi 1, 06132 Perugia, Italy; ilaria.bellezza@unipg.it

* Correspondence: cristina.maccallini@unich.it

Abstract: Neurodegenerative diseases are incurable and debilitating conditions that result in progres-
sive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays
a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly
vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related
to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent
enhancement of the related cellular pathways have been proposed as a potential therapeutic approach.
Several Nrf2 activators with different mechanisms and diverse structures have been reported, but
those applied for neurodisorders are still limited. However, in the very last few years, interesting
progress has been made, particularly in enhancing the blood–brain barrier penetration, to make Nrf2
activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple
pathways involved in the pathology of neurodegenerative diseases. The present review gives an
overview of the most representative findings in this research area.

Keywords: Alzheimer’s disease; antioxidant response; electrophilic activators; multitargeting compounds;
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1. Introduction

Neurodegenerative diseases affect millions of people worldwide and are a leading
cause of disability and a major cause of mortality [1]. The treatment of these pathological
conditions is only palliative; therefore, there is an urgent need for effective therapeutic
agents, as well as a deeper understanding of the molecular changes affecting neuronal cells
during the disease progression. Neuroinflammation is a hallmark in the development of
neurodegenerative diseases, as well as nitroxidative stress, which is due to the unbalanced
production of both reactive oxygen species (ROS) and reactive nitrogen species (RNS) [2,3].
The key role played by ROS in the onset of age-related neurodegenerative diseases indicates
that erythroid-derived 2-like 2 (Nrf2), the master regulator of redox homeostasis [4], may
be a promising target for therapeutic interventions. Several Nrf2 activators with different
mechanisms and diverse structures have been reported in the literature, but those applied
to neurodegenerative diseases are still limited [5]. However, in the very last few years,
interesting progress has been made in this field, particularly in enhancing the blood–
brain barrier (BBB) permeability of Nrf2 activators, to make them effective drugs, and in
designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved
in the pathology of neurodegenerative diseases. In the present review, the implications of
oxidative stress and Nrf2 activation in the therapy of neurodegeneration are revised, with a
particular focus on Alzheimer’s disease (AD) and Parkinson’s disease (PD), which are the
two most prevalent age-related neurodegenerative diseases [1]. Moreover, progress in the
development of new Nrf2 activators able to counteract neuroinflammation is discussed.
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2. Implication of Oxidative Stress and Nrf2 Activation in Neurodegenerative Diseases

ROS are a byproduct of several cellular metabolic pathways and enzymatic reactions,
and they are classified as radicals, including superoxide anion (O2

•−) and hydroxyl (HO•−),
as well as nonradical species such as hydrogen peroxide (H2O2) [6]. ROS are reactive
molecules with a very short half-life. H2O2, the most stable ROS, has a cellular half-life of
10−3 s, 1000 times higher than other ROS [7,8]. Although ROS production might be due to
environmental factors, it mainly derives from metabolic activities. During mitochondrial
respiration, in the electron transport chain (ETC), approximately 1–2% of O2 is not reduced
to water, leading to the generation of O2

•− and H2O2. Moreover, cytosolic oxidoreductases
such as NADPH oxidases (NOX), cytochrome P450 (CYP) oxidases, cyclooxygenases (COX),
and monoamine oxidases (MAO) may contribute to ROS production [8]. Physiological ROS
levels are maintained by a plethora of exogenous and endogenous antioxidant defenses.
Among the exogenous antioxidants, ascorbic acid (vitamin C), α-tocopherol (vitamin E), and
carotenoids play a pivotal role. Endogenous antioxidants include enzymatic antioxidants,
e.g., superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT), as
well as nonenzymatic scavengers, e.g., glutathione (GSH) (Figure 1) [9].
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in their promoter region, including genes linked to the synthesis or use of GSH [12]. Under 
basal conditions, Nrf2 has a rapid turnover, with a half-life of approximately 20 min. In 
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Figure 1. Schematic representation of ROS generation and scavenging. Molecular oxygen (O2) can
be partially reduced to superoxide anion (O2

•−) by the ETC, NADPH oxidases (NOX), cytochrome
P450 (CYP) oxidases, and cyclooxygenases (COX), or to hydrogen peroxide (H2O2) by the ETC and
monoamine oxidases (MAO). H2O2 can be converted into hydroxyl radical (HO•−) through the
Fenton rection. Enzymatic antioxidants scavenge ROS to produce less reactive molecules. Superoxide
dismutase (SOD) and glutathione peroxidase (GPX) convert O2

•− to H2O2, which is converted into
H2O by catalase (CAT).

Redox homeostasis should be strictly controlled since ROS play fundamental biological
roles in guaranteeing redox signaling, a transduction system in which reversible electron
transfer reactions involving ROS to effector target proteins culminate in the regulation of
numerous physiological functions, including neuronal development and function, cellular
proliferation and differentiation, and aging prevention [10]. For example, due to its ability
to cross the phospholipidic bilayer of the cellular membrane, H2O2 can act in both an
autocrine and a paracrine manner [7]. When the production of ROS exceeds cellular
detoxification capacity, redox balance gets compromised, and oxidative stress insurges.
In these conditions, high ROS levels can oxidize nucleic acids, proteins, and lipids, thus
leading to cell dysfunction and eventually cell death [9,11].

The master regulator of redox homeostasis is erythroid-derived 2-like 2 (Nrf2) [4]. Nrf2
is a cap ‘n’ collar (CNC) basic leucine zipper (bZIP) transcription factor responsible for the
expression of genes containing the antioxidant responsive element (ARE) sequence in their
promoter region, including genes linked to the synthesis or use of GSH [12]. Under basal
conditions, Nrf2 has a rapid turnover, with a half-life of approximately 20 min. In fact, Nrf2
activity is controlled by a cytoplasmic repressor protein Keap1, which sequesters Nrf2 in the
cytosol and, by recruiting CUL3-dependent E3-ubiquitin ligase, leads to its ubiquitination
and proteasomal degradation [13,14]. Under oxidative stress conditions, two of the 27 Cys
residues in Keap1 become oxidized, causing a conformational change that, according to the
“hinge and latch” model [15,16], impedes the correct orientation of Nrf2 and inhibits its
ubiquitination and degradation [13]. The newly synthesized Nrf2 can in turn translocate to
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the nucleus to exert its functions [12]. Outside of Keap-1, Nrf2 activity is also controlled by
other regulators. For example, glycogen synthase kinase-3β (GSK-3β) phosphorylates Nrf2,
aiding its ubiquitination by β-transducin repeat-containing protein (β -TrCP)/Cullin-1
E3 ubiquitin ligase in a Keap-1-independent manner [17]. GSK-3β also phosphorylates
the protein kinase Fyn, which translocates into the nucleus where it phosphorylates Nrf2,
leading to its nuclear export and ubiquitin-dependent proteasomal degradation [18]. To add
a further layer of complexity, the BTB and CNC homology transcription factors (BACH1
and BACH2) repress Nrf2 activity by competing for ARE binding [19]. On the other hand,
p62/sequestosome 1 (p62/SQSTM1), a ubiquitin-binding protein, competing with Nrf2 for
Keap-1 binding, leads to Nrf2 stabilization and, hence, activation (Figure 2) [20].
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to ROS-mediated damage [21]. Thus, any imbalance of redox homeostasis could affect 
brain cells. For example, aging and age-related diseases such as neurodegenerative 
disorders have been linked to the progressive dysfunction of redox control mechanisms 
[22]. The disruption of redox balance during healthy aging correlates with the finding that 
Nrf2 activity in brain decreases with age [23]. Brain expression of Nrf2 is higher in glial 
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Figure 2. Schematic representation of Nrf2 activation. (A) Under basal conditions, Nrf2 activity is
controlled by the cytoplasmic repressor protein Keap1, which sequesters Nrf2 in the cytosol, leading
to its ubiquitination and proteasomal degradation. (B) Under oxidative stress conditions, two of the
Cys residues in Keap1 become oxidized, impeding the correct orientation of Nrf2 and inhibiting its
ubiquitination and degradation. The newly synthesized Nrf2 translocates to the nucleus to induce
the expression of antioxidant response genes. (C) P62/sequestosome 1 (p62/SQSTM1) competes
with Nrf2 for Keap-1 binding and leads to Nrf2 activation and nuclear translocation. (D) Glycogen
synthase kinase-3β (GSK-3β) phosphorylates Nrf2, which is in turn ubiquitinated by β-transducin
repeat-containing protein/Cullin-1 E3 ubiquitin ligase (β–TrCP/Cul1). (E) GSK-3β phosphorylates
the protein kinase Fyn, which phosphorylates Nrf2, leading to its nuclear export and culminating
in inhibition of gene expression (red cross). (F) The BTB and CNC homology transcription factors
(BACH1 and BACH2) repress Nrf2 activity (red cross) by competing for ARE binding.

Due to the high oxygen consumption, the presence of polyunsaturated fatty acids, and
auto-oxidation of neurotransmitters (e.g., dopamine), the brain is highly vulnerable to ROS-
mediated damage [21]. Thus, any imbalance of redox homeostasis could affect brain cells.
For example, aging and age-related diseases such as neurodegenerative disorders have been
linked to the progressive dysfunction of redox control mechanisms [22]. The disruption
of redox balance during healthy aging correlates with the finding that Nrf2 activity in
brain decreases with age [23]. Brain expression of Nrf2 is higher in glial cells (astrocytes
and microglia) than in neurons, suggesting that glial cells can be causally involved in
neurodegenerative diseases despite not being the cells primarily affected by the disease.
This concept, known as a non-cell-autonomous mechanism, is recognized to essentially
contribute to neurodegeneration. It has been proposed that microglia and astrocytes
causally participate in the pathogenesis and progression of several neurodegenerative
diseases [24,25].
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Microglial cells behave as the innate immune cells of the CNS [26]. Resting microglial
cells have a ramified morphology; however, when activated by a danger signal, they
undergo a morphological change, becoming amoeboid. While resting microglial cells
continuously monitor brain activities to maintain homeostasis, activated microglial cells
release cytokines and proinflammatory mediators to eliminate the threat. This acute
response of microglial cells is protective, but overactivation of microglia, by inducing severe
oxidative stress and neuroinflammation, leads to many neurodegenerative diseases [26].
In aged microglial cells, migration ability and phagocytosis are compromised, and the
release of proinflammatory cytokines lasts for prolonged periods, strongly contributing to
neurodegeneration [27]. Disturbance of Nrf2 activity and, hence, increased oxidative stress
have been linked to several neurodegenerative diseases such as Parkinson’s disease and
Alzheimer’s disease.

2.1. Nrf2 and Parkinson’s Disease

PD is a progressive neurological movement disorder characterized by tremor, bradyki-
nesia, rigid muscles, and loss of postural balance [28]. The clinical feature of PD is the deple-
tion of dopaminergic (DArgic) neurons in the substantia nigra pars compacta (SNpc), which
results in dopamine (DA) deficiency [29]. PD is prevalently an idiopathic disease, with only
10–15% of cases having a family history. However, Lewy bodies found in both sporadic and
familial cases of PD contain aggregated forms of α-synuclein (α-syn). The α-syn oligomers
are cytotoxic to DArgic neurons [30]. The toxic effects of α-syn oligomers can be ascribed
to α-syn enzymatic ferrireductase activity. Aggregation indeed inhibits α-syn enzymatic
activity, leading to an accumulation of oxidized Fe, which can participate in the Fenton
reaction, culminating in oxidative stress induction [31]. Moreover, mitochondrial α-syn
accumulation can suppress mitochondrial respiratory complex I, leading to ROS produc-
tion and, thus, to oxidative stress [32]. The crucial role of mitochondria-generated ROS
in PD pathogenesis was determined from the finding that the 1-methyl-4-phenyl 1,2,3,6-
tetrahydropyridine (MPTP) metabolite 1-methyl-4-phenylpyridinium (MPP+) hampers
mitochondrial complex I, causing electron leakage and ROS production [33]. PD-like symp-
toms indeed arose in individuals using illegal drugs contaminated by MPTP, and brain
postmortem examinations revealed damage to the DArgic neurons in the SNpc.

Other PD genetic risk factors comprise genes involved in the control of mitochondrial
redox balance including Parkin, PTEN-induced kinase 1 (PINK1), parkinsonism-associated
deglycase (PARK7), and leucine-rich repeat serine/threonine protein kinase 2 (LRRK2) [34].
Parkin, an E3 ubiquitin ligase, and PINK1, a serine/threonine kinase, form a signal trans-
duction pathway exerting a pivotal role in the removal of damaged mitochondria by the
mitophagic process [35]; PARK7 encodes for DJ-1, a protein that, by binding the mitochon-
drial complex I, improves its activity [36]. Mutations in PINK1, DJ-1, and LRRK2 result
in mitochondrial dysfunction with impaired bioenergetics and lead to uncontrolled ROS
generation [36,37]. It should be emphasized that DA metabolism itself is a source of oxida-
tive stress. In fact, excess DA can be catabolized by monoamine oxidase (MAO), producing
H2O2 or undergoing auto-oxidation to produce highly reactive dopamine quinones (DAQs)
and semiquinones [38].

The crucial role played by ROS in PD indicates Nrf2 implication in this disease. In vivo
studies showed that both treatment with MPTP and overexpression of α-syn increased
DArgic cell death in Nrf2 KO mice [39,40]. Moreover, the Nrf2-induced cytoprotective gene
NQO1 (NADPH-quinone oxidoreductase) is partially sequestered in Lewy bodies, together
with p62/SQSTM1, a known activator of Nrf2 [41]. Moreover, Bach1 knockout protects
mice against MPTP-induced dopaminergic cell death [42]. Moreover, the brain of LRRK2-
transgenic mice and the LRRK2-overexpressing neuronal cell line show reduced expression
of Nrf2 and its target genes via GSK3β activation [43]. Studies in Drosophila showed that
Nrf2 activation induces mitophagy and counteracts neuronal degeneration in Parkin/Pink1
knockdown flies [44]. In addition to direct neuronal toxicity, α-syn oligomers can activate
microglial cells promoting neuroinflammation, which, by further increasing ROS produc-
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tion via NADPH oxydase 2 (NOX2) activation, augments oxidative stress [34,41]. In this
context, DJ-1, by interacting with the p47phox subunit of NOX2, inhibits its action, reducing
ROS production [45]. From all the above, PD genetic risk factors are connected to aberrant
Nrf2 signaling which might contribute to oxidative stress (Figure 3).
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Figure 3. Mitochondrial ROS generation by PD and AD risk factors, and protective effects of Nrf2
activating compounds. ROS generation in AD: deposition of Aβ plaques induces mitochondrial
stress; aggregates of the hyperphosphorylated tau protein impair mitochondria distribution and
function. ROS generation in PD: aggregated α-syn accumulation suppresses mitochondrial respiratory
complex I; mutations in Parkin, PTEN-induced kinase 1 (PINK1), parkinsonism-associated deglycase
(PARK7), and leucine-rich repeat serine/threonine protein kinase 2 (LRRK2) result in mitochondrial
dysfunction with impaired bioenergetics. The Nrf2-mediated increase in antioxidant response genes
can reduce ROS burst. In this light, Nrf2 activators might counteract the ROS-induced damage that
leads to neurodegeneration.

2.2. Nrf2 and Alzheimer’s Disease

Alzheimer’s disease (AD) is the prevalent type of dementia in the elderly population.
AD is characterized by memory loss and deterioration of other cognitive functions includ-
ing comprehension, judgment, and orientation due to synaptic loss and selective neuronal
death [46]. AD brains are characterized by the accumulation of extracellular senile plaques
composed of deposits of β-amyloid peptides Aβ (1–40) and Aβ (1–42), as well as intracellu-
lar neurofibrillary tangles (NFTs) composed of aggregates of the hyperphosphorylated tau
protein [40]. Most AD cases are classified as sporadic late-onset AD (onset after 65 years of
age), whereas only 5% are autosomal-dominant early-onset AD [47,48]. Early-onset AD
is caused by a mutation in three proteins involved in the amyloidogenic pathway: APP
(amyloid precursor protein), γ-secretase presenilin 1 (PSEN1), and presenilin 2 (PSEN2).
The key role played by ROS in aging and the fact that idiopathic AD is an age-related
disease strongly suggest that ROS are involved in AD pathogenesis. This hypothesis is
corroborated by the finding that Aβ binds to mitochondrial membranes, thus affecting
mitochondrial function and accelerating ROS production [49]. The pivotal role of ROS in
AD is based on the findings that Aβ (1–42) induces mitochondrial stress accompanied by
ROS generation in AD patients [50,51], and that Aβ plaque deposition leads to oxidative
stress, which, propagating spatially over time, leads to neuronal cell death [52,53]. Not only
Aβ, but also tau protein is connected to mitochondrial ROS generation in AD. For example,
compared to wildtype mice, tau knockout presented reduced oxidative damage, improved
memory skills, and improved mitochondrial bioenergetics [54]. Furthermore, ROS induce
tau polymerization [55], and tau overexpression induces oxidative stress in vitro and in
mice [56,57]. Moreover, Nrf2 activation prevents tau protein aggregation in transgenic mice
expressing mutant tau protein [58]. Nrf2-KO transgenic mice carrying both mutated APP
and tau died prematurely (approximately 12 months of age) and were characterized by
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motor deficits, neuroinflammation [59], increased oxidative stress, and high levels of Aβ

and tau aggregates [60].
A decrease in expression or inactivation of the p62/SQTRSM1 gene in mice causes

neurodegeneration with AD-related symptoms and induces the formation of neurofibrillary
tangles [61]. GSK3β is also involved in AD pathology since its hyperactivation has been
demonstrated in AD brains [62], and GSK3β-mediated phosphorylation of PSN1 reduces
neuronal viability and synaptic plasticity [63]. All these data indicate that AD-critical
features, i.e., Aβ and tau protein aggregation, and oxidative stress are deeply related and
cooperate in the development of pathology (Figure 3).

3. Small Molecules Inducing Nrf2

So far, the preclinical and clinical studies involving Nrf2 activators have mostly focused
on cancer and inflammatory diseases therapies [5]. To date, the use of Nrf2 activators in
neurological diseases is quite limited due to the unfavorable pharmacokinetic properties
and toxicity issues of these compounds [5]. In the very last few years, advancements
have been made in the research of new small-molecular Nrf2 activators endowed with
CNS activity, which can be broadly classified into two distinct groups: (1) electrophilic
activators that can covalently modify Keap1; (2) activators interfering with the Keap1–Nrf2
protein–protein interactions (PPIs) (Table 1).

3.1. Electrophilic Activators

As previously described, Keap1 ensures that Nrf2 concentration is kept very low thanks
to oxidative stress sensors; however, if the oxidative stress increases, the ubiquitination and
subsequent degradation of Nrf2 are blocked as a result of the reaction of electrophilic species
with the cysteine residue in Keap1 protein [64]. According to this mechanism of induction of
Nrf2, the use of electrophiles as drugs able to activate Nrf2 has gained increasing scientific
interest, and, in the last few years, many electrophiles able to trigger the Nrf2 pathway have
been reported. For example, molecules containing α,β-unsaturated ketones and esters have
been shown to react with one or more cysteine residues in Keap1 [65,66], activating Nrf2.
Indeed, these compounds are Michael acceptors, and they can undergo the nucleophilic
addition of an alkyl thiol to their α,β-unsaturated system.

Chalcone contains an electrophilic α,β-unsaturated ketone that can react with the
sulfhydryl groups of thioredoxin and cysteine residues in proteins [67]. Therefore, the α,β-
unsaturated ketone electrophilic activity is responsible for the various biological activities
of chalcones. One of the very first structure–activity relationship (SAR) studies on chalcone-
based structures able to activate Nrf2 was reported in 2011 by Kumar et al. [68]. A series of
59 chalcone derivatives was synthesized, and compound 1 emerged as the most interesting
molecule (Figure 4).
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On the basis of this promising finding, the chalcone leading scaffold, i.e., the
1,3-diphenylprop-2-en-1-one core structure, was recently further investigated including het-
erocyclic amines such as morpholine, pyrrolidine, and N-methylpiperazine (Figure 5) [69].
In particular, the introduction of a propylmorphline group into the 2-, 3-, and 4-OH of
ring A gave interesting results, especially for the 4-position substituted derivatives [69].
An additional enhancement in the Nrf2 activation was observed by replacing the 4-hydroxyl-
propylmorpholine moiety with a 4-hydroxyl-propylpyrrolidine one. In addition, it was found
that 2′-position substituted derivatives exhibited better activities than the corresponding
3′- and 4′-position substituted ones. The introduction of a N-methylpiperazine group into
the 4-OH of ring A led to compound 2 (Figure 5), which showed the best Nrf2-activating
potency in this series of compounds, resulting in an amelioration with respect to sulforaphane
(SFN), a well-known strong Nrf2 activator (2 EC50 = 0.63 µM vs. SFN EC50 = 0.87 µM) [69].
Compound 2 was evaluated in BV-2 microglial cells in both normal and proinflammatory
conditions, where it stimulated the expression of Nrf2-dependent antioxidant enzymes and
the reduction of ROS, inhibiting inflammatory responses induced by the LPS. Moreover,
compound 2 was in vivo studied in the scopolamine-induced amnesia model, demonstrating
the ability to restore SOD activity and memory performance in mice.
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In another study, the structure of compound 1 was modified by introducing a vinyl-
sulfoxide or vinyl-sulfone group to the α,β- unsaturated carbonyl entity of chalcone
(Figure 6) [70].
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Figure 6. First generation of vinyl-sulfone-based Nrf2 activators. The vinyl-sulfone moiety is in
blue. From the structure–activity relationships (SAR) study, it emerged that the presence of an
electron-withdrawing group on the B ring favored the Nrf2 activation, while the presence of a
2-methoxyl group on the A ring was essential for the activity. Compound 3 emerged as the most
active compound [70].
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The introduction of the vinyl sulfone group led to the most potent activities in terms of
HO-1 activation compared to the corresponding carbonyl and sulfoxide derivatives. On the
basis of its potency of action, compound 3 was selected for further evaluations in DAergic
neuronal cells, where it activated Nrf2 as expected, as well as stimulated the expression
of the Nrf2-dependent antioxidant enzymes NQO1, GCLC, GLCM, and HO-1. Moreover,
compound 3 was evaluated both in vitro and in MPTP-induced in vivo models of PD,
demonstrating the attenuation of PD-associated behavioral deficits in the mouse model [70].
However, this molecule was not further investigated due to its poor pharmacokinetic
properties; indeed, it showed low solubility, metabolic instability, and toxicity issues, such
as cytochrome P (CYP) inhibition and human ether-a-go-go-related gene (hERG) activation.
Recently, the molecular structural determinants responsible for vinyl-sulfone derivatives as
Nrf2 activators endowed with neuroprotective activity on PC12 cells were investigated via
the synthesis of a library of 47 small compounds (Figure 7) [71].
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Tuning the electrophilicity and steric hindrance of the aromatic substituents led to new Nrf2 activators.
Compounds 4 and 5 were the most promising molecules of this series [71].

This study found that best results in terms of neuroprotection were obtained by
molecules bearing aromatic o-substituents, and that, by tuning their electrophilicity and
steric hindrance, potent Nrf2 activators can be obtained. In particular, the most interesting
compounds of the considered series were 4 and 5 (Figure 7), which protected PC12 cells
from H2O2-mediated insults, promoting the translocation of Nrf2 and the consequent
activation of ARE, with the final transcriptional activation of antioxidant genes and the
consequent upregulation of a diverse range of antioxidant species (TrxR, NQO1, GSH,
and HO-1). Some years later, in order to improve the druglike properties of compound 3,
the B phenyl-ring was replaced by a pyridyl-moiety, while a morpholinyl group was linked
to ring A to improve microsomal stability and increase solubility through the HCl salt form
(6, Figure 8) [72].
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drug-like properties. The vinyl-sulfone moiety is in blue. The introduction of both a pyridyl group in
the B ring and a morpholinyl or piperazinyl group in the A ring improved the microsomal stability
and solubility of these compounds [72].

Moreover, considering the potency of morpholine compounds with 3′-F or 3′-Cl on o-
pyridine, a 4-piperazine group was introduced instead of the morpholino one (7, Figure 8).
Compound 6 demonstrated excellent Nrf2 activation potency, safety, and stability, as well
as elicited neuroprotective effects against DAergic neuronal cell death in PD, suppressing
microglial activation related to neuroinflammation [72]. In a subsequent study, a series
of pyridyl-vinyl-sulfones bearing a halogenated A-ring was synthesized in an attempt
to maximize the potency of action of this class of Nrf2 activators [73]. Compound 8
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(Figure 9) emerged as the most promising derivative, being able to activate Nrf2 at nanomo-
lar concentrations, with an ameliorated potency of action with respect to the previous
developed compounds. Moreover, compound 8 retained positive drug-like properties and
an interesting biological profile in both in vitro and in vivo models of PD [73].
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3.2. PPI Interfering Compounds: Azole-Based Compounds

Interference with the protein–protein interaction between the KEAP1 Kelch domain and
Nrf2 by means of non-electrophilic noncovalent inhibitors is increasingly being explored as an
innovative approach to generate compounds activating Nrf2. These molecules are predicted
to be safer with respect to electrophilic compounds, whose action is often associated with
side-effects due to off-target actions, derived from their simultaneous reaction with different
types of nucleophiles commonly present in many biological molecules. Several promising PPI
inhibitors have been disclosed to date that are able to enhance Nrf2 signaling with different
potential therapeutic applications [74], and diaryl-azole-based compounds in particular have
been demonstrated as useful agents in neurological diseases. Starting from oxadiazole deriva-
tives 9–12 (Figure 10) which were able to increase Nrf2 nuclear translocation up to 3.46-fold
at 100 nM [75,76], similar triazole derivatives were designed, and compound 13 (Figure 10)
was the most interesting one, showing promising results as neuroprotective agents [77,78].
In this compound, the chemical reactivity of the S-group with cysteine nucleophiles is es-
sential for Nrf2 activation, as well as the presence of an electron-withdrawing group and
an electron-deficient aromatic system. Very recently, diaryl-triazole derivatives were further
investigated as Nrf2 activators able to counteract neuroinflammation. In particular, based on
the leading scaffold of compound 11, i.e., the diaryl-oxadiazole core structure (Figure 10), a
library of 26 triazole-based compounds was synthesized (Figure 11), and the in vitro evalua-
tion revealed that these molecules exerted better neuroprotective effects than 11 [79]. From the
SAR analysis it emerged that alkyl groups were important to augment the protective effect;
in particular, compound 14 (Figure 11) gave the best results. From the in-depth biological
evaluation of this molecule, it emerged as a potential neuroprotectant for the treatment of
ischemic stroke [79].

Further modifications of compound’s 11 azole core led to a series of 1,3,4-oxadiazole
or 1,3,4-thiadiazole derivatives (Figure 12), displaying a potency of action as Nrf2 activators
similar to the 1,2,4-oxadiazole derivatives (Figure 10) [80]. On the contrary, physicochemical
properties were improved, since the presence of the 1,3,4-oxadiazole moiety led to lower
lipophilicity, and it improved the aqueous solubility of these molecules. Compound 15
(Figure 12), displaying 1.8-fold induction of Nrf2 in a luciferase reporter assay at 100 nM,
was selected for further evaluation. It was able to increase Nrf2 levels and its downstream
genes in H2O2-treated PC-12 cells, protecting them from oxidative damage.
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translocation [75–78].
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Figure 12. Nrf2 activators with a 1,3,4-oxa/thiadiazole core. The 1,3,4-oxadiazole moiety of
compound 15 is in green. This molecule increased the Nrf2 levels and protected PC-12 cells from
oxidative damage [80].

Very recently, pyrazole hit compounds as Keap1/Nrf2 complex disruptors were re-
ported by means of a fragment-guided discovery approach [81]. Three “hotspots” for
binding were identified in the Nrf2 binding site, i.e., for acidic groups, aromatic systems
with a hydrogen bond acceptor (“planar acceptors”), and sulfonamides. From the screening
of a collection of carboxylic acid derivatives, compound 16 (Figure 13) was selected for
further optimization. The triazole-cyclopropyl derivative 17 then emerged as an interesting
derivative, showing an IC50 of 41 nM in the displacement of the Nrf2 peptide from the
KEAP1 Kelch protein fluorescence polarization assay. However, due to its high polarity,
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it failed the subsequent cell-based assay. Therefore, its structure was further optimized
by introducing a larger amide moiety able to interact with lipophilic areas of the pro-
tein, and compound 18 was finally disclosed as the most promising agent (IC50 < 15 nM).
Its high-affinity binding to the Kelch domain of KEAP1 was also confirmed by surface
plasmon resonance (SPR) evaluation, with Kd = 2.5 nM [81]. The docking analysis of
compound 18 in complex with KEAP1 showed that all the three hotspots identified from
the initial fragment screen were occupied by the inhibitor.
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Figure 13. Development of pyrazole carboxylic acid inhibitors of the Keap1/Nrf2 complex protein–
protein interactions. The pyrazole-carboxylic acid moiety is in red. Starting from the leading scaffold
of 16, i.e., the pyridyl-pyrazole carboxylic acid core structure, the triazole-cyclopropyl-derivative 17
was developed, showing a potent Nrf2 activation. This compound was further optimized by intro-
ducing a larger amide group, and the Nrf2 activator 18 was obtained, which was able to bind the
Keap1 Kelch domain with increased affinity [81].

Table 1. Main activity of the Nrf2 inducers discussed in Section 3. EC50 is the half maximal effective
concentration.

Compound Activity Cell Line Ref.

2 Activation of Nrf2 nuclear translocation (EC50 = 0.63 µM) BV-2 microglial cells [68]

3 Activation of Nrf2 nuclear translocation (EC50 = 0.53 µM) CATH.a, mouse DAergic neuronal cell line [70]

4, 5 Activation of Nrf2 nuclear translocation; transcriptional
activation of NRF2-responsive ARE genes PC12 cell line [71]

6 Activation of Nrf2 nuclear translocation (EC50 = 0.346 µM) BV-2 microglial cells [72]

7 Activation of Nrf2 nuclear translocation (EC50 = 0.327 µM) BV-2 microglial cells [72]
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Table 1. Cont.

Compound Activity Cell Line Ref.

8 Activation of Nrf2 nuclear translocation (EC50 = 0.327 µM) U2OS cells and BV-2 microglial cells [73]

13 Induction of NQO1 and GCLM proteins; transcriptional
activation of NRF2-responsive ARE genes

Primary mouse neurons; primary corticostriatal
neuronal cocultures [77,78]

14
Activation of Nrf2 nuclear translocation; induction of HO-1,

NQO1, and GCLM proteins; Nrf2 displacement from the
Keap1 Kealch domain (KD = 22.70 µM)

PC12 cell line [79]

15 ARE inducing activity fold increase (f.i. = 1.8 @100 nM) PC12 cell line [80]

18
Stimulation of NQO1 activity (EC50= 43 nM); Nrf2

displacement from the Keap1 Kealch domain (IC50 < 15 nM);
transcriptional activation of NRF2-responsive ARE genes

BEAS-2B cells; normal human bronchial epithelial
cells [81]

4. Natural Nrf2 Activators

Thymoquinone (TQ, 2-isopropyl-5-methyl-1, 4-benzoquinone, Figure 14) is a monoter-
penoid hydrocarbon, and it is the major bioactive compound of the volatile black oil from
Nigella sativa. This molecule is endowed with antioxidant and anti-inflammatory proper-
ties [82], in addition to counteracting apoptosis in primary dopaminergic cells after their
treatment with 1-methyl-4-phenylpyridinium (MPP+) and rotenone [83,84]. Recently, it was
found that TQ prevents dopaminergic neurodegeneration in a PD mouse model, activating
the nuclear translocation of Nrf2 for binding to ARE. As a consequence, the induction of
HO-1, NQO1, and GST expression, as well as of anti-oxidative enzymes, including SOD
and GSH-Px, was observed [85]. From a mechanistic viewpoint, TQ is an electrophilic
activator that covalently binds the thiol group of the KEAP1 protein, which is the main
target of TQ when its biological effects are mediated by Nrf2 [86].

Antioxidants 2023, 12, x FOR PEER REVIEW 13 of 21 
 

displacement from the Keap1 Kealch domain (KD = 

22.70 μM) 

15 ARE inducing activity fold increase (f.i. = 1.8 @100 
nM) 

PC12 cell line [80] 

18 

Stimulation of NQO1 activity (EC50= 43 nM); Nrf2 
displacement from the Keap1 Kealch domain (IC50 

< 15 nM); transcriptional activation of NRF2-
responsive ARE genes 

BEAS-2B cells;  
normal human bronchial 

epithelial cells 
[81] 

4. Natural Nrf2 Activators 
Thymoquinone (TQ, 2-isopropyl-5-methyl-1, 4-benzoquinone, Figure 14) is a 

monoterpenoid hydrocarbon, and it is the major bioactive compound of the volatile black 
oil from Nigella sativa. This molecule is endowed with antioxidant and anti-inflammatory 
properties [82], in addition to counteracting apoptosis in primary dopaminergic cells after 
their treatment with 1-methyl-4-phenylpyridinium (MPP+) and rotenone [83,84]. 
Recently, it was found that TQ prevents dopaminergic neurodegeneration in a PD mouse 
model, activating the nuclear translocation of Nrf2 for binding to ARE. As a consequence, 
the induction of HO-1, NQO1, and GST expression, as well as of anti-oxidative enzymes, 
including SOD and GSH-Px, was observed [85]. From a mechanistic viewpoint, TQ is an 
electrophilic activator that covalently binds the thiol group of the KEAP1 protein, which 
is the main target of TQ when its biological effects are mediated by Nrf2 [86]. 

Uncaria rhynchophylla (UR) is a component of the traditional Japanese kampo 
medicines chotosan and yokukansan, and rhynchophylline (Rhy, Figure 14) is a primary 
oxindole alkaloid obtained from UR. This natural compound has shown neuroprotective 
effects in animal models of AD, as well as antioxidant properties [87–89]. In an in vivo 
model of Aβ1–42-induced AD, Rhy was able to attenuate the disease symptoms and the 
in vitro investigations in SH-SY5Y cells revealed that this compound activates Nrf2 
nuclear translocation, triggering the expression of its downstream antioxidant enzymes. 
However, how Rhy activates the Nrf2–ARE pathway to exert neuroprotection remains to 
be clarified [90]. 

O

O

Thymoquinone

H
N

N

O
O

O

O

Rhynchophylline  
Figure 14. Chemical structure of natural Nrf2 activators with neuroprotectant activity. 
Thymoquinone prevents dopaminergic neurodegeneration in a PD mouse model, activating the 
nuclear translocation of Nrf2 for binding to ARE [85]. Rhynchophylline has shown neuroprotective 
effects in animal models of AD, as well as antioxidant properties [87–89]. 

5. Multitargeting Nrf2 Activators 
Because of the multifactorial etiology of neurodegenerative diseases, in the last few 

years, the design of multifunctional ligands has emerged as an attractive therapeutic 
strategy. This multifactorial approach, involving the use of multitarget-directed ligands 
(MTDL), certainly reflects the enormous and crucial advances in understanding the 
mechanisms and implications in neurodegenerative diseases [91]. In this context, 
multitarget ligands have been developed very recently, exhibiting significant Nrf2 
inducibility and an additional activity on other targets related to neurodegeneration. 

Considering the significance of both BACH1 and Nrf2 in the modulation of heme 
oxygenase 1 (HMOX1) expression, which protects cells from neurotoxicity [92], the 

Figure 14. Chemical structure of natural Nrf2 activators with neuroprotectant activity. Thymoquinone
prevents dopaminergic neurodegeneration in a PD mouse model, activating the nuclear translocation
of Nrf2 for binding to ARE [85]. Rhynchophylline has shown neuroprotective effects in animal
models of AD, as well as antioxidant properties [87–89].

Uncaria rhynchophylla (UR) is a component of the traditional Japanese kampo medicines
chotosan and yokukansan, and rhynchophylline (Rhy, Figure 14) is a primary oxindole
alkaloid obtained from UR. This natural compound has shown neuroprotective effects in
animal models of AD, as well as antioxidant properties [87–89]. In an in vivo model of Aβ1–42-
induced AD, Rhy was able to attenuate the disease symptoms and the in vitro investigations
in SH-SY5Y cells revealed that this compound activates Nrf2 nuclear translocation, triggering
the expression of its downstream antioxidant enzymes. However, how Rhy activates the
Nrf2–ARE pathway to exert neuroprotection remains to be clarified [90].

5. Multitargeting Nrf2 Activators

Because of the multifactorial etiology of neurodegenerative diseases, in the last few
years, the design of multifunctional ligands has emerged as an attractive therapeutic strat-
egy. This multifactorial approach, involving the use of multitarget-directed ligands (MTDL),
certainly reflects the enormous and crucial advances in understanding the mechanisms and
implications in neurodegenerative diseases [91]. In this context, multitarget ligands have
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been developed very recently, exhibiting significant Nrf2 inducibility and an additional
activity on other targets related to neurodegeneration.

Considering the significance of both BACH1 and Nrf2 in the modulation of heme
oxygenase 1 (HMOX1) expression, which protects cells from neurotoxicity [92], the combi-
nation of Nrf2 activation with BACH1 inhibition could potentially result in an antioxidant
response and a neuroprotective outcome. Recently, the O-methyl-p-cannabidiolquinone
(19, Figure 15), a derivative of cannabidiol, was found at the same time as a potent inhibitor
of BACH1 and an Nrf2 activator.
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These activities were validated in HaCaT and Hepa1c1c7 cell lines through luciferase
assays, Western blot, and RT-qPCR [93]. Compound 19 was also tested in macrophage-
like THP1 and neuroblastoma SH-SY-5Y cell lines, confirming a decrease in BACH1, an
induction of HMOX1, and a stabilization of Nrf2, as well as a decrease in ROS levels and
neuroprotection in a model for Huntington disease. In terms of molecular structure, it is
likely that compound 19 contributed to the regulation of redox homeostasis of cells through
its quinone moieties with antioxidant properties [94].

Melatonin is a hormone that binds the G protein-coupled receptors MT1 and MT2, as
well as the cytosolic receptor MT3/quinone reductase 2 (QR2). QR2 catalyzes the reduction
of electrophilic quinones to hydroquinones, which can trigger an overproduction of free
radicals. For this reason, this enzyme can be considered a molecular target involved in neu-
rotoxic cascades [95]. Within the framework of a study of oxadiazolone-based bioisosteres
of melatonin, two compounds (20 and 21, Figure 16) were developed, showing an induction
of signaling mediated by Nrf2 (induction capability of 15.1 and 1.76, respectively) and an
inhibition of QR2 (Ki 6.6 nM and 3.2 nM, respectively) in a neuronal phenotype [96].
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Interestingly, the absorption, distribution, metabolism, excretion, and toxicity (ADMET)
and antioxidant properties of these compounds, also evaluated with the oxygen radical
absorbance capacity (ORAC) assay, were satisfactory [96]. Quantum mechanics studies
revealed that the ring systems contained in the indole-NH-oxadiazolone 20 are coplanar.
This molecular arrangement is involved in the stacking interaction with the flavin adenine
dinucleotide (FAD) in QR2, allowing the indole nitrogen to establish an interaction with the
carbonyl oxygen of Gly174, reminiscent of that observed for polyphenol hydroxyls. Moreover,
molecular docking studies and molecular dynamics simulations showed that compounds 20
and 21 bind to the KEAP1 Kelch domain, and their indole core and double bond establish
important interactions with essential residues involved in the binding with Nrf2.

Beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is an as-
partyl protease widely expressed in the brain, essential for the synthesis of monomeric
amyloid-β (Aβ), which spontaneously self-aggregates to form the insoluble fibers known
as senile plaques, initiating toxicity in AD [97]. BACE1 is considered a well-validated thera-
peutic target for AD, and this approach was used for obtaining potent BACE1 inhibitors,
such as verubecestat (MK8931, Figure 17) [98]. Within a series of selenium-containing
compounds, including the key pharmacophores of verubecestat and ebselen (a potent
antioxidant activating the Nrf2 pathway, Figure 17), the derivative 22 (Figure 17) was
selected as a promising multifunctional candidate for pharmacological therapy of AD [99].
Biological evaluation showed that compound 22 exhibited good BACE-1 inhibition and
Keap1–Nrf2–ARE pathway activation. Furthermore, it alleviates oxidative cell damage
induced by H2O2 or 6-OHDA, reduced Aβ1-40 in HEK APPswe 293T cells, and was able to
cross the BBB.
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verubecestat led to 22, a candidate for the treatment of AD [99].

In the context of AD, another multitarget approach was achieved through the prepa-
ration of merged ligands with dual pharmacological activity and subsequent structural
optimization [100].

The cholinergic hypothesis of AD suggests that the cognitive decline observed in the
disease can be attributed to a selective loss of cholinergic neurons of the basal forebrain.
Acetylcholinesterase (AChE) hydrolyzes acetylcholine (ACh), terminating the cholinergic
transmission. AChE inhibitors, considered in the therapeutic armamentarium of AD, prevent
the degradation of the neurotransmitter, allowing to prolong the action of the deficient neuro-
transmitter in the brain [101]. Three scaffolds were combined to form a series of molecules
containing a flexible carbon chain: (i) dimethyl fumarate, containing an α,β-unsaturated
ketone, a representative structure for Nrf2 activation, (ii) tranilast, an old antiallergic drug
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with anti-inflammatory properties patented for treating AD [102], and (iii) dithiocarbamate,
able to interact with the catalytic active site of AChE. Among the tested derivatives, the most
potent inhibitor of human AChE was compound 23 (Figure 18, IC50 53 nM) which also showed
activation of the Keap1–Nrf2–ARE pathway, antioxidant and anti-inflammatory effects, and
permeation of the BBB [103]. From in vivo studies, it emerged that it ameliorated cognitive
deficits in the scopolamine-induced mouse model of AD [103].
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A further combination of Nrf2 activator and AChE inhibitor was recently proposed,
characterized by the presence of a 1,2,4-oxadiazole core and benzylpiperidine [103]. Among
the various derivatives synthesized, compound 24 was selected as the representative
molecule (Figure 19).
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Figure 19. AChE inhibitor and Nrf2 activator dual agent. Chemical structure of the hybrid
donepezil/1,2,4-oxadiazole compound 24, a candidate for the treatment of AD [75].

It exhibited excellent human AChE inhibition (hAChE IC50 = 0.38 µM) in an ARE
luciferase reporter test and it was not cytotoxic against PC12 cells. The inhibitory AchE
was ascribed to the benzylpiperidine motif from the AChE inhibitor donepezil, which fits
into in the catalytic anionic site of enzyme. Compound 24 also presented Nrf2-inducing
activity, determined with an ARE-luciferase reporter assay, as well as an upregulation effect
on downstream proteins HO-1, NQO1, and GCLM, with significant antioxidative and anti-
inflammatory potency. The 1,2,4-oxadiazole core was identified to have inductivity of Nrf2 [75].
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The administration of this bifunctional agent led to a more marked improvement in cognition
and inflammation than the combination of an AChE inhibitor and an Nrf2 activator.

6. Conclusions

The potential clinical application of Nrf2 activators has been widely reported for the
treatment of different diseases, basically having in common oxidative stress and chronic
inflammation as hallmarks. However, in very recent years, the interest in the potential ther-
apeutic role of Nrf2 activators for the treatment of neurodegenerative diseases has grown,
and several small molecules have been disclosed, also aiming toward a polypharmacologic
approach, based on the multifactorial etiology of these pathological conditions. In this
review, we reported the latest and most important findings in the research on compounds
able to upregulate the Keap1–Nrf2–ARE pathway, considering activators, Nrf2/Keap1
protein–protein degraders, and multitargeting compounds, all showing a usefulness in
counteracting neurodegeneration. The drug design of the reported molecules and their
activity have been discussed, with a focus on the amelioration of their pharmacokinetic
parameters. In fact, despite the many promising results shown by Nrf2 activators, their
clinical use has been limited by issues regarding the interaction with off-targets and their
lack of selectivity, as well as by poor BBB penetration [5]. All in all, although the future of
Nrf2 activators seems promising, more research is necessary in this field to translate these
compounds into the clinical use.
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