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Dipartimento di Economia, Università “G. D’Annunzio” di Chieti-Pescara,
Viale Pindaro, 42, I-65127, Pescara, Italy

E-mail: s.carpi@unich.it

In two-dimensional conformal field theory (CFT) the building blocks are given by chiral
CFTs, i.e. CFTs on the unit circle (compactified light-ray). They are generated by
quantum fields depending on one light-ray coordinate only. There are two mathematical
formulations of chiral CFT, the one based on vertex operator algebras (VOAs) and the
one based on conformal nets. We describe some recent results which, for first time, gives
a general construction of conformal nets from (unitary) VOAs.
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1. Introduction

The study of CFT in two space-time dimensions has found applications to different

areas of physics and mathematics such as string theory, quantum gravity, critical

phenomena, infinite dimensional Lie algebras, number theory, finite simple groups,

3-manifold invariants, the theory of subfactors and noncommutative geometry.1–3

Chiral CFTs, i.e. CFTs on the circle, are the building blocks of CFT. We have two

different mathematical formulations of chiral CFT: vertex operator algebras (VOAs)

and conformal nets.

The notion of VOA first appears in the work of Frenkel, Lepowsky and Meur-

man4 as an important special case of the related notion of vertex algebra introduced

by Borcherds5. The main motivation was of mathematical nature, namely the con-

struction of the moonshine module V � for the Monster group M, the largest among

the sporadic finite simple groups, in relation to the so called monstrous moonshine

conjectures of Conway and Norton which relate the Monster with various special

modular functions.1

A VOA (over C) is a complex vector space V together with a linear map (the

state field correspondence) V � a �→ Y (a, z) satisfying certain physically motivated

assumptions.4,6,7 The vertex operators Y (a, z) should be considered as quantum

fields on the unit circle S1 := {z ∈ C : |z| = 1} and the axioms for VOAs can be

naturally viewed as an algebraic version of the Wightman axioms8, see Chapter 1

in Ref. 7.

Conformal nets are the chiral CFT analogue of the Haag-Kastler nets in alge-

braic quantum field theory (AQFT), the approach to quantum field theory based

on the theory of operator algebras on Hilbert spaces, namely C*-algebras and von

Neumann algebras.9,10 Although the algebraic structures plays a very important

role in the theory of operator algebras the functional analysis aspects are crucial so

that the conformal net approach can be considered mainly analytic in contrast to

the essentially purely algebraic nature of the VOA approach. One of the most rele-
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vant aspects of the theory of conformal nets is the beautiful and powerful interplay

with some central topics in the theory of operator algebras and in particular with

the theory of subfactors initiated by Jones11 which has been explicitly related to

AQFT by the index-statistics theorem discovered by Longo12.

A conformal netA on S1 is a map I �→ A(I) from the family of open proper inter-

vals of S1 into the family of von Neumann algebras acting on a fixed Hilbert spaceH
(the vacuum Hilbert space) satisfying certain physically motivated assumptions.10

Recall that a von Neumann algebra is an algebra of bounded (linear) operators act-

ing on a Hilbert space which contains the identity operator and it is closed under

taking adjoints and weak limits.

Despite their significant mathematical differences the VOA approach and the

conformal net approach exhibit their common “physical root” through many struc-

tural similarities. Moreover, various interesting chiral CFT models can be consid-

ered from both point of view with similar outputs. For these and other reasons the

two approach are generally believed to be essentially equivalent but, until recently,

no general result was known in this direction.

In this contribution we report on some of the main results obtained in a joint

work with Kawahigashi, Longo and Weiner which gives for the first time a general

construction of conformal nets from (unitary) VOAs satisfying some natural extra

assumptions, see Ref. 13 for more details and for the proofs.

2. Conformal nets and VOAs

In this section we recall the definitions of conformal net and of unitary VOA. Let I
be the family of open non-dense non-empty intervals of S1 and let Diff+(S1) be the

infinite dimensional Lie group of orientation preserving smooth diffeomorphisms of

S1. For any I ∈ I, we consider the subgroup Diff(I) ⊂ Diff+(S1) defined by

Diff(I) := {γ ∈ Diff+(S1) : γ(z) = z for all z ∈ I ′}.
A (local irreducible) conformal net A is an inclusion preserving map I �→ A(I)
from I into the family of von Neumann algebras acting on a fixed Hilbert space H
satisfying the following assumptions

(i) Locality: if I1 ∩ I2 = ∅ then [A(I1),A(I2)] = 0.

(ii) Conformal covariance: there is a strongly-continuous projective unitary repre-

sentation U of Diff+(S1) on H such that U(γ)A(I)U(γ)∗ = A(γI) for all I ∈ I
and all γ ∈ Diff+(S1) and such that U(γ) ∈ A(I) for all γ ∈ Diff(I).

(iii) Positivity of the energy: U is a positive-energy representation, i.e. the self-

adjoint generator L0 of the one-parameter rotation subgroup of U (the confor-

mal Hamiltonian) has non-negative spectrum.

(iv) Vacuum: Ker(L0) = CΩ, where Ω ∈ H (the vacuum vector) is a unit vector

which is cyclic for the von Neumann algebra
∨

I∈I A(I) generated by all the

local von Neumann algebras A(I), I ∈ I, i.e. ∨I∈I A(I)Ω is a dense subspace

of H.
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We now come to VOAs. In order to simplify the exposition in this contribution

we will consider only the so called VOAs of CFT type. Let V be a vector space.

A formal series a(z) =
∑

n∈Z
a(n)z

−n−1 with coefficients a(n) ∈ End(V ), n ∈ Z, is

called a field on V if for every b ∈ V we have a(n)b = 0 for n sufficiently large.

A vertex operator algebra (of CFT type) is a Z-graded complex vector space

V =
⊕

n∈Z
Vn, with Vn finite dimensional for all n ∈ Z, equipped with a linear map

a �→ Y (a, z) =
∑

n∈Z
a(n)z

−n−1 from V into the space of fields on V satisfying the

following assumptions

(i) Locality: if a, b ∈ V then (z−w)N [Y (a, z), Y (b, w)] = 0, for all sufficiently large

positive integers N .

(ii) Conformal covariance: there is a vector ν ∈ V (the conformal vector) such that

the coefficients of the corresponding vertex operators Y (ν, z) =
∑

n∈Z
Lnz

−n−2

satisfy the Virasoro algebra commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn,−m1V

with central charge c ∈ C. Moreover, Vn = Ker(L0 − n1V ) for all n ∈ Z and

[L−1, Y (a, z)] = d
dzY (a, z) for all a ∈ V .

(iii) Positivity of the energy: the representation of the Virasoro algebra associated

with the conformal vector ν is a positive-energy representation, i.e. L0 has

non-negative eigenvalues so that Vn = 0 for all n < 0.

(iv) Vacuum: Ker(L0) = CΩ, where Ω ∈ V (the vacuum vector) is a unit vector

which satisfies Y (a, z)Ω|z=0 = a for all a ∈ V .

We now discuss unitarity. Let (·|·) be a (positive definite) scalar product on V

which is normalized, i.e. (Ω|Ω) = 1. We assume that the pair
(
V, (·|·)) has unitary

Virasoro symmetry, i.e. that the Virasoro algebra acts unitarily on V . Then, we can

define the adjoint vertex operators by Y (a, z)+ =
∑

n∈Z
a+(n)z

n+1, a ∈ V , where,

for any n, a+(n) is defined by (a+(n)b|c) = (b|a(n)c), b, c ∈ V . Now, let V be a VOA

with a normalized scalar product (·|·). The pair
(
V, (·|·)) is said to be a unitary

VOA if it has unitary Virasoro symmetry and if for every a ∈ V the adjoint vertex

operator Y (a, z)+ is mutually local with all vertex operators Y (b, z), b ∈ V , i.e. if for

every pair a, b ∈ V we have (z − w)N [Y (a, z)+, Y (b, z)] = 0 for all sufficiently large

positive integers N . An equivalent definition of unitarity can be given through the

notion of invariant bilinear form for VOAs defined in Ref. 6. The latter definition

has been also considered in Ref. 14. The equivalence is a consequence of a VOA

version of the PCT theorem proved in Ref. 13.

3. From VOAs to conformal nets and back

Let V be a unitary VOA. An eigenvector a of L0 is said to be a homogeneous

vector and the corresponding eigenvalue d is called the conformal weight of a. If

a ∈ V is homogeneous with conformal weight d one can define the endomorphisms

an := a(n+d−1), n ∈ Z, so that Y (a, z) =
∑

Z
anz

−n−d. The conformal vector ν ∈ V
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is homogeneous with weight 2 and νn = Ln for all n ∈ Z. An arbitrary vector

a ∈ V is a finite sum of homogeneous vectors and one defines an by linearity. We

say that V is energy-bounded if for every a ∈ V there exist positive integers s, k and

a constant M > 0 such that ‖anb‖ ≤ M(|n| + 1)s‖(L0 + 1V )
kb‖ for all n ∈ Z and

all b ∈ V , where ‖ · ‖ is the norm induced on V by the scalar product .

Now, assume that V is energy-bounded and let HV ⊃ V be its Hilbert space

completion. Then, for every smooth function f ∈ C∞(S1) and every a ∈ V , we

can define the operator Y0(a, f) on HV with domain V by Y0(a, f)b =
∑

n∈Z
f̂nanb,

b ∈ V , where f̂n denotes the nth Fourier coefficient of f . Each Y0(a, f) is a clos-

able operator. This means that the closure of its graph is the graph of a possibly

unbounded operator Y (a, f) which is by definition a closed operator, i.e. it has a a

closed graph. We call the operators Y (a, f) the smeared vertex operators.

Given a family S of (possibly unbounded) closed operators on a Hilbert space

H one can define the von Neumann algebra W ∗(S) generated by S. A bounded

operator A on H belongs to W ∗(S) if and only if A commutes with every unitary

operator U such that UTU∗ = T for all T ∈ S. Now, for every interval I ∈ I we

consider the von Neumann algebra

AV (I) ≡W ∗({Y (a, f) : a ∈ V, f ∈ C∞
c (I)})

generated by all the vertex operators smeared with test functions with support in

I. Since the smeared vertex operators are in general unbounded it is not a priori

clear that the locality axiom for the VOA V implies that the the map I �→ AV (I)

will satisfy the locality axiom for conformal nets. We say that V is strongly local

if this is actually the case. If V is a strongly local VOA then the map I �→ AV (I)

defines an irreducible conformal net AV on S1.

The class of strongly local VOAs turns out to be closed under taking tensor

products and unitary subVOAs. Moreover, for every strongly local VOA V , the map

W �→ AW gives a one-to-one correspondence between the unitary subVOAs W ⊂ V

and the covariant subnets of AV . Furthermore, if the VOA automorphism group

Aut(V ) of a strongly local VOA V is finite then, it coincides with the automorphism

group Aut(AV ) of the corresponding conformal net AV . Many known examples of

unitary VOAs can be proved to be strongly local. This is e.g. the case for the

unitary affine Lie algebra VOAs, the unitary Virasoro VOAs, the known c = 1

unitary VOAs, the moonshine VOA V �, the discrete series N = 1 and N = 2 even

super-Virasoro VOAs, together with the associated coset and orbifold subVOAs.

The corresponding conformal nets coincide with those previously constructed by

different methods: the loop groups nets15,16, the Virasoro nets17,18, the c = 1

conformal nets19, the moonshine conformal net A� 22, the discrete series N = 1

and N = 2 even super-Virasoro nets23,24, and the associated coset and orbifold

conformal nets20,21.

The even shorter moonshine vertex operator algebra constructed by Höhn25 also

turns out to be strongly local being a subVOA of V �. Moreover, the automorphism

group of the corresponding conformal net coincides the VOA automorphism group
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which is known to be the Baby Monster group B, the second largest among the

sporadic finite simple groups. This gives for the first time a construction of a

conformal net whose automorphism group is B. Furthermore, the (still hypothetical)

Haagerup VOA with c = 8 considered by Evans and Gannon26, related to the

Haagerup subfactor, has been suggested to be a unitary subVOA of a unitary affine

Lie algebra VOA and hence it should be strongly local.

To get back a strongly local VOA V from the corresponding conformal net AV

one can successfully use a construction by Fredenhagen and Jörß27. More generally,

it is shown in Ref. 13 that the existence of suitable energy bounds for a conformal

net A implies that A = AV for some strongly local vertex operator algebra V . We

conjecture that every unitary VOA is strongly local and that every conformal net

comes from a unitary VOA in the way described above.

4. Outlook

One of the most interesting aspects of the structural similarities between confor-

mal nets and VOAs is their representation theory. In various chiral CFT models

the representation theory of the corresponding VOAs and conformal nets can be

directly related and have similar properties, e.g. the same fusion rules. The results

described in this contribution appear to be a crucial preliminary step towards the

understanding of this relation from a general point of view. We plan to come to the

representation theory aspects of the correspondence V �→ AV in the near future.
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nets, Ann. H. Poincaré 9 (2008), 1069-1121.

24. S. Carpi, R. Hillier, Y. Kawahigashi, R. Longo, F. Xu. N = 2 superconformal nets.

Commun. Math. Phys. 336 (2015), 1285-1328.
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