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Abstract

We present a fiber-distributed model of the reinforcing collagen of the human cornea. The model
describes the basic connections between the components of the tissue by defining an elementary
block (cell) and upscaling it to the physical size of the cornea. The cell is defined by two sets
of collagen fibrils running in sub-orthogonal directions, characterized by a random distribution of
the spatial orientation and connected by chemical bonds of two kinds. The bonds of the first kind
describe the lamellar crosslinks, forming the ribbon-like lamellae; while the bonds of the second
kind describe the stacking crosslinks, piling up the lamellae to form the structure of the stroma.
The spatial replication of the cell produces a truss structure with a considerable number of degrees
of freedom. The statistical characterization of the collagen fibrils leads to a mechanical model that
reacts to the action of the deterministic intraocular pressure with a stochastic distribution of the
displacements, here characterized by their mean value and variance. The strategy to address the
solution of the heavy resulting numerical problem is to use the so-called stochastic finite element
improved perturbation method combined with a fully explicit solver. Results demonstrate that the
variability of the mechanical properties affects in a non-negligible manner the expected response
of the structure to the physiological action.

Keywords: Fibers distributed, Cornea microstructure, Collagen stiffness, Stochastic finite
element, Improved perturbation method

1. Introduction

The human cornea, a transparent and relatively stiff tissue, is the convex-concave external lens
of the eye. The spherical shape provides two-thirds of the total refractive power of the eye and offers
confinement to the internal fluids. The intraocular pressure (IOP) acts on the posterior surface of
the cornea and induces an overall tensile stress state in the tissue. The cornea is organized into
several layers: the central stroma, the thickest layer, carries the structural functions. As in many
biological tissues with structural functions, the main component of the stroma is the collagen,
organized hierarchically in microstructures at different scales, including the fibril filaments up to
the ribbon-like lamella. X-ray imaging has revealed that the preservation of the spherical shape and
the correct light refraction of the cornea is due to the particular architecture of the lamellae. Most
collagen fibrils are randomly distributed, as necessary to provide uniform protection, but about 1/3
of the stromal collagen is clearly oriented in the nasal-temporal (NT) and in the superior-inferior
(SI) directions to sustain extra loads due to the activity of the eyelids and the eye muscles [1].
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Another region where collagen fibrils run in a specific (circumferential) direction is the limbus, the
periphery annulus that links the cornea to the sclera and to the iris [2].

Alterations of the stromal microstructure may induce modifications of the regular shape of
the cornea. Among others, the pathology known as keratoconus refers to a localized loss of
the collagen organization, causing thinning and reshaping of the cornea into a non-physiological
conus : the associated effects on vision are irregular astigmatism, myopia, and strong aberrations.
Despite numerous experimental and theoretical investigations, the etiology of keratoconus has
yet to be clarified. However, recent discrete models of the collagen microstructure of the cornea,
including lamellar collagen and chemical bonds disposed to form a representative cell [3], have been
able to describe the healthy and the keratoconus geometries of the human cornea by assuming
suitable distributions of the mechanical properties of the structure components, corresponding to
the healthy and the diseased tissue, respectively. Subsequent works have adopted an ansatz about
the spatial and temporal evolution of the reduction of the mechanical property by considering
the diffusion of a damage-like parameter [4]. Very realistic keratoconus shapes were obtained by
introducing a constitutive law for the chemical bonds based on a damaging chemical potential [5].

These studies were conducted under deterministic assumptions. Still, it is well known that, in
biological tissues, uncertainties related to the micro-architecture and to the mechanical properties
play a critical role and cannot be neglected. The stochastic aspects of the mechanics of the cornea
require the adoption of alternative numerical approaches, able to include the relevant uncertainties
and provide a numerical response that accounts for the variability in terms of displacement and
stress distributions.

A well-established approach used to characterize the response of structures with uncertain
parameters from a probabilistic point of view is the Stochastic Finite Element Method [6, 7, 8,
9]. Among many other solutions procedures available in literature [10], perturbation approaches
have been proven to be more sound, and feasible [11, 12]. The key features of perturbation
approaches are (i) the coupling of classical finite element methods and perturbation techniques and
(ii) the Taylor expansion of random variables characterized by a prescribed zero-mean stochastic
distribution law. Perturbation approaches deploy the structural response in terms of mean and
covariance functions, obtained as first-order and second-order moments of the attendant variables.

Notoriously, perturbation approaches applied to solve SFEM lose robustness as the uncer-
tainty of the variables increases. A more accurate statistical description of the stochastic variables
is obtained through the “improved perturbation method”, initially proposed for linear static and
dynamic structural problems [13, 14], later extended to geometrically nonlinear problems [15], and
also applied to more general cases [16, 17, 18]. The improved perturbation method is a first-order
perturbation technique, where the “improved” mean and covariance of the stochastic variables are
evaluated by accounting for information on the mean and correlation between uncertain parame-
ters.

In the present study, we apply the improved perturbation method to the discrete model of the
cornea proposed in [3], to introduce in a proper mathematical way the intrinsic stochastic features
of the micro-components of the human stroma. To obtain a numerically tractable problem, we
reformulate the approach in terms of internal and external force balance and solve it explicitly.
The approach is able to provide the mean array and the covariance matrix of the displacements
of the discrete model of the cornea undergoing the IOP action.

The paper is organized as follows. In Section 2, we describe the micro-mechanical model of the
cornea. Specifically, in Section 2.2, we define the stochastic stiffness matrix, which accounts for the
spatially distributed collagen and is responsible for the local variability of the structural element
stiffness. In Section 2.3, we describe the statistical approximation of the equilibrium of the discrete
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Figure 1: Assembled trusswork model (left) and representative unit cell (right) highlighting the different truss
elements: extracellular matrix (dashed black), collagen fibers (red-blue), fibril crosslink (orange), lamella crosslink
(green).

model via the improved perturbation method; Section 2.4 discusses the numerical strategy used
to solve the resulting equation systems. In Section 3, we provide a quantitative characterization
of the proposed statistical model in terms of mean, standard deviation, and coefficient of variation
for the optical axis displacements. Finally, in Section 4, we recollect the main achievements of the
study and discuss possible future extensions and applications.

2. A fiber distributed model of the corneal microstructure

The concept of a discrete model of the structure of the human cornea proposed in [3] will
be taken as the starting point for the present study. A deterministic truss network models, at
the macro-scale, the idealized fundamental structural unit of the stroma, consisting of two sets of
parallel collagen fibrils superposed orthogonally and kept in their configuration by the presence
of chemical bonds (crosslinks) and with elastic separators (extracellular matrix). The chemical
bonds act to form a lamellar sheet and to stack, one on top of the other, two lamellae of different
orientations, see Fig. 1 (right).

For the sake of clarity, we briefly recall the features of the trusswork as it was originally
conceive, i. e., a deterministic structure. Then we show how we enhance the model by accounting
for the clinically observed dispersion of the collagen fibrils forming the lamellae.

2.1. The underlying geometry

The orientation of the trusses in the model has been chosen to reflect the dominant direction
of the collagen fibrils averaged across the thickness. The main orientation of the fibrils gradually
varies from the orthogonal arrangement at the center, which follows the NT and SI directions,
to the orthogonal arrangement at the limbus, where fibrils run circumferentially and radially.
The approximation disregards the variation of the collagen distribution from the anterior to the
posterior surfaces of the cornea, which is a minor issue that can be easily fixed.

Following the geometry of an idealized cornea with average sizes (the extension to a patient-
specific model is trivial), we use the geometric parameters listed in Table 1, which are easily
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Parameter Value Unit

Apex elevation 2.54 mm
Thickness Center 0.30 mm
Anterior surface Steepest meridian radius 7.52 mm

Flattest meridian radius 7.90 mm
Asphericity coefficient -0.15 mm

Posterior surface Steepest meridian radius 6.77 mm
Flattest meridian radius 6.90 mm
Asphericity coefficient -0.15 mm

In-plane diameter 11.24 mm
In-plane orientation Steepest meridian 128 deg

Flattest meridian 38 deg

Table 1: Geometric parameters of the physiologic cornea

obtained by a clinical measurement. The parameters refer to a cornea deformed by the IOP. Note
that, for numerical reasons (stability of the structure, which comprises only the anterior and the
posterior layer), we need to reduce the central corneal thickness to an unrealistic value of 0.3 mm,
against an average of 0.6 mm for healthy human corneas. One discretization of the geometry used
in the study is shown in Fig. 1 (left).

The assembled network results from the spatial repetition of a unit cell, as illustrated in
Fig. 1(right). The truss elements modeling the collagen fibrils (blue and red) are arranged on two
parallel hyperplanes. Blue trusses model a lamella on the posterior surface, red trusses model a
lamella on the anterior surface, and they run orthogonally, one with respect to the other. Green
trusses model lamellar crosslinks that confer the ribbon-like shape to the lamella; yellow trusses
model the crosslinks that bond the two lamellae to form a double shell. Fig. 1(left) shows that the
orientation of the unit cell switches smoothly from NT-SI at the center to circumferential-radial at
the periphery. The assembled network results in a mechanically stable structure if the inclination
of the yellow trusses is around 45 degrees, which requires a reduction of the thickness for finer
discretizations. This drawback, related to the model simplicity, has been addressed in a parallel
study [19]. Furthermore, we have the possibility to introduce additional trusses (broken line black)
orthogonal to both lamellae, which model the action of the extracellular matrix surrounding the
collagen fibrils in the stroma. However, this feature has not been used in the current study.

The IOP action is described in terms of point loads applied to the posterior surface of the
cornea in the direction normal to the surface, as done in [3]. The truss nodes resting on the
model external annulus, corresponding to the limbus, are considered fixed. For future reference,
we remark that the unit cell is defective at the limbus, because some of the composing elements
(either collagen or lamellar crosslink) are missing and the diagonal crosslinks are longer. The effect
of this heterogeneity in the discretization, visible in all the images reporting numerical results, is
to confer to the boundary annulus of the shell a larger compliance in the radial direction and
a larger (infinite) stiffness in the circumferential direction. For this reason, deterministic and
stochastic displacements at the limbus are affected by artifacts. Clearly, this effect vanishes with
the reduction of the discretization size.

All trusses (fibrils and crosslinks) are modeled as classical linear elastic trusses. The i-th truss
is characterized by the stiffness ki = EiAi/hi, where Ai is the equivalent cross-section area, hi is
the length of the truss and Ei is the equivalent Young modulus, obtained by exploiting a properly
conceived homogenization procedure based on the experimental results available in the literature
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[20, 21, 22], as discussed in [3].

2.2. Statistical characterization of the collagen trusses

Next, we enrich the model by assuming that the orientation of the collagen trusses is charac-
terized by a statistical distribution that describes the spatial dispersion of the fibrils. The trusses
modeling the crosslinks, by contrast, are kept deterministic.

The inclusion of the collagen fibril distribution statistics is achieved by the improved per-
turbation stochastic approach, developed for the solution of linear elastic problems [13] and later
extended to nonlinear problems [15]. In the present study, we found that the nonlinear formulation
is more appropriate.
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(c)

Figure 2: (a) Aspect of the von Mises PDF, for a few significant values of the concentration parameter b ∈ [0÷ 8].
(b) Three-dimensional continuum model of the human cornea, showing the contour levels of the assumed spatial
distribution of the concentration parameter b, cf. [23]. (c) Trusswork model adopted in the stochastic analysis. Top
view of maps of the integral coefficient κ, Eq. (5).

We begin by assuming that the deterministic orientation of each collagen truss (blue and
red elements in Fig. 1) corresponds to the average orientation of a bunch of fibrils randomly
oriented. We denote the average orientation of a collagen truss by a0 and assume that the generic
collagen fibril orientation a follows a specified symmetric probability distribution function (PDF)
ρ(a) = ρ(−a), with rotational symmetry about a0, cf. [23, 24]. The rotational symmetry of the
PDF, which leads to a transversely isotropic response for the material, requires that the PDF
in spherical coordinates depends only on the polar (meridian) angle Θ ∈ [0, π] and not on the
azimuthal angle Φ ∈ [0, 2π]. At a generic point, the integral over a unit sphere ω reduces to

1

4π

∫
ω

ρ(a)dω = 1 , (1)

and assuming ρ(a) = ρ(Θ), recalling that dω = sinΘdΘdΦ, it follows that∫ π

0

ρ(Θ) sinΘdΘ = 2. (2)

For the chosen fiber distribution and generic function f , the operator ⟨·⟩ returns the average of f
over the unit sphere as

⟨f⟩ = 1

4π

∫ 2π

0

dΦ

∫ π

0

ρ(Θ)f sinΘdΘ =
1

2

∫ π

0

ρ(Θ)f sinΘdΘ. (3)
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Following [23, 24], we assume here that the density function ρ(Θ) is characterized by a π-periodic
normalized von Mises distribution of the form

ρ(Θ) =
1

I
eb cos(2Θ) , I =

1

π

∫ π

0

eb cos(2Θ)dΘ , (4)

where b is the concentration parameter, which controls how the distribution arranges around the
mean value, see Fig. 2(a). It follows that the average of Θ2 is given by the expression

⟨Θ2⟩ = 1

2

∫ π

0

ρ(Θ)Θ2 sinΘdΘ =
1

2I

∫ π

0

eb cos(2Θ)Θ2 sinΘdΘ .

For an assigned distribution, we also introduce the dispersion parameter κ defined as [23]:

κ =
1

4

∫ π

0

ρ(Θ) sin3ΘdΘ , (5)

which plays the inverse role of b, i.e., k increases for low b, and represents a measure of the degree
of dispersion of the fibers.

In previous studies, considering continuum models of the cornea, we accounted for the vari-
ability of the dispersion of the collagen fibrils by adopting a map of the b parameter characterized
by a double symmetry with respect to the SI and NT directions, cf. [23]. Figure 2(b) shows the
maps of b over the solid model of the cornea. Interestingly, high values of b (describing a strong
alignment of the collagen fibrils about the mean orientation and thus an anisotropic behavior of
the tissue) are observed at the center, forming a SI and NT direction cross, and all along the
circular limbus. The low b zones are disposed to form four lobes, where the collagen fibrils are
more dispersed, conferring a quasi-isotropic behavior to the tissue. We adopt the same maps of b
also for the trusswork model.

By referring to a network model of the collagen reinforcement, we now consider every collagen
truss e as representative of the local distribution of fibrils, characterized by the concentration
coefficient b obtained from the map in Fig. 2(b).

To compute the equivalent truss stiffness of the distribution, we recall that the 3D stiffness
matrix Ke of the truss element e referred to its intrinsic frame (i. e., a0 aligned with the basis
axis e1) is

K̂e =
EeAe

he


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (6)

where Ee is the elastic modulus of the material, Ae is the cross-section area, he the axis length.
The three quantities should refer to the individual collagen filament, but, in the present context,
following [3], we will resort to equivalent homogenized values.

For a generic collagen fibril belonging to the axis-symmetric distribution and inclined of an
angle Θ with respect to the main orientation a0 = e1, the components of the stiffness matrix Ke
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become

Ke = Re
TK̂eRe =

EeAe

he


c2 cs 0 −c2 −cs 0
cs s2 0 −cs −s2 0
0 0 0 0 0 0

−c2 −cs 0 c2 cs 0
−cs −s2 0 cs s2 0
0 0 0 0 0 0

 , (7)

where s = sinΘ, c = cosΘ and Re is the rotation matrix

Re =


c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1

 . (8)

The average stiffness matrix expressed in the intrinsic reference frame associated with a0 reads

⟨K̂e⟩ =
EeAe

he


1− 2κ 0 0 2κ− 1 0 0

0 2κ 0 0 −2κ 0
0 0 0 0 0 0

2κ− 1 0 0 1− 2κ 0 0
0 −2κ 0 0 2κ 0
0 0 0 0 0 0

 , (9)

where we make use of Eq. (5) for the expected value of the non-zero terms in Eq. (7)

⟨c2⟩ = 1− 2κ ⟨cs⟩ = 0 , ⟨s2⟩ = 2κ .

The dispersion parameter κ varies within the shell geometry, reflecting the distribution of b. The
map of κ over the discrete network is visualized in Fig. 2(c).

The average stiffness matrix in Eq. (9) corresponds to an “enhanced truss element” since it is
characterized by the presence of additional terms. Consistently, in the limit of κ → 0, i. e., when
the degree of dispersion becomes negligible, the enhanced model converges to the deterministic
model of the truss, see Eq. (6). We note that, while the truss length he and the truss area Ae = t∆x
in Eq. (9) are defined by the actual discretization, and therefore are linked to the mesh size ∆x,
as well as to the cornea thickness t, for the equivalent elastic modulus of the healthy collagen we
will use Ee = 0.15 MPa, as done in [3].

2.3. Statistical approximation of equilibrium

Next, we state the equilibrium conditions for a stochastic trusswork made ofN enhanced trusses
modeling the collagen under the action of deterministic forces. We characterize the probabilistic
nature of the problem by introducing stochastic angles Θi, i = 1, ..., N , that define the magnitude
of the inclination of the truss axes with respect to their deterministic orientation ai0. We assume
the Θi to be statistically independent (i. e., uncorrelated) and symmetric around its zero mean
and write

⟨Θi⟩ = 0 , ⟨ΘiΘj⟩ = ⟨Θ2
i ⟩δij, , ⟨ΘiΘjΘk⟩ = 0, (10)

where δij is the Kronecker delta.

7



Let us consider the discretized structure as generally nonlinear. The size of the unknown
stochastic displacement array u equals the number 3n of degrees of freedom of the problem, where
n is the number of nodes. The balance equation in the static regime reads

Fint (u(Θ),Θ) = Fext , (11)

where the external forces depend on the IOP and the internal forces depend on the displacements,
and both internal forces and displacements depend on the array Θ collecting the N random
variables Θi. In order to exploit the proposed procedure, let us now Taylor expand about Θ = 0

¯
and up to the second order terms the internal forces, seen as functions of the uncertain parameters,
as

Fint (u(Θ),Θ) ≈ Fint|Θ=0
¯
+

∂Fint

∂Θi

∣∣∣∣
Θ=0

¯

Θi +
1

2

∂2Fint

∂Θi∂Θj

∣∣∣∣
Θ=0

¯

ΘiΘj . (12)

For the sake of simplicity, consistently with [25], we first consider a linear dependence of the dis-
placement vector on the random variables, and introduce the linear expansion of the displacement
array around the mean value u as

u(Θ) = u+Θi ûi , (13)

where we implicitly assume sum over the index i = 1, ..., N and ûi (denoting the first derivative
of the displacement field with respect to Θi) being an array with size 3n, where only the six
components corresponding to the two end nodes of the i-th enhanced truss are nonzero. Thus,
u = u when Θ = 0

¯
. We write the internal forces as

Fint (u(Θ),Θ) := Fint (u+Θiûi,Θ) , (14)

to point out the double dependence of the internal forces array on the stochastic variable array
Θ, a dependence that must be accounted for in the subsequent differentiation procedures.

We write Eq. (12) as

Fint (u+Θiûi,Θ) = F 0
int (u) + Fint,i (u, ûi)Θi + Fint,ij (u, ûi, ûj)ΘiΘj , (15)

where we define
F 0

int(u) = Fint (u, 0
¯
) . (16)

Next we assume a linear dependence of the nodal forces on the displacements

Fint(u+Θiûi,Θ) = K(Θ) (u+Θiûi) , (17)

where K(Θ) denotes the network tangent stiffness (3n×3n). Thus, the constant term in Eq. (15)
becomes

F 0
int(u) = K(0

¯
)u , (18)

and the coefficient of the linear term in Eq. (15) can be rendered as

Fint,i(u, ûi) =

[
∂Fint

∂Θi

+
∂Fint

∂u

∂u

∂Θi

]
Θ=0

¯

. (19)

By accounting for Eq. (17), we obtain

Fint,i(u, ûi) =

[
∂K(Θ)

∂Θi

(u+Θiûi) +K (Θ) ûi

]
Θ=0

¯

= Kiu+Kûi , (20)
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where we introduced

Ki =

[
∂K(Θ)

∂Θi

]
Θ=0

¯

, K = K (0
¯
) =

∂Fint

∂u
. (21)

Here, Ki is the derivative of the stiffness matrix with respect to the stochastic variable Θi, where
only 36 coefficients, disposed in 3×3 blocks, are non-zero. The term K is the averaged stiffness
matrix, collecting the enhanced truss average stiffness defined in Eq. (9). The coefficient of the
second order term in Eq. (15) is

Fint,ij (u, ûi) =
1

2

[
∂

∂Θj

(
∂K(Θ)

∂Θi

(u+Θiûi) +K (Θ) ûi

)]
Θ=0

¯

, (22)

in compact form

Fint,ij (u, ûi) =
1

2
(Kiju+Kiδijûi +Kjûi) , (23)

where we introduce

Kij =

[
∂2K(Θ)

∂Θi∂Θj

]
Θ=0

¯

. (24)

By combining Eqs. (18)-(20)-(23), the discrete equilibrium equation in (11) reads

Fext = Ku+
(
Kiu+Kûi

)
Θi +

1

2
(Kiju+Kiδijûi +Kjûi)ΘiΘj . (25)

The improved perturbation method leads to N +1 sets of equations as in [25]. The first set of
equations is obtained by applying the average operator (3) to both sides of the balance equation
(25)

Fext = Ku+

(
1

2
Kiiu+Kiûi

)
⟨Θ2

i ⟩ , (26)

and the other N sets of equations are given multiplying both sides of Eq. (25) by Θi and applying
the average operator

Kiu+Kûi = 0
¯
. (27)

Unlike classical perturbation methods, which deploy the structural response as a function of the
uncertain parameters by means of a Taylor expansion of the response about the null values of the
uncertain parameters themselves, the improved perturbation method Taylor expands directly the
linear momentum balance equation seeking for a better approximation of the response in terms of
mean and variance [25].

2.4. Numerical solution strategy

For a large number of nodes (and trusses that carry the uncertain parameters), the direct
solution of the two sets of equations (26)-(27) becomes prohibitive. Additionally, we note that
the approach easily accounts for material nonlinearities, making the two sets of equations highly
nonlinear. Therefore, we propose a solution strategy that can also be used for nonlinear and
inelastic materials. We solve the two sets by adopting an iterative method based on alternate
solutions. At the r iteration, Eq. (26) is solved to compute the average displacements ūr+1, by
assigning known values ûr

i to the variations ûi as(
K +

1

2
Kii⟨Θ2

i ⟩
)
ūr+1 = Fext −Kiû

r
i ⟨Θ2

i ⟩ , (28)
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while the ûr+1
i are obtained by solving the N equations

Kûr+1
i +Kiū

r+1 = 0
¯
. (29)

When convergence is achieved in the limit of an assigned tolerance on the displacement norm,
from the resulting displacements we compute the mean value ⟨u⟩ and the covariance matrix Σu

⟨u⟩ = u Σu = ⟨uuT ⟩ − uuT = ⟨Θ2
i ⟩ûiû

T
i . (30)

The main diagonal terms of the covariance matrix Σu provide important information on the
stochastic model since each [Σu]jj represents the variance of the displacements associated with
the j-th degree of freedom. The square root of these terms defines the standard deviation σjj =√

[Σu]jj, and denote the magnitude of the variability of the displacements with respect to the
mean value ūj. The Coefficient of Variation (CV) of the displacements field is defined as the ratio
between the standard deviation and the corresponding average

CV = σjj/ūj .

The assembled network that models the structure of the human cornea shown in Fig. 1 includes
standard trusses (crosslinks) and statistically enhanced trusses (collagen fibrils). A suitable model
requires adopting a fine discretization that implies a large number of nodes and trusses, enlarging
the size of the numerical problem (N + 1 systems of 3n equations) to very high levels. Implicit
approaches that call for the inversion of the stiffness matrix become intractable from the computa-
tional point of view, making explicit methods more appealing. A robust solution strategy is given
by the dynamic relaxation method, proposed in [26] and optimized for treating truss structures in
[5]. The idea behind dynamic relaxation is to achieve the solution of a static problem as the steady
state solution of the equivalent pseudo-dynamic critically damped problem. The parameters of the
pseudo-dynamics (fictitious mass and damping matrices) can be constructed to reach the fastest
convergence toward the steady-state solution.

3. Results

We use the stochastic model to evaluate the mechanical response of the human cornea to the
action of the IOP. We investigate how the randomness of the collagen fibril orientation affects
displacement distribution and variability. We have considered different meshes obtained through
uniform refinement so that any finer mesh is included in the coarser ones and verified that the
mechanical response showed a convergent behavior. In the following, we show results for the mesh
M1 (12 cells across the meridian section), consisting of 288 nodes and 3730 elements, and for the
mesh M2 (24 cells across the meridian section), composed of 1152 nodes and 6724 elements. The
most significant displacement component is the one in the direction of the optic axis (normal to
the corneal surfaces at the apex). This displacement component is denoted with w.

We begin with the distribution of the concentration parameter b, see Fig. 2(b). Accordingly
to experimental observations, the model shows the maximum dispersion localized in four lobes
separated by the strong fibril alignments in the NT and SI directions. Strong alignment is also
observed at the limbus.

Figure 3 compares, in terms of color maps, the mean value w̄ for the coarser and the finer meshes
at the physiological IOP (assumed to be 14 mmHg). The images show the side and top views. The
displacements at the corneal apex are in the range of the values obtained with continuum models
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(a) (b)

(c) (d)

Figure 3: Lateral and top views of mean values w̄ of vertical displacements for two different meshes. Note the effect
of more compliant radial trusses at the limbus.

[27]; as expected, the coarse mesh provides a stiffer response. Results show that the model does
not perform well in the proximity of the limbus because the truss model cannot reproduce the
continuity of the constraint offered by the limbus. For the particular architecture of the model,
the radial trusses at the limbus deform more because their axial forces are overestimated. Keeping
in mind this drawback, we restrict our observation to the central part of the cornea, that we can
identify with the optical zone (where the light rays deviate to the retina and the area of primary
interest in refractive surgery). We estimate the optical zone as the central spherical cap with 4
mm in-plane radius.

Figure 4(a,c) shows the top view of the contour maps of the dispersion parameter κ for the
coarse and the fine meshes. The dispersion parameter ranges in the interval [0, 1/3]. The κ
values in Fig. 4 range in a more restricted interval because the visualization refers to the averaged
values at the nodes, which also accounts for the deterministic trusses for which κ = 0. The
standard deviation plots in Fig. 4(b,d) refer to the sole component w of the displacements. The
images reveal that, along NT and SI directions, where the collagen fibers are more aligned, and
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(a) (b)

(c) (d)

Figure 4: (a,c) Distribution of the dispersion parameter κ corresponding to the coarsest and finest meshes, respec-
tively. (b,d) Standard deviation of the vertical displacement components σûi

corresponding to the coarsest and
finest meshes, respectively.

the overall response is expected to be more anisotropic, the standard deviation is characterized
by higher values. Contrariwise, in the four zones of maximum fibril dispersion where a pseudo-
isotropic response is expected, the standard deviation is characterized by low values, close to
zero, confirming the mean value of the displacements w̄ is perfectly representative of the actual
stochastic displacements in those areas.

For the sake of comparison and to better understand how the concentration parameter b af-
fects the randomness of the mechanical response of the model, Fig. 5 shows the contour levels
of the standard deviation of the w displacement for two idealized extreme cases where the con-
centration parameter is assumed to be uniform. In the first case, we assume b = 0 (κ = 1/3),
which corresponds to the case of fully dispersed fibrils and isotropic behavior for the cornea shell,
Fig. 5(a). In the second case, we assume b = 8 (κ ≃ 0), which corresponds to the case of a bunch
of fibrils strongly aligned in the mean direction (a0) of the distribution, defining an anisotropic
(orthotropic) behavior for the cornea shell, Fig. 5(b). Both cases indicate an almost uniform
distribution of the standard deviation, the isotropic case being characterized by lower standard
deviation values. The isotropic case results are more sensitive to the presence of the boundary,
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(a) (b)

Figure 5: Standard deviation of the vertical displacement components σûi
for the finest mesh corresponding to a

uniform distribution of the concentration parameter. (a) b = 0, (b) b = 8.

where the model, as already explained, does not reflect the behavior of the limbus.
These results confirmed that the standard deviation keeps low values for a very dispersed

collagen fibril distribution. At the same time, it reaches higher uniform values when the alignment
of the collagen fibrils induces an anisotropic behavior.

Fig. 6 visualizes the contour levels of the CV relative to the sole displacement w for the three
cases considered, i. e., b = 0, b = 8, and b according to the distribution described in Fig. 2(c).
The maximum values of the standard deviation observed in the optic zone reach about 10% of
the corresponding mean values. In all cases, w̄ remains relatively uniform in the central zone,
decreasing to zero in the radial directions toward the limbus. The trend suggests that, in the
central zone, the CV follows the distribution of the standard deviation σii closely, while it rapidly
increases in the annulus approaching the limbus.

4. Discussion and conclusion

By using a discrete model of the cornea that accounts for the microstructural components
of the stroma according to their physical function, we wanted to characterize the mechanical
properties of the collagen fibrils, which play the role of structural elements, and to evaluate the
effect of uncertainties on the displacement fields. We considered only the cornea response to the
physiological IOP, to validate a model that in the future can be extended and used for more
complex simulations, connected to refractive surgery or cornea degeneration.

The results presented here confirm that the statistical nature of the fibril distribution has a
remarkable impact on the displacements of the cornea under the action of the (deterministic) IOP
and over an assigned geometry of the model. More specifically, results show that the maximum
variability with respect to the mean displacements is found in the optical zone, in both NT and
SI directions. This observation may be of interest to refractive surgeons, since refractive surgery
procedures are actually performed over the zones where, in the mechanical characterization, the
maximum values of uncertainty are observed.

Considering the biological variability of the cornea among individuals, a more predictive model
must include not only the patient-specific geometry, with all the relevant uncertainties, but also
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(a) (b)

(c)

Figure 6: Coefficient of variation CV for the coarsest mesh related to the vertical displacement component. (a)
b = 0 uniform, (b) b = 8 uniform, (c) b variable as in Figure 2.

the IOP, which is not a constant load and is generally unknown. IOP varies among patients and
fluctuates in the hour timescale; therefore, it should also be characterized stochastically.

Based on improved perturbation analysis, the adopted method has been validated by com-
paring the stochastic results with the results of the corresponding deterministic model [3]. The
reliability of the model has been assessed by considering the stochastic response in the limit cases
of isotropic and strongly anisotropic (orthotropic) materials. We remark that the solution of com-
plex stochastic problems has been possible by adopting fully explicit solution approaches (dynamic
relaxation), particularly suitable for concurrent computing.

The encouraging results suggest the pathway for future developments, which include the exten-
sion of the model to the cases of geometric or mechanical nonlinearities, which have been already
considered by a few authors in deterministic numerical models. As matter of facts, experimental
evidence suggests that large deformation phenomena occur in the cornea. Furthermore, corneal
diseases related to a loss of the mechanical performance, such as keratoconus, require the introduc-
tion of degenerative effects in the numerical model. In both cases, a sound treatment of all sort of
uncertainties potentially affecting the mechanical parameters could improve the characterization
of the structural response.
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