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Abstract
Spatial mapping of biodiversity is crucial to investigate spatial variations in
natural communities. Several indices have been proposed in the literature to
represent biodiversity as a single statistic. However, these indices only pro-
vide information on individual dimensions of biodiversity, thus failing to grasp
its complexity comprehensively. Consequently, relying solely on these single
indices can lead to misleading conclusions about the actual state of biodiversity.
In this work, we focus on biodiversity profiles, which provide a more flexi-
ble framework to express biodiversity through nonnegative and convex curves,
which can be analyzed by means of functional data analysis. By treating the
whole curves as single entities, we propose to achieve a functional zoning of the
region of interest by means of a penalized model-based clustering procedure.
This provides a spatial clustering of the biodiversity profiles, which is useful for
policy-makers both for conserving and managing natural resources and reveal-
ing patterns of interest. Our approach is evaluated using a simulation study and
discussed through the analysis of the Harvard Forest Data, which provides infor-
mation on the spatial distribution of woody stems within a plot of the Harvard
Forest.
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1 INTRODUCTION

Biodiversity, or biological diversity, is the scientific term indicating the variability among all living organisms in a given
area (see DeLong, 1996). In recent years, there has been increasing concern about biodiversity loss, which not only leads
to reductions in populations, genes, and ecosystems but also triggers irreversible environmental changes affecting human
health and well-being (Cardinale et al., 2012; Díaz et al., 2006; Schmeller et al., 2020). In response to this decline numerous
organizations, agencies, and commissions have established expert working groups or initiatives focused on monitoring,
protecting, and restoring biodiversity (Díaz et al., 2015; European Commission, 2021; FAO, 2022; WHO Teams, 2020). At
the core of these efforts lies the need for quantitative measurements that capture the complex nature of biodiversity and
its spatial and temporal variations.

In the literature, a variety of mathematical functions known as biodiversity indices have been introduced to quantify
biodiversity (Magurran, 2021; Pielou, 1975). Each index offers a unique perspective on biodiversity, capturing different
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aspects such as species richness or the distribution of species abundances. Due to these diverse approaches, there is
currently no consensus on which indices offer the most accurate representation of biodiversity (Hurlbert, 1971; Purvis &
Hector, 2000).

In the literature, a variety of mathematical functions known as biodiversity indices have been introduced to quantify
biodiversity (Magurran, 2021; Pielou, 1975). Each index offers a unique perspective on biodiversity, capturing different
aspects such as species richness or the distribution of species abundances. Due to these diverse approaches, there is
currently no consensus on which indices offer the most accurate representation of biodiversity (Hurlbert, 1971; Purvis &
Hector, 2000).

In this work, we consider the Hill numbers framework to measure species diversity, focusing on the effective number
of species (Chao & Colwell, 2022; Hill, 1973). This framework offers a more robust and flexible analysis compared to tra-
ditional diversity indices. The Hill numbers refer to a family of species diversity indices defined for a parameter q, called
order of the diversity, that gives information about the species abundance distribution. Mathematically, the Hill num-
bers can be represented as a positive, decreasing, and convex curve termed Hill’s biodiversity profile. This curve can be
treated as functional data and analyzed considering the functional data analysis (FDA) approach (Ferraty & Vieu, 2006;
Ramsay & Silverman, 2005). This analytical approach was previously proposed by Gattone and Di Battista (2009), who
used a functional linear regression model to assess the impact of habitat effects on diversity changes. Analysis of Hill’s
biodiversity profiles that take advantage of functional tools, such as derivatives, arc length and curvature, have also been
proposed by Di Battista et al. (2016), Di Battista et al. (2017), Maturo and Di Battista (2018). In this paper, our focus shifts
to clustering these biodiversity profiles, aiming to advance the concept of functional zoning in biodiversity analysis. Spa-
tial clustering of biodiversity profiles offers a promising approach that aligns well with contemporary initiatives aimed
at biodiversity conservation and natural resource management. By identifying the homogeneous zones based on species
distributions and ecological patterns, this method provides a detailed spatial representation of biodiversity, allowing for
targeted and informed conservation strategies. Such spatially explicit information can significantly enhance monitoring
efforts by highlighting areas of high biodiversity value that require immediate attention or protection. Furthermore, it
may aid in the efficient allocation of resources by directing conservation efforts toward areas with the greatest ecologi-
cal significance. We illustrate the concept of functional zoning of biodiversity profiles using the Harvard Forest Data–a
well-established dataset (Orwig et al., 2022) containing two censuses of all woody stems with a minimum diameter of 1 cm
at breast height. Here, the study operates under the assumption of having complete census data for the entire biological
population. While this may not always be feasible in larger study regions, the potential application of functional zoning
in scenarios where only a sample of abundance vectors is available at specific sites will be discussed in Section 8. Further-
more, we note that this dataset was previously analyzed by Fortuna and Di Battista (2020), who employed a distance-based
LISA map and both hierarchical and k-means algorithms.

From a methodological perspective, while clustering methods for general functional data have been extensively
explored, there exists a relatively limited body of research specifically focused on clustering functional data with spatial
structures—see, for example, the discussion in the recent review by Zhang and Parnell (2023). Proposals in the frame-
works of hierarchical and dynamic clustering approaches, where the similarity between pairs of curves is based on the
use of the variogram function, are given by Giraldo et al. (2012), Romano et al. (2015) and Romano et al. (2017). Other
approaches based on the use of spatial heterogeneity measures and spatial partitioning methods were also proposed by
Dabo-Niang et al. (2010), Secchi et al. (2013), and Fortuna and Di Battista (2020). A few proposals can also be found in the
framework of model-based approaches. Vandewalle et al. (2021) and Wu and Li (2023), for example, incorporate longi-
tude and latitude coordinates as regressors in a multinomial logistic regression model, which is employed to estimate the
prior probabilities of a mixture model. On the other hand, Jiang and Serban (2012) and Liang et al. (2021) utilize Markov
Random Fields and Gibbs distribution to account for spatial dependence in their clustering procedures.

In this paper, we also use a model-based approach for spatially correlated functional data. In particular, we consider a
penalized model-based clustering procedure where a finite mixture of Gaussian distributions is used to model the expan-
sion coefficients obtained from approximating the functional biodiversity profiles in a finite-dimensional space. To take
care of the presence of spatial correlation, the procedure allows the modeling of the spatial distribution of the weights of
the mixture such that observations corresponding to nearby locations are more likely to have similar allocation probabil-
ities than observations that are far apart in space. The procedure represents a generalization of the approach proposed in
Vandewalle et al. (2021), and implementation details are provided in Pronello et al. (2023).

The paper is structured as follows. In Section 2 we provide a brief description of the motivating example and the data
used in this study. In Section 3 we summarize the key conceptual issues underlying the measurement of biodiversity,
discuss some of the most commonly used biodiversity indices, their conversion to effective numbers and the derivation
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of biodiversity profiles. Section 4 introduces the functional representation of biodiversity profiles and proposes empirical
variogram analysis to characterize their possible spatial dependence structure. Section 5 introduces the finite Gaussian
Mixture Model (GMM) used for spatial clustering, followed by a performance evaluation against the functional k-means
algorithm in Section 6 through a simulation study. Section 7 presents the results of the functional zoning of biodiversity
profiles using the Harvard Forest Data. Finally, Section 8 concludes the paper with a discussion and suggestions for
future research.

2 THE MOTIVATING CASE STUDY

Forests play a crucial role in tackling biodiversity conservation and restoration. According to FAO and UNEP (2020),
forests cover almost one-third of the global land area and harbour most of the terrestrial biodiversity. So it is essential to
provide policymakers with a tool to prioritize forestry policies and implement plans that positively impact biodiversity at
the population, genetic and ecosystem levels.

Harvard Forest is a vast laboratory and classroom of Harvard University, where observational studies and experiments
are conducted to drive research and education on several topics. One of the most relevant is the study of biodiversity. An
example of a dataset (data and metadata) for biodiversity studies is the Harvard Forest CTFS-ForestGEO Mapped Forest
Plot since 2014 (Number ID HF253, version 5, Orwig et al., 2022), where data were collected within the 35 ha plot located
on Prospect Hill. This plot covers a rectangle area of size 500 m × 700 m, and it was designed to include a continuous,
expansive, and varied natural forest landscape (Orwig et al., 2022), and it is a continuous grid of 875 cells of size 20 m × 20
m. HF253 is a collection of five datasets freely available for download at https://harvardforest1.fas.harvard.edu/exist/apps
/datasets/showData.html?id=HF253. In particular, we are interested in the most recent dataset, “hf253-05,” consisting
of 85,641 woody stems greater than 1 cm diameter at 1.3 m (at breast height) collected between May 2018 and January
2020 (second census). However, this census does not contain data from the swamp in the plot’s central portion. Data
collection in this area was supposed to take place during the winter of 2021 but was not carried out due to restrictions
related to the COVID pandemic. Moreover, a winter census for the swamp area was not planned for 2022. Given the
unique characteristics of the swamp area, we made the decision not to impute the missing data in this region by means
of a statistical technique. Instead, we replaced the missing values with the 37,577 observations collected for the swamp
area during the first census, which took place from June 2010 to March 2014. Figure 1 shows the available data within
the Prospect Hill Tract long-term plot. In black are displayed the data collected during the second census, while in green
we show the data collected during the first census in the swamp area.

Then, the complete dataset consists of 123,218 records providing information on each collected stem, identified by a
unique identifier (stem.id) representing the primary key of the dataset. However, only some information is of interest
for our analysis, specifically: the species mnemonic (the full Latin name, the family and other information on the species
are available in the dataset “hf253-02”), the coordinates in meters (m) within the plot relative to the left-down corner of
the area of interest, the diameter of the stem in centimeters (cm) and the status of the stem (alive, dead, lost stem, missing,
prior). It is crucial to emphasize here that the terms “alive” and “dead” refer to the whole tree. If any stem remains alive,
the tree is considered alive. The tree is deemed dead only when every single stem has perished. Given this information,
we can calculate abundance data for each tree species within each of the 875 cells of the grid covering the Prospect Hill
Tract long-term plot. From a spatial analysis standpoint, this dataset represents a typical example of lattice data.

In this application, we first perform a preprocessing step to focus on the stems that possess the “alive” status and
have a diameter exceeding 5 cm, obtaining 34,287 woody stems. To retrieve the trees, we filtered the preprocessed stems
dataset for unique rows based on the tree identifier (tree.id). This process resulted in a total of 31,153 individual trees,
representing 37 different species that are mapped over the area of interest. Of these 31,153 trees, only 3140 have more
than one stem.

The left panel of Figure 2 shows the absolute number of trees detected in each Prospect Hill Tract long-term plot
cell. The most populated area is the one relative to the right-up corner of the Prospect Hill Tract long-term plot. In this
area, it is also possible to note the higher species richness, that is, the absolute number of species present in each cell of
the Prospect Hill Tract long-term plot (see right panel of Figure 2). Figure 3 shows that Tsuga canadensis, Acer rubrum,
and Betula alleghaniensis are, among the other species, more present in this area. This information provides evidence of
species evenness, that is, in a cell the community is perfectly even if every species is present in equal proportions and
uneven if one species is dominant.

The swamp area records a few trees belonging to the same species, the Acer rubrum (acerru)—see Figures 2 and 3.
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F I G U R E 1 Distribution of the woody stems greater than 1 cm diameter at breast height collected within the Prospect Hill Tract
long-term plot (500 m × 700 m). In black are the data collected during the second census (May 2018–January 2020); in green are the data
collected during the first census (June 2010–March 2014) in the swamp area.
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F I G U R E 2 Absolute number of trees (left panel) and species (species richness, right panel) in each of the 875 cells of the Prospect Hill
Tract long-term plot.

The descriptive analysis conducted on the Prospect Hill Tract long-term plot yields valuable insights into various
aspects of biodiversity. It offers information on species richness, evenness, and the dominance of specific species, which
are important indicators of biodiversity. However, it is important to note that no single measure can fully capture the
complexity and entirety of biodiversity within this ecosystem. Biodiversity is a multifaceted concept that extends beyond
solely considering the number and distribution of species. In the next section, we will thus delve into the challenge of
measuring biodiversity and consider the use of biodiversity profiles as a method to address this complex issue.
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F I G U R E 3 Spatial distribution of the relative abundance of species in each of the 875 cells of the Prospect Hill Tract long-term plot
(species evenness).

3 MEASURING BIODIVERSITY

In conservation ecology, information on the spatial distribution and composition of biological communities is essential
in designing effective biodiversity conservation and management strategies. Site clustering and prioritization are cru-
cial because resources for conservation are often limited, and it is essential to allocate them effectively to maximize
conservation outcomes.

Biodiversity, primarily considered here in terms of the number and relative abundance of species in a community, that
is, taxonomic diversity, can be measured in various ways depending on the study’s specific objectives. Common measures
of biodiversity include solely species richness or species evenness alone. However, biodiversity is a complex and multi-
variate concept, and attempting to measure it using a single index has its limitations. To encompass multiple biodiversity
components simultaneously (e.g., species composition, abundance, and other ecological attributes), complexity and mul-
tivariate measures have been developed, such as the Shannon entropy (Shannon, 1948), and the Gini–Simpson diversity
index (Gini, 1912; Simpson, 1949).

However, interpreting and comparing complex indices can be challenging due to variations in their measurement
units and potential nonlinear formulations. But more importantly, these indices do not fulfil the doubling propriety, an
essential requirement for the diversity measures. This propriety states that if two communities have equal diversity (mea-
sured using certain indices) and an equal number of individuals but do not share any species in common, then the diversity
of the pooled community will be twice the diversity of either individual community.

To solve this problem, MacArthur (1965) proposed to convert the complexity measures to the effective number of species,
that is the hypothetical number of equally abundant species that would produce the same value of a diversity measure as
the observed community. By converting diversity measures into the effective number of species, researchers can quantify
and compare diversity levels more accurately, accounting for differences in species richness and evenness. This approach

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2865 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [22/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 20 GOLINI et al.

helps to capture the underlying complexity of biodiversity and provides a more intuitive way to understand and interpret
diversity values.

3.1 Hill numbers and biodiversity profiles

The family of the Hill numbers is a family of diversity indices based on the concept of effective number of species that allows
capturing both species richness and the evenness of species abundances within a community (cell). Hill numbers are
expressed as a function of a parameter q, which determines the order of the Hill number (Hill, 1973). A direct way of form-
ing a lattice is to specify the centroid of the ith cell vi and to record its longitude and latitude coordinates (xi, yi). Assuming
that each cell contains Si, i = 1, … ,N, species of trees, we denote with pi = p(vi) =

(
p1(vi), … , ps(vi), … , pSi(vi)

)
the

cell-specific relative abundance vector of species, where 0 ≤ ps(vi) ≤ 1 and
∑Si

s=1ps(vi) = 1. Then, the family of the Hill
numbers is given by

H(q;pi) =

( Si∑
s=1

ps(vi)q

)1∕(1−q)

, for q ∈ [0,+∞) ⧵ {1} and i = 1, … ,N. (1)

The order q of the Hill number determines the weight given to rare versus abundant species in the diversity evaluation.
When q = 0, the Hill number represents the species richness. For q = 1 the Hill number is not defined, but the limit exists
and gives the exponential of the Shannon entropy. When q = 2 the Hill number coincides with the inverse of the comple-
ment of the Gini–Simpson index. For all q ≥ 0, Hill numbers satisfy the doubly property and have the same measurement
unit as species richness.

To visualize the information captured by Hill numbers across different orders, a biodiversity profile can be created by
plotting the Hill numbers on a single graph as a function of the parameter q. This profile shows how the Hill numbers
change as the parameter q varies, providing a comprehensive view of biodiversity patterns and capturing the multivariate
nature of biodiversity. In particular, the region of a biodiversity profile with small values of q provides insights into species
richness and rare species since H(q;pi) is influenced significantly by both common and rare species. Conversely, the tail
of the biodiversity profile with large values of q sheds light on dominance and common species, as H(q;pi) becomes less
affected by rare species. The order parameter q represents, therefore, the insensitivity to rare species. As it grows, the
perceived biodiversity H(q;pi) drops.

4 FUNCTIONAL DATA ANALISYS FOR HILL NUMBERS PROFILES

Let pi = p(vi) =
(

p1(vi), … , ps(vi), … , pSi(vi)
)
, i = 1, … ,N, denote the cell-specific relative abundance vector for Si

species and let H(q;pi) be the corresponding biodiversity profile. These profiles can be perceived as samples of (spa-
tially dependent) smooth curves which, in turn, can be viewed as realizations of an underlying biological process
generating the abundance vectors pi. Following Gattone and Di Battista (2009), we examine biodiversity profiles, rep-
resented as functions of q and denoted by H(q;pi), within the FDA framework. Despite the flexibility of the FDA
approach, the inherent constraints of biodiversity profiles—specifically, their nonnegativity, monotonic decrease, and
convexity—present modeling challenges. A conventional basis expansion of the curve might not adequately account for
these specific characteristics, potentially introducing undesirable artifacts in the resulting functional data. To address
this, we adopt the solution proposed by Ramsay (1998), as applied to biodiversity profiles by Gattone and Di Bat-
tista (2009) and Fortuna et al. (2020), and to Lorenz curves by Wu and Sickles (2018), which employs the following integral
transformation:

H(q) = ∫
q

0
exp

(
∫

x

0
g(t)dt

)
dx, (2)

where g(⋅) is a Lebesgue square integrable function. This parameterization provides a positive first derivative as H′(q) =
exp

(∫ x
0 g(t)dt

)
> 0 and so it guarantees the monotonicity restriction. The second derivative can be expressed as H′′(q) =

H′(q)g(q) and this implies that H′′(q) ≥ 0 if g(q) ≥ 0 for all q. Thus, the nonnegativity constraint on g(⋅) ensures convexity
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for H(⋅). Therefore, starting from Equation (2) one can derive the differential equation

H′′(q)
H′(q)

= g(q),

whose general solution is

H(q) = 𝜉0 + 𝜉1∫
q

0
exp

(
∫

x

0
g(t)dt

)
dx,

where 𝜉0 and 𝜉1 are arbitrary constants (see Thm. 1 in Ramsay, 1998). Following Wu and Sickles (2018), we parame-
terize g(t) as a function of an unconstrained square-integrable function H̃(⋅), as g(t) = g(H̃(t)). This approach allows the
constrained function H to be represented as a transformation of an unconstrained function H̃.

Considering each cell i, the function H can be written as

H(q;pi) = 𝜉0i + 𝜉1i∫
q

0
exp

(
∫

x

0
g(H̃(t;pi))dt

)
dx, i = 1, … ,N, (3)

where 𝜉0i and 𝜉1i are arbitrary constants. The function g can be chosen as suggested by Wu and Sickles (2018), with a
suitable choice represented by g(q) = 1

2
q2. Being unconstrained, H̃ can be expanded as a linear combination of a finite set

of basis functions 𝜙j(q), j = 1, … , J, so that

H̃(q;pi) =
J∑

j=1
𝛼ji𝜙j(q), (4)

and each function H(q;pi) can be represented by its vector of coefficients collected in the vector, 𝜷 i =
(𝜉0i, 𝜉1i, 𝛼1i, … , 𝛼Ji)T , i = 1, … ,N. For each profile, the parameters in 𝜷 i can be estimated in the framework of penalized
regression (see Ramsay, 1998 or Wu & Sickles, 2018) and the fitted function takes the form

Ĥ(q;pi) = 𝜉0i + 𝜉1i∫
q

0
exp

(
∫

x

0
g

( J∑
j=1

�̂�ji𝜙j(t)

)
dt

)
dx, i = 1, … ,N. (5)

For each of the 875 cells in the Prospect Hill Tract long-term plot, Figure 4 displays the fitted curves for Hill number
profiles with q ∈ [0, 5] ⧵ {1} and J = 15. This choice of J = 15 basis functions, based on the authors’ experience, ensures a
satisfactory fit of the profiles. As required, all the fitted curves are monotone decreasing, and they start from the maximum
at q = 0, which coincides with the species richness. The 875 curves also intersect at various points, exhibiting different
slopes and curvatures. To highlight potential similarities in the overall shape of the profiles and address their spatial
distribution, we propose a suitable clustering procedure in the following sections.

4.1 Assessing spatial dependence for functional data

Standard statistical techniques for modeling functional data primarily focus on independent functions. However, assum-
ing independence appears unreasonable when observing samples of functions across different contiguous cells. Accord-
ingly, when clustering biodiversity profiles in space, it is crucial to assess spatial dependence to understand the underlying
spatial patterns and ensure the validity of the clustering results.

Analyzing the spatial variability of biodiversity profiles can be done using a trace-variogram for functions (Giraldo
et al., 2011) defined as

2𝛾(h) = E
[
∫

Q

0

(
H
(

q;pi(vi)
)
− H

(
q;pi(vi + h)

))2dq
]
, (6)
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F I G U R E 4 Fitted curves, one per each cell in the Prospect Hill Tract long-term plot.

over a vector distance h. Although usually defined for spatial processes whose index varies continuously over space, a
variogram as a measure of spatial dependence can also be useful when working with lattice data (see Cressie, 1993, p. 401,
and Wall, 2004).

An important assumption underlying the use of the L2 distance in the trace-variogram in Equation (6) is that the length
of the domain of the functions is fixed. Specifically, the latter assumption assumes perfect alignment of the functions,
which is not a concern within the framework of biodiversity profiles.

Under the stationarity hypothesis, it is common practice to estimate the trace-variogram in Equation (6) by a mean
value of samples grouped over an isotropic distance h:

2�̂�(h) = 1
n(h)

∑
||vi−vr||=h

∫
Q

0

(
Ĥ(q;pi) − Ĥ(q;pr)

)2dq, (7)

where n(h) is the number of pairs (p(vi),p(vr)) at spatial distance h and Ĥ(⋅) are as defined in Equation (5).
Figure 5 shows the (omni-directional) empirical trace-variogram as a function of separation distance h, for Q = 5.

Each point on this plot thus represents an average over a number of pairs of estimated biodiversity profiles that are the
same distance apart. The full curve in Figure 5 is the empirical LOESS fit to the estimated variogram. The variogram
plot indicates a distinct finite range and sill, suggesting that nearby biodiversity profiles are more correlated and exhibit
similar values. This observation underscores the significant role of the variogram in informing the definition of clusters.

5 MODEL-BASED CLUSTERING FOR SPATIAL FUNCTIONAL DATA

By using the vector of coefficients 𝜷 = (𝜉0, 𝜉1, 𝛼1, … , 𝛼J)T , introduced in Equations (3) and (4), as representative data for
a biodiversity profile, we propose a finite GMM with a L1 penalized likelihood for functional clustering, named Penalized
model-based Functional Clustering (PFC-L1) in Pronello et al. (2023). If a latent variable Zi = {Zi1, … ,ZiK} denotes the
cluster membership of the ith curve to the kth group, the marginal density of 𝜷 is a weighted combination of K (number
of groups) Gaussian densities fk with mean vector 𝝁k and covariance matrix 𝚺k, that is

f (𝜷) =
K∑

k=1
𝜋k(v;𝝎)fk(𝜷;𝝁k,𝚺k),

where 𝜋k(v;𝝎) are spatially varying mixing proportions (changing with the spatial coordinate (x, y) of the cell v and such
that

∑K
k=1𝜋k(v;𝝎) = 1) depending on some parameters 𝝎 that, a priori, give the probabilities of belonging to a group, that
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F I G U R E 5 Empirical trace-variogram (in grey dots) and LOESS fit (in black solid line) for smoothed Hill number profiles.

is, 𝜋k(v;𝝎) = P(Zk(v) = 1), k = 1, … ,K, and 𝜋k(v;𝝎) > 0 for each k. Then we can write the log-likelihood function as

l(𝜽; 𝜷) =
N∑

i=1
log

[ K∑
k=1

𝜋k(v;𝝎)fk(𝜷 i;𝜇k,Σk)

]
,

where 𝜽 is the set of all model parameters to be estimated, while 𝜷 i = (𝜉0i, 𝜉1i, 𝛼1i, … , 𝛼Ji)T is the vector of coefficients of
the ith biodiversity profile.

5.1 Spatial modeling of mixing proportions

Spatially varying mixing proportions are introduced in the GMM model to take into account the spatial dependence
among biodiversity profiles. We thus assume that observations corresponding to nearby locations are more likely to have
similar allocation probabilities than observations that are far apart in space.

Considering the Kth group as a baseline, let

𝜁k(v;𝝎) = log(𝜋k(v;𝝎)∕𝜋K(v;𝝎)), k = 1, … ,K − 1, (8)

denote the log-odds spatial process. Also, let V be a valid (N × N) generalized variogram matrix (Chilès & Delfiner, 2012)
and U a (N × 3) design matrix whose rows are defined as ui = (1, xi, yi)T , where (xi, yi) are the spatial coordinates of the
cell vi. Then, if we define the so-called Bending Energy matrix (Mardia et al., 1998) as

B = V−1 − V−1U
(
U′V−1U

)−1U′V−1,

it can be shown—as a result of the Karhunen–Loéve (KL) theorem (Adler, 2010)—that the log-odds spatial process 𝜁k(v;𝝎)
can be rewritten as a linear model through the following truncated KL expansion

𝜁k(vi;𝝎) =
L∑

l=1
𝜔l,k 𝜓l(vi), i = 1, … ,N, (9)

where 𝜔l,k are the elements of the vector 𝝎 to be estimated, and the 𝜓l(vi) are basis functions defined as the eigenvectors
obtained by the spectral decomposition B = 𝚿G𝚿′, with G = diag(g1, … , gN) being the diagonal matrix of eigenvalues.
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10 of 20 GOLINI et al.

Since it can be shown that BU = 0, it follows that the first three eigenvalues of B are equal to zero and the corresponding
eigenvectors are given by the columns of U.

In practice, the modeling of the log-odds spatial process is facilitated by the truncated KL expansion based on the
property that, given any orthonormal basis functions, we can find some integer L so that 𝜁k(v;𝝎) can be approximated
by the finite weighted sum of basis functions. It can be shown (Mardia et al., 1996) that, when the variogram matrix is
parametrized as follows

V(hi,r) =
1

8𝜋
h2

i,r log(hi,r),

where hi,r = ||vi − vr||2 and the basis functions 𝜓l(vi) are obtained through the spectral decomposition of B above, the
spatial process 𝜁k(v;𝝎) is modeled through a Thin-plate spline.

5.2 Penalized likelihood

Allowing for different cluster means and covariance matrices the specified model can be over-parametrized, and
to keep flexibility we avoid introducing any kind of constraints by, instead, considering two penalties that regular-
ize parameter estimation in the log-likelihood function, as in Zhou et al. (2009). Thus, given the profile coefficients
𝜷 i with length p = J + 2, and conditional on the number of groups K, the penalized log-likelihood function can be
written as

lP(𝜽; 𝜷) =
N∑

i=1
log

[ K∑
k=1

𝜋k(v;𝝎)fk(𝜷 i;𝝁k,𝚺k)

]
− 𝜆1

K∑
k=1

p∑
j=1

|𝜇k,j| − 𝜆2

K∑
k=1

p∑
j,q

|Wk;j,q|, (10)

where 𝜆1 > 0 and 𝜆2 > 0 are tuning parameters to be suitably chosen (see Section 5.3), 𝜇k,j are cluster mean elements
and Wk;j,q are entries of the inverse of the cluster-specific covariance matrix Wk = 𝚺−1

k . The name Penalized model-based
Functional Clustering (PFC-L1) in Pronello et al. (2023) is chosen because the penalty terms contain sums of absolute
values, and so they are of L1 (or LASSO) type. Indeed, the first penalty term facilitates the selection of basis functions
appearing in the expansion of H̃ by keeping only the terms useful in separating groups. The second penalty term helps to
shrink the elements Wk;j,q and allows estimating—thanks to sparsity—large covariance matrices and avoiding possible
singularity problems.

The model parameter estimation cannot be obtained by direct optimization of the log-likelihood function given in
Equation (10) but, since Z is not observed, can be efficiently carried out using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). The analytical solutions to update the cluster membership probabilities, the cluster
mean elements and the cluster-specific precision matrices are detailed in Pronello et al. (2023). In particular, at each
iteration the Graphical LASSO algorithm (Friedman et al., 2008) is used to obtain sparse cluster-specific precision matri-
ces, whereas to estimate the spatially varying mixing proportions 𝜋k(v;𝝎) the multinomial logit model as specified in
Section 5.1 needs to be fitted. Thus, the estimation of the parameters of the linear model in Equation (9) can be obtained at
the (d + 1)th iteration of the EM algorithm as the solution of the log-likelihood maximization of a weighted multinomial
logit model, that is

�̂�
(d+1) = arg max

𝝎

N∑
i=1

K∑
k=1

𝜏
(d)
k (vi) log(𝜋k(vi;𝝎)),

where 𝜏
(d)
k (vi) are the estimated posterior probabilities that a biodiversity profile i, summarized here by �̂� i, belongs to the

kth group, and are computed through the iterations of the EM algorithm as

𝜏
(d)
k (vi) =

𝜋
(d)
k (vi;𝝎)fk(�̂� i; �̂�

(d)
k , �̂�

(d)
k )∑K

k=1𝜋
(d)
k (vi;𝝎)fk(�̂� i; �̂�

(d)
k , �̂�

(d)
k )

. (11)
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GOLINI et al. 11 of 20

5.3 Model selection

One of the most difficult steps in clustering is to determine the optimal number of clusters, K, to group the data, and
we know there is no “right” answer. In this paper, we perform a grid-search for model hyper-parameters and choose the
triplet {K; 𝜆1; 𝜆2} that allows for model selection based on information criteria. In particular, we consider likelihood-based
measures of model fit that include a penalty for model complexity such as the Bayesian Information Criterion (BIC)

BIC(K, 𝜆1, 𝜆2) = l(�̂�K ; �̂�|K, 𝜆1, 𝜆2) −
𝒞
2

log(N),

and the Integrated Classification Likelihood (ICL) index (Baudry, 2015)

ICL(K, 𝜆1, 𝜆2) = BIC(K, 𝜆1, 𝜆2) +
K∑

k=1

N∑
i=1

𝜏k(vi) log 𝜏k(vi),

where l(�̂�K ; �̂�|K, 𝜆1, 𝜆2) is the value of the maximized log-likelihood objective function with parameters �̂�K estimated
under the assumption of a model with K components, �̂� collects all �̂� i and𝒞 measures the complexity of the model. While
BIC has a penalty term only related to the number of observations N and the complexity measure 𝒞 , ICL also includes
an additional term—that is the estimated mean entropy—to penalize clustering configurations with overlapping groups
(this facilitates solutions with well-separated groups, i.e., with low entropy).

To use the above criteria it is necessary to clarify what is 𝒞 in a penalized model. In our case, we consider

𝒞 =
K∑

k=1

p∑
j=1

I
(
�̂�k,j ≠ 0

)
+

K∑
k=1

∑
i≤j

I
(
Σ̂k;j,q ≠ 0

)
+ L(K − 1),

where I(⋅) is the indicator function that applies to the (sparse) likelihood estimate of 𝝁k and 𝚺k, so that 𝒞 is the number of
nonzero entries in both the means and the upper half of the covariance matrices, plus the number of parameters for the
spatial mixing proportions. In general, the model with the highest values of BIC or ICL could be selected as the desired
model.

6 SIMULATION STUDY

In this section, we conduct a simulation study to assess the performance of our proposed clustering procedure for biodi-
versity profiles. Additionally, we systematically compare our algorithm with the functional k-means algorithm (Abraham
et al., 2003), a widely adopted method for clustering functional data. The comparison is carried out across three scenarios,
each reflecting diverse spatial arrangements of the clusters over the spatial domain. The experimental setup enables us
to evaluate the impact of integrating spatial priors into our mixed model framework and determine how effectively these
priors enhance the performance of our clustering procedure compared to the functional k-means method (the latter also
considered in a version with standardized coordinates of cells as a proxy of spatial information).

Specifically, we consider a (20 × 20) regular grid, where the cells are assigned to three spatial clusters, denoted as
C1,C2,C3. These clusters, with sizes N1 = 125, N2 = 125, and N3 = 150, respectively, are illustrated in Figure 6. In the
first scenario, cluster labels are randomly assigned to cells, resulting in biodiversity profiles that are spatially independent
across the entire grid. In contrast, the second scenario introduces spatial structure, where each cluster of biodiversity
profiles is confined to a specific region within the domain. Lastly, the third scenario maintains spatial structure but allows
clusters C1 and C2 to be split across the grid.

To generate the biodiversity profiles, H(q;pi), assigned to cells vi, i = 1, … ,N, we first randomly draw the number of
species, Si, by discretizing the realizations of a Normal distribution. Specifically, Si|(Zi = k) = ⌊Tk⌉ with Tk ∼  (𝜇k, 𝜎k),
where Zi is the cluster membership latent variable and the operator ⌊⋅⌉ indicates rounding to the nearest integer. Then,
we model the relative abundance vector, pi, for Si species, using a Dirichlet distribution with parameter 𝜼i, that is, pi ∼
DirSi(𝜼i). To induce variations in the curvature of the biodiversity profiles, we express 𝜼i|(Zi = k) as Si × 𝜹k, where 𝜹k
represents an Si-dimensional vector of weights. These weights enable us to achieve different degrees of curvature in the
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12 of 20 GOLINI et al.

F I G U R E 6 Spatial distributions of clusters across the grid: (left) Scenario 1, (middle) Scenario 2, (right) Scenario 3.

T A B L E 1 Parametrization of the simulation setup: each row provides details about the generating process of the number of species
within the kth cluster.

𝜹k

k Tk ∼  (𝝁k, 𝝈k) Case 1 Case 2

1 T1 ∼  (6, 0.5) 𝛿1 = [2 … 2] 𝛿1 = [2 … 2]

2 T2 ∼  (12, 1.5) 𝛿2 =
[
2 2 2 2 2 1

5
… 1

5

]
𝛿2 =

[
2 2 2 2 2 1

4
… 1

4

]
3 T3 ∼  (10, 1.5) 𝛿3 =

[
2 2 2 1

2
… 1

2

]
𝛿3 =

[
2 2 2 1

2
… 1

2

]

biodiversity profiles within each cluster Ck. The parameterization used for the simulation design, common to all three
scenarios, is detailed in Table 1.

This parameterization enables the generation of diverse vectors of relative species abundance, thereby capturing var-
ious biodiversity profiles that represent grid cells where species are either evenly distributed (Case 1) or rare (Case 2). For
instance, drawing from a DirSi(𝜼i|(Zi = 1), suggests that cluster C1 represents an almost perfectly even and heterogeneous
cell-community type. Conversely, drawing from DirSi (𝜼i|(Zi = 2)) and DirSi (𝜼i|(Zi = 3)), with 𝜼i|(Zi = 2) and 𝜼i|(Zi = 3)
inducing skewness in the Dirichlet distribution, results in relative abundance vectors, pi, with increasingly dissimilar
elements. This variation reflects the presence of relatively rarer species, which is particularly pronounced in the third
cluster.

As an illustrative example, Figure 7 presents two sets of N = 400 biodiversity profiles, H(q;pi), generated using the
Dirichlet distribution parameterization detailed in Table 1. The two panels correspond to the parameterizations outlined
in Case 1 (left panel) and Case 2 (right panel). The primary distinction between these cases lies in the generation of
biodiversity profiles for Cluster 2 which, in Case 1, shows a steeper decline compared to those in Case 2, indicating a
higher prevalence of rare species.

For this simulation study, we generated 100 samples, each comprising N = 400 biodiversity profiles. We then applied
the proposed PFC-L1 clustering procedure to each sample, selecting 𝜆1 and 𝜆2 through a grid-search over the set Λ1 × Λ2,
where Λi = {10, 30, 50, 70, 90}, i = 1, 2. For comparison purposes, both the functional k-means algorithm and the PFC-L1
procedure are evaluated under the assumption of a known and fixed number of clusters, set at K = 3. Moreover, to evaluate
the ability of both algorithms to recover accurately the cluster labels, Zi, of the data, we utilized the Adjusted Rand Index
(ARI).

The subplots in Figure 8 display the boxplots of the 100 ARI values obtained for Case 1 (upper panels) and Case 2 (lower
panels) across all three scenarios. It is important to note the distinction between the first and second boxplots within each
subplot: while both are related to the functional k-means algorithm, the second boxplot represents the distribution of ARI
values when the spatial coordinates of the cells are provided as additional features. This inclusion allows the functional
k-means algorithm to naively incorporate spatial information into the clustering process, potentially enhancing its ability
to capture spatial structures within the data. As evident from the results, in Scenarios 2 and 3 where spatial structures
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F I G U R E 7 Samples of biodiversity profiles generated in Case 1 (left) and Case 2 (right).

0.6

0.7

0.8

0.9

1.0

K-meansA K-meansB PFC-L1

AR
I v

alu
e

Scenario 1

0.6

0.7

0.8

0.9

1.0

K-meansA K-meansB PFC-L1

Scenario 2

0.6

0.7

0.8

0.9

1.0

K-meansA K-meansB PFC-L1

Scenario 3

0.6

0.7

0.8

0.9

1.0

K-meansA K-meansB PFC-L1

AR
I v

alu
e

Scenario 1

0.6

0.7

0.8

0.9

1.0

K-meansA K-meansB PFC-L1

Scenario 2

0.6

0.7

0.8

0.9

1.0

K-meansA K-meansB PFC-L1

Scenario 3

F I G U R E 8 Boxplots of Adjusted Rand Index (ARI) values for three clustering methods across 100 simulations for Case 1 (upper) and
Case 2 (lower).

are present, the proposed PFC-L1 clustering procedure consistently outperforms both versions of the functional k-means
algorithm. However, in Scenario 1 for Case 2, where the spatial structure is very weak or absent, the PFC-L1 exhibits more
variable ARI values. This scenario appears more challenging due to the overlapping of curves with similar curvature,
making it more difficult to identify distinct partitions correctly.

Figure 9 also illustrates the PFC-L1 algorithm capability in recovering cluster spatial distributions for Case 1 (left
panel) and Case 2 (right panel). The algorithm seems to perform better in Case 1, offering more accurate maps of the
estimated prior probabilities, �̂�k(v;𝝎), for each cluster. This setup thus allows us to assess the effectiveness of integrating
spatial priors into our mixed model framework and to gauge their impact on enhancing clustering performance compared
to functional k-means.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2865 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [22/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 20 GOLINI et al.

5

10

15

20

5 10 15 20

Scenario 1

5

10

15

20

5 10 15 20

Scenario 2

5

10

15

20

5 10 15 20

Scenario 3
π̂1

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

π̂2

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

π̂3

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

5 10 15 20

Scenario 1

5

10

15

20

5 10 15 20

Scenario 2

5

10

15

20

5 10 15 20

Scenario 3
π̂1

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

π̂2

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

π̂3

0.0

0.2

0.4

0.6

0.8

1.0

F I G U R E 9 Maps of the estimated prior probabilities �̂�k(v;𝝎) for each cluster of the grid for all scenarios in Case 1 (left) and Case 2
(right).

7 APPLICATION TO THE HARVARD FOREST DATA

In this section, we extend the statistical analysis of the dataset discussed in Section 2 and present the results obtained
from clustering the biodiversity profiles using the PFC-L1 procedure. To take care of the spatial dependence among the
profiles, we have considered a Thin-plate spline parameterization (see Section 5.1) with L = 16 << N basis functions
explaining about 91.50% of the spatial variability. The spatial patterns of the basis functions are shown in Figure 10 and,
as expected, they show a decreasing order of smoothness. For example, the first basis function 𝜓1(v) is constant over
all the domain of interest while 𝜓2(v) and 𝜓3(v) are linear trends of the longitude and latitude coordinates, respectively.
More in general, higher-order functions correspond to larger-scale features while lower-order functions correspond to
smaller-scale details.

By fixing J = 15 in Equation (5) and considering a discrete grid of values for the triplet (K, 𝜆1, 𝜆2), the BIC and ICL
criteria suggest that a GMM model with three spatial clusters should be considered (see Figure 11). BIC and ICL values
closely align since the posterior probability estimates result in distinct partitions, where the clusters are well-separated
with estimated mean entropy approaching zero. However, we are not aware of the original distribution which generated
the data so, to validate the performance evaluation of the clustering process we also consider interpretation as an impor-
tant part of model selection, especially from a knowledge discovery perspective. Interpretation can help us gain insights
and guiding decisions based on our clustering procedure and for this, in the following, we favor the solution with K = 4
as it better highlights the group of cells with constant biodiversity profiles (see below) and for which the values of BIC
and ICL are the “second best.”

Figure 12 provides a spatial representation of the four clusters. In particular, the upper left panel illustrates the func-
tional zoning of the Prospect Hill Tract long-term plot derived from these clusters, the upper right panel displays the
behaviour of the estimated mean biodiversity profiles and the bottom panel exhibits the allocation of the individual
biodiversity profiles Ĥ(q;pi) in each cluster. Due to the intersection of the estimated mean biodiversity profiles, direct
comparisons among the four clusters are not feasible, as the profiles only offer a partial ordering of their biodiversities.
Although this limitation cannot be entirely overcome, biodiversity profiles remain significantly more meaningful than
univariate indices. In fact, even in cases where two communities (cells) are not directly comparable, examining where
their biodiversity profiles intersect can reveal changes or variations in the composition of species.

Clusters 1 and 3 emerge as the most populated clusters, with 326 and 264 cells, respectively, whereas Cluster 2 includes
196 cells and, finally, Cluster 4 only contains 89 cells. All clusters display similar average species richness (when q = 0)
despite different levels of variability and slope, as shown in the bottom panel of Figure 12. In particular, Cluster 4 exhibits
the lowest average species richness among the clusters. Remarkably, the clusters exhibit diverse species compositions,

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2865 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [22/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GOLINI et al. 15 of 20

F I G U R E 10 Spatial maps of the first 16 basis function 𝜓l, l = 1, … ,L, obtained by the spectral decomposition of the Bending Energy
matrix and used to model the spatial variability of the log-odds as in Equation (8).
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F I G U R E 11 Bayesian Information Criterion (BIC) and Integrated Classification Likelihood (ICL) values for model selection. The plot
maps the maximum BIC and ICL values achieved for the triplet (K, 𝜆1, 𝜆2) according to the number of clusters K.

implying that they achieve similar average species richness by having unique sets of species in each cluster. For example,
Cluster 1 includes solely one Acer saccharum tree, while this particular species is entirely absent in Cluster 3 as illustrated
in Figure 13.

Although all clusters have similar average species richness, they show different values for average species abundance
(when q = 1) and average species dominance (when q = 2). For example, compared with Clusters 1 and 2, Cluster 4 dis-
plays higher average species abundance and dominance resulting from estimated mean biodiversity profile intersections.
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F I G U R E 12 Upper left: Functional zoning results of the Prospect Hill Tract long-term plot with four clusters (each cell is assigned a
specific colour based on its associated clustering label). Upper right: estimated mean biodiversity profiles Ĥ(q; ⋅) in each cluster. Bottom:
individual biodiversity profiles Ĥ(q;pi) in each cluster with superimposed estimated mean biodiversity profiles (thicker lines).

These findings emphasize the nuanced differences in species distribution and dominance within the identified clusters.
The upper right plot of Figure 12 further confirms that for 0 ≤ q ≤ 2, the biodiversity profiles are sufficient to characterize
the taxonomy diversity in the Prospect Hill Tract long-term plot.

In general, the main contributing factor in differentiating between the clusters appears to be associated with the deriva-
tives of the estimated Hill profiles. These derivative functions convey significant information and are consistent with the
functional representation used in Equation (5). Clusters 1 and 2 are characterized by curves with steeper slopes, while
Cluster 4 stands out with profiles that remain relatively constant regardless of the intercept level. This behaviour holds
particular significance when interpreting the clustering results since, as demonstrated in the example from Section 3, a
constant profile indicates a uniform distribution of species within the cell, while a more convex profile suggests an uneven
distribution.

Figure 14 displays the spatial distribution of the estimated prior probabilities �̂�k(v;𝝎) for each cluster. As it can be
noticed, the distribution of the clusters clearly shows how the estimated posterior probabilities, 𝜏k(vi), reflect the infor-
mation about the spatial distribution of the weights of the mixture (see upper left panel Figure 12). As illustrated in
Section 5, we note that clusters arise from a careful balance between geographical proximity and similarity among curves
(biodiversity profiles). The values represented by �̂�k(v;𝝎) provide valuable information about the spatial variability of the
clusters. Consequently, the outcomes shown in Figure 14 serve as spatial predictions of the clustering labels, focusing
solely on spatial information. These predictions enable us to divide the study area into distinct zones that highlight the
prevalence of specific clusters, offering policymakers insightful guidance for crafting effective interventions. For instance,
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F I G U R E 14 Maps of the estimated prior probabilities �̂�k(v;𝝎) for each cluster of the Prospect Hill Tract long-term plot.

policymakers could establish appropriate perimeters for areas at risk based on the clustering results and estimated prior
probability maps, optimizing their decision-making process and resource allocation.

8 DISCUSSION

Biodiversity profiles present a valuable tool for researchers to characterize and compare ecological communities by
accounting for both abundant and rare species, thus recognizing the multidimensional aspects of diversity. In this
study, following Gattone and Di Battista (2009), we have treated biodiversity profiles as non-negative and convex curves,
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amenable to analysis through the FDA approach. In particular, by considering the whole profiles as single entities, we have
integrated FDA with spatial (model-based) clustering techniques to identify and delineate homogeneous zones based on
spatial contiguity and shape similarity of the curves. This approach goes beyond traditional methods that may consider
only individual abundance vectors and offers a more comprehensive understanding of biodiversity distribution, captur-
ing the underlying patterns and variations across different regions. By focusing our study on a plot of the Harvard Forest,
classification results indicate that our modeling approach can provide valuable information for policymakers, enabling
them to make informed decisions regarding the conservation and management of natural resources.

However, given the nature of the available data and the absence of additional information, we recognize a few lim-
itations in our taxonomic diversity study. Specifically, we acknowledge that working with complete census data is less
common, particularly in larger study regions. In many realistic scenarios, in fact, only a sample of abundance vectors
may be available at specific sites. In scenarios where complete abundance data is unavailable, achieving functional zon-
ing of the domain presents several challenges. One approach involves interpolating the basis functions 𝜓l(vi) at new sites
using kriging and subsequently predicting the posterior probability 𝜏

(d)
k (v), as discussed in Pronello et al. (2023). Another

alternative is to predict abundance vectors for missing sites. However, it is important to note that a single diversity func-
tional profile can correspond to multiple abundance vectors. Given our focus on analyzing Hill’s biodiversity profiles, our
approach emphasizes predicting these functional profiles rather than directly estimating abundance vectors. This predic-
tion can be accomplished by adopting a functional kriging model (Franco-Villoria & Ignaccolo, 2017; Giraldo et al., 2011;
Ignaccolo et al., 2014; Mateu & Giraldo, 2021). Nevertheless, adopting a two-step approach—first predicting diversity
functional profiles and then clustering them—could complicate the quantification of uncertainty in curve estimation and
determining posterior probabilities of cluster membership. To mitigate these challenges, a model-based approach within
the Bayesian framework could be advantageous. Within this integrated framework, potential measurement errors, curve
prediction, and clustering can be addressed cohesively, offering improved control over error propagation across the hier-
archy of conditional distributions. This unified approach would facilitate simultaneous handling of curve prediction and
clustering complexities, while enhancing the quantification of uncertainty. We identify these areas as promising research
topics for future work.

Another important consideration is that all species have been treated as equally distinct from one another, disregarding
potential species differences in our study. In general, biodiversity extends beyond mere species diversity, encompass-
ing a broader spectrum that includes phylogenetic, genetic, and functional diversity (Pielou, 1975). Relying solely on
species names provides limited insights into the functions or evolutionary history of these species, which are instead
crucial for understanding the underlying processes contributing to the observed levels of biodiversity. However, despite
the acknowledged limitations, there are promising avenues to enhance our functional framework for biodiversity pro-
files. One approach involves incorporating pairwise similarities between species using a similarity matrix, leading to the
Leinster-Cobbold diversity of order q as proposed by Leinster and Cobbold (2012). Alternatively, we can explore the unified
framework proposed by Chao and Colwell (2022), which defines the Hill-Chao numbers of order q to assess biodiversity
across multiple dimensions. By incorporating species trait similarities or adopting the more general framework of Chao
and Colwell (2022), we can gain a more complete understanding of a community and improve predictions of ecosystem
functions. These approaches represent promising directions for future research, aiming to provide a more nuanced and
comprehensive perspective of biodiversity dynamics and their ecological significance.
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