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Machine learning identifies 
phenotypic profile alterations 
of human dopaminergic 
neurons exposed to bisphenols 
and perfluoroalkyls
Andrea Di Credico 1,2,3,6, Amélie Weiss 4,6, Massimo Corsini 5, Giulia Gaggi 1,2,3, 
Barbara Ghinassi 1,2,3, Johannes H. Wilbertz 4* & Angela Di Baldassarre 1,2,3

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized 
by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active 
substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls 
(PFs) are chemicals leached from plastics and other household products, and humans are unavoidably 
exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role 
in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. 
Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify 
different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different 
concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile 
of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed 
for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content 
microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and 
LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were 
identified with high accuracies (0.88–0.96). Assessment of the phenotypic feature contribution to the 
classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine 
hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 
2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study 
shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype 
to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging 
can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by 
visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological 
characterization in the future.

Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting about 3% of the 
population above 65  years1. The pathogenesis of PD involves a combination of environmental and genetic risk 
factors, which collectively contribute to the development and progression of the disease. The main cellular and 
molecular hallmarks of PD are represented by the loss of midbrain dopaminergic neurons (mDANs) in the sub-
stantia nigra pars compacta, and intracellular aggregation of alpha-synuclein (αSyn),  respectively2. Importantly, 
αSyn aggregates can disrupt normal cellular processes and contribute to the repression of tyrosine hydroxylase 
(TH), the rate-limiting enzyme in brain catecholamine biosynthesis, decreasing dopamine  production3. These 
features lead to the onset of the characteristic motor (e.g., bradykinesia, rigidity, and tremors) and non-motor 
(e.g., cognitive impairment, psychiatric disturbances, and sleep disorders) symptoms of  PD4.
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Endocrine disrupting chemicals (EDCs) are hormonally active substances present in the environment, includ-
ing household and industrial products, and can have adverse effects on human  health5. EDCs include bisphenols 
(BPs), such as bisphenol A (BPA) and S (BPS), and perfluoroalkyls (PFs), such as perfluorooctanesulfonate 
(PFOS) and perfluorooctanoate (PFOA). These chemicals are widely diffuse, since BPs are used to produce poly-
mers and resins for the production of polycarbonate plastics, food packaging, food cans, and thermal  receipts6. 
Similarly, PFs are found in different items of common use as cookware and paper food  packaging7. As a conse-
quence, humans are constantly and unavoidably exposed to these xenobiotics that may threaten human health via 
different routes such as dermal absorption, inhalation and dietary  ingestion8. EDCs have been detected in human 
serum, urine, placental tissue, umbilical cord blood and breast  milk9–11. These findings underscore the ability of 
EDCs to enter and persist within the human body, raising serious concerns about their detrimental effects on 
human health. Although the molecular mechanism has not been completely clarified, it is generally accepted 
that BPs act as xenoestrogen, binding and activating the estrogen receptors (ER) α and β, while PFs can interfere 
with the ER, the androgen and thyroid hormone  receptors12,13. Numerous studies have associated exposure to 
these EDCs with a range of health concerns, including reproductive disorders, developmental abnormalities, 
metabolic dysfunction, and an increased risk of several  cancers5,14,15.

Emerging data indicate that BPs and PFs also negatively affect the nervous  system16–18. Exposure to these 
chemicals may deteriorate the dopaminergic system, suggesting a role in PD  development19. Numerous research 
works have contributed to explaining this association. For instance, studies conducted in zebrafish and in Dros-
ophila melanogaster have demonstrated that BPs significantly alter the dopaminergic  system16,19. Similarly, BPA-
exposed monkey fetuses display reduced levels of dopamine in midbrain dopaminergic  neurons20 and a recent 
investigation showed that EDCs exacerbated phenotypes in a murine PD  model21. Likewise, when mice were 
chronically exposed to a mixture of different PFs, a significant decrease in brain dopamine production was 
 reported22. Also, shorter exposure to PFs (i.e., 72 h) exerted a detrimental effect on the dopaminergic system of 
Caenorhabditis elegans23.

Although these studies suggest that BPs and PFs have the capacity to alter the dopaminergic system thus 
contributing to the development and progression of PD, current scientific literature lacks information about 
the involvement of these xenobiotics on human mDAN pathology. Although epidemiological studies show a 
relationship between EDC exposure and neurodegenerative  diseases24, it is currently unclear which aspects of 
human mDAN cellular biology can be modified by BPs and PFs, leaving a critical gap in the understanding of 
the mechanisms underpinning EDC-induced neurotoxicity. In addition, in vitro toxicological studies are often 
performed using high concentrations of EDCs in the range of hundreds of µM to several mM, that do not mimic 
a realistic  exposure25,26. In recent studies, machine learning (ML) classification approaches have been successfully 
used for cell line stratification and identification of chemical-treated human mDANs and could be exploited for 
neurotoxicity studies in vitro27–29.

The primary objective of this study was to examine the pathological impact of exposure to BPs and PFs on 
human stem cell-derived mDANs, a cell type widely used for disease  modelling30–32. This was achieved by using 
high-content fluorescence microscopy to analyze the morphological characteristics affected by these EDCs. 
Our hypothesis was that EDCs can induce specific morphological modifications in the phenotypic profile of 
mDANs similar to the ones observed in PD patients. For this purpose, human mDANs were treated with increas-
ing low-dose concentrations (0.01, 0.1, 1, and 2 µM) of BPA, BPS, PFOS, and PFOA for 72 h and stained using 
immunofluorescence. We then quantified 126 phenotypic features from the high-content imaging dataset and 
three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control 
mDANs. By means of this image data-based ML classification approach we measured at which concentrations 
EDCs induce overall phenotypic changes and which neuronal phenotypic features are most impacted.

Results
EDC treatment increases αSyn staining intensity in human mDANs
Figure 1 schematically depicts the experimental workflow. mDANs were treated for 72 h with BPA, BPS, PFOS, 
and PFOA at four different concentrations (i.e., 0.01, 0.1, 1, and 2 µM) and stained for immunofluorescence 
analysis. As expected, the imaged neurons were positive for TH and MAP2 and showed the mDAN typical mor-
phology (Fig. 2A). Methanol was used as vehicle control (Fig. 2B). The acquired raw images were segmented, 
and different phenotypic features were quantified (Table S3). Among these, the features “living cells” and “αSyn 
intensity in TH + cells” were first considered to evaluate compound toxicity (Fig. 2C). Living cells were defined 
as nuclei with a size larger than 2000 pixels (corresponding to approximately 53 µm2) and an average pixel inten-
sity lower than 1500. Smaller and brighter nuclei were assumed to show signs of DNA compaction and were 
considered as apoptotic. No modifications in cell viability were observed when mDANs were treated with BPA, 
BPS, PFOS or PFOA (Fig. 2D); however, a significant difference of αSyn intensity in TH + cells were found in 
EDCs treated mDANs (Fig. 2D), except for PFOS (Fig. 2D). Specifically, αSyn fluorescent intensity was higher 
in BPA 0.1 µM and 2 µM treated samples, BPS significantly increased αSyn at 2 µM while PFOA was effective in 
increasing αSyn levels at 0.1, 1, and 2 µM. mDAN imaging therefore indicates that EDCs at the tested doses did 
not affect cell viability but may increase αSyn expression levels.

BP and PF treatments modify human mDANs phenotypic profile
Humans are usually chronically exposed to low doses of EDCs that can induce changes in cellular biology which 
at least initially may be slight and difficult to detect. We therefore combined 126 morphological features to create 
a phenotypic profile of mDANs and investigated whether xenobiotic compound exposure would lead to specific 
signatures. The phenotypic features, originating from the segmented four microscopy channels, were further 
subdivided into the four compartments: cell, cytoplasm, membrane, and nucleus (Fig. 3A). Shape, intensity-based 
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and texture features were combined to a treatment-specific phenotypic profile (Fig. 3A, Table S3). We performed 
clustering analysis to compare similarities among samples. Each phenotypic profile was considered as a vector 
and the Cosine distance was measured between profiles. Clustering analysis showed that the xenobiotics, even at 
low concentrations induced differences in the phenotypic profiles in human mDANs (Fig. 3B). Lower concentra-
tions tended to cluster closer to the control than higher concentrations indicating that there is a dose–response 
relationship between increasing EDC concentration and variation of the overall phenotypic profiles (Fig. 3B). 
Only the 0.01 µM BPS sample was positioned slightly outside the cluster containing other low-concentration 
EDCs and the control. Plotting all profiles also illustrated that many phenotypic features are changed by EDC 
treatment and that not only a single feature class or cellular compartment is affected. Phenotypic profiles also 
allow to zoom into phenotypic features of interest. Picking one example per feature class (context, intensity, 
shape, texture) clearly showed that 1 µM of all four tested EDCs is sufficient to induce observable changes in four 
selected features describing the correlation between the MAP2 and αSyn channels, the αSyn staining intensity, 
neurite complexity, and the second angular moment of the αSyn channel texture (Fig. 3B, right panel).

To further visualize the relationships between the phenotypic profiles, the two embedding techniques Uniform 
Manifold Approximation and Projection (UMAP) and Pairwise Controlled Manifold Approximation (PaCMAP) 
were  used33,34 (Fig. 3C). Embeddings are useful to display high-dimensional data because they can translate 
high-dimensional data into a relatively low-dimensional space such as a 2D graph. Both embeddings show 
that phenotypic profiles from EDC treated wells tend to group separately from control treated wells (Fig. 3C). 
Further, both embeddings show that BPs (BPA and BPS) and PFs (PFOA and PFOS) tend to group together, 
indicating that the observed morphometric changes could be specific to each compound class and related to 
their chemical structure.

ML classification discriminates ED-treated mDANs based on image-derived neuronal features
Due to the high dimensionality of phenotypic profiles and the large number of changed features, it is not trivial to 
identify feature patterns that correlate with an experimental condition. Supervised ML classification algorithms 
are designed to learn rules from large and complex datasets and compute the probability of a new data point 
falling into predefined classes, such as EDC treated or untreated conditions. We exploited three “open” ML clas-
sifiers that allowed us to deduce which data features are most explanatory for the observed differences between 
classes and to identify generalizable rules related to the cell biological effects of EDC exposure.

LDA, XGBoost and LightGBM are popular ML classification algorithms. LDA is used for finding a linear 
combination of features that best separates classes, while XGBoost and LightGBM are used for creating a series 
of models that learn from the errors of the previous models to improve prediction accuracy. The main difference 
between XGBoost and LightGBM is how they build decision trees. XGBoost builds trees one level at a time, 
while LightGBM focuses on the leaves, or endpoints, of the tree. All three models allow the extraction of features 
weights. These weights can provide insights into which features are most important in the classification result, 
helping to interpret the model. Briefly, all the image datasets for each condition were divided into a train set (90% 
of the dataset) and a test set (10% of the dataset). LDA, LightGBM and XGBoost classifiers were then trained to 
distinguish treated from untreated phenotypic profiles using the training set. All EDC concentrations ranging 
from 0.01 to 2 μM were assigned to the treated class. The trained model was applied to the previously unseen 
test set phenotypic profile data to cross validate the classification performance (Fig. 4A).

Cross-validation is the application and evaluation of a trained ML model on different slices of the training 
dataset and is useful to prevent model overfitting when data is limited. When applying tenfold cross-validation 
on the training dataset both the LightGBM and XGBoost classification algorithms showed a similar performance 

Figure 1.  Experimental workflow. Following thawing and seeding, mDANs were treated for 72 h with the 
selected EDCs at different doses. Then, fluorescent staining against αSyn, TH, MAPs, and DNA was performed. 
The acquired fluorescent images were segmented and 126 different features were quantified. Finally, ML 
classifiers were applied to the image-derived data to detect the phenotypic modulations linked to ED effects. 
This figure has been created with BioRender.com.
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Figure 2.  Increased αSyn levels in BP and PF treated human mDANs. (A) After 7 days of culture, mDANs 
were immunostained against TH, αSyn, and MAP2; nuclei were counterstained with Hoechst. (B) mDANs were 
treated with increasing concentration (0.01, 0.1, 1, and 2 µM) of four different EDCs (BPA, BPS, PFOS, and 
PFOA) and 16 images were recorded per well. Cells exposed to methanol (vehicle) only were used as control. 
(C) Example of image segmentation. Raw images from individual channels were segmented, and 126 different 
phenotypic features describing signal shape, texture, intensity, and localization, were extracted (Table S3). (D) 
Dose–response graphs and statistical analysis describing the effect of treatments on the number of living cells, 
and αSyn intensity in TH + neurons. Data is shown as normalized single data points (black dots), mean (black 
lines) and 95% CI of the mean (gray area). *p < .05, **p < .01, ***p < .001 compared to methanol control. Scale 
bar, 20 µm.
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Figure 3.  Phenotypic profiles derived from ED-treated mDANs indicate morphological changes in different 
cellular compartments. (A) From segmented images context, intensity, shape and texture phenotypic features 
were calculated for different subcellular regions. (B) Phenotypic features were scaled, median aggregated by 
treatment condition and clustered using the pairwise Cosine distance between each profile. Features were 
ordered by cellular localization and feature type. Example phenotypic features from each features class illustrate 
morphological changes after 1 μM ED treatment. (C) UMAP and PaCMAP embeddings with control and 2 μM 
compound treated per well data.
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Figure 4.  Image data-derived ML classification to predict mDAN phenotypes. (A) Schematic representation 
of ML training and testing methods used to predict mDAN phenotypes based on treatments. (B, C, D) 
Classification accuracy for 10 different cross-validation iterations using the training data, confusion matrix 
graph visually representing the number of times the LDA algorithm correctly predicted the experimental 
condition in the test dataset, and the ten most important features contributing to LDA classification 
performance. (E, F, G) Classification accuracy for 10 different cross-validation iterations using the training 
data, confusion matrix graph visually representing the number of times the LightGBM algorithm correctly 
predicted the experimental condition in the test dataset, and the ten most important features contributing to 
LightGBM classification performance. (H, I, J) Classification accuracy for 10 different cross-validation iterations 
using the training data, confusion matrix graph visually representing the number of times the XGBoost 
algorithm correctly predicted the experimental condition in the test dataset, and the ten most important features 
contributing to XGBoost classification performance.
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in predicting the phenotypic classes (Fig. 4E,H). Due to the relatively small size of the dataset, both LighGBM 
and XGBoost showed accuracy variations during training from 0.4 to 1.0 (median: 0.8) and 0.38 to 1.0 (median: 
0.83), respectively. The LDA classifier performed more stably and varied from 0.7 to 1.0 (median: 0.88) (Fig. 4B). 
Confusion matrices were plotted for all three classifiers to check for by-class errors and to calculate the accuracy 
exclusively to the test set. The test set contained data from 15 control and 11 chemicals treated wells across all 
concentrations and EDCs. LDA classification resulted in the lowest accuracy (0.88) among the three methods 
used (Fig. 4C). LightGBM classification predicted neuronal phenotypes (i.e., methanol control vs. treated) with an 
accuracy of 0.92 and miss-classified only 1 out of 15 control wells as treated and 1 out of 11 treated wells as con-
trol wells (Fig. 4F). XGBoost classification performed similarly and resulted in an accuracy of 0.96, erroneously 
classifying only 1 well for the control and correctly predicting all the treated neurons (Fig. 4I). Next, we extracted 
the ten most important features involved in the classification performance of the trained models (Fig. 4D,G,J). 
Regarding the two best performing classifiers, LightGBM model performance relied on a larger range of features 
with only a single feature contributing more than 5%, compared to XGBoost model, where 6 features contributed 
between 5 and 15% to performance. Interestingly, for both classification algorithms, the intensity of TH signal 
around the cytoplasmic membrane, the MAP2 cell surface per nucleus, and the cellular intensity of αSyn were 
among the most contributing features to distinguish control and EDCs treated samples (Fig. 4G,J).

Neurite-related features of mDANs are negatively affected by BP and PF treatments
Both LightGBM and XGBoost classification algorithms indicated that the cellular surface evidenced by the 
MAP2 signal is a key feature explaining the differences between EDC-treated and untreated mDANs (Fig. 4G,J). 
Upon exposure to the BPs and PFs, mDANs exhibited a visually notable decrease in the length of their neurites 
(Fig. 5A) and this negative effect was mostly dose-dependent, being more evident for all EDCs at 2 µM (Fig. 5B, 
top row). Specifically, Tukey’s post-hoc analysis demonstrated that BPA decreased neurite length at 0.1 and 2 µM. 
For both, BPS and PFOS, the decrease occurred when mDANs were exposed to 1 and 2 µM. PFOA decreased 
neurite length at 0.1, 1, and 2 µM.

In addition to reduced neurite length, the treatments also resulted in a significant decrease in the number of 
branching points, that are critical for the formation of complex neuronal networks and communication (Fig. 5B, 
bottom row). Branching points per cell were significantly decreased when mDANs were exposed to BPA and 
BPS at 0.1, 1 and 2 µM. PFOS decreased this feature only at 1 and 2 µM, while PFOA had the strongest effect, 
showing significant differences from 0.01 to 2 µM compared to the methanol control.

BP and PF exposure increases TH signal intensity and the cellular surface intensity of the TH/
αSyn double positive cells
Both LightGBM and XGBoost classification algorithms showed that EDC-treated and untreated mDANs differ 
also in the membrane-associated TH and αSyn signal mean intensities (Fig. 4G,J). TH and αSyn, whose signals 
were affected by the xenobiotic treatment (Fig. 6A) are two crucial proteins in mDANs. A significant fluorescence 
intensity increase for TH, the enzyme critical for dopamine biosynthesis, was detected inside the neurons: the 
signal marked the entire cell body, but an increase around the cellular membrane was also observed. Statistical 
analysis showed that BPA and BPS increased cytoplasmic TH levels at 0.1 and 2 µM. Both PFOS and PFOA lead 
to increased TH signal intensity in the cytoplasm at 1 and 2 µM, and PFOA also increased this feature at 0.1 µM.

Also, BPA significantly increased TH intensity around the membrane at 0.1 and 2 µM. Similarly, BPS increased 
the TH signal intensity around the membrane at 0.1, 1, and 2 µM. PFOS increased TH intensity around the 
membrane only at 1 and 2 µM, while PFOA induced this increase at all concentrations compared to control 
(Fig. 6B, top and middle panels).

We also observed an increase of the cellular surface intensity of TH/αSyn double positive neurons which 
was elicited only by BPs, and not by PFs. BPA increased the cellular surface intensity of TH/αSyn at 1 µM, while 
BPS had this effect at 0.01 and 0.1 µM (Fig. 6B, bottom panel). The increase of TH/αSyn double positive total 
cellular fluorescence surface intensity is in accordance with the whole cell TH and αSyn intensity increases we 
described earlier (Fig. 2D).

Together our findings on MAP2 neurite length and branching points as well as TH and αSyn level changes 
illustrate how ML classification can aid in the identification of subcellular phenotypes that can be easily over-
looked when just visually inspecting images without prior data analysis.

Discussion
BPs and PFs belong to the EDC class due to their ability to interfere with the endocrine system. Recent studies 
suggest that these compounds can have detrimental effects on the nervous system and that they can worsen PD 
symptoms in different PD model  systems16–21, while the effect on human mDANs is unclear. Here, we investigated 
the effect of these chemicals on human mDANs evaluating their action on protein and morphological features 
generally affected during PD. The main findings of this study are that i) BPs and PFs lead to a net increase of 
αSyn protein level, a characteristic hallmark of PD; ii) EDC treatment dramatically impaired the neuron network, 
decreasing neurite length and the branching points per cell; iii) ML successfully classified cells treated with the 
selected compounds compared to methanol only controls allowing to extract phenotypic features and feature 
combinations that can be easily overlooked when inspecting cells visually.

Although association studies already suggested a relationship between the exposure to EDCs and PD devel-
opment, our results provide the first evidence of the threatening action of BPs and PFs on a human mDAN 
model, showing the neuronal biological features affected by EDCs exposure. In line with previous data obtained 
in other neuronal or stem cell  models35–37, in our setting BPs and PFs did not significantly impact cell viability. 
High content imaging analysis showed that 72-h exposure to BPA, BPS, or PFOA resulted in an increase of αSyn 



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21907  | https://doi.org/10.1038/s41598-023-49364-y

www.nature.com/scientificreports/

levels in human mDANs. This effect was particularly evident at the highest tested concentration (2 µM) (Figs. 2D, 
3B, 6B). In line with our findings, Pradyumna and colleagues showed that BPA treatment induced a significant 
upregulation of both PD-associated αSyn and leucine-rich repeated kinase 2 (LRRK2) proteins in  zebrafish38. 
αSyn accumulation in neurons after BPA exposure has also been reported in mammals, being upregulated in the 
substantia nigra pars compacta of adult rats that were neonatally  treated39. Moreover, when mice were exposed 
in utero to human-relevant doses of BPA, αSyn was one of the most upregulated genes as shown by Ingenuity 
Pathway  Analysis40.

Effects of BPs and PFs on αSyn levels have not been reported; however, a single oral dose of either PFOS or 
PFOA increased the levels of tau protein in the cerebral cortex and hippocampus of mice, indicating a role in 
the dysregulation of normal neural homeostasis. The marked increase in αSyn fluorescence intensity within the 
mDANs cytoplasm following BPA and BPS exposure is noteworthy, as αSyn plays a central role in the patho-
genesis of PD and other  synucleinopathies41. The elevation of αSyn levels within the cytoplasm suggests altered 

Figure 5.  Neurite length and branching points of mDANs are negatively affected by ED treatment. (A) 
Representative images of methanol control and 2 µM BPA treated mDANs counterstained with Hoechst and a 
MAP2 antibody. (B) Dose–response graphs and statistical analysis describing the effect of treatments on neurite 
length per cell, and neurite branching points per cell. Data are shown as normalized single values (black dots), 
mean (black lines) and 95% CI of the mean (gray area). *p < .05, **p < .01, ***p < .001 compared to methanol 
control. Scale bar, 50 µm.
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protein aggregation dynamics or impaired protein degradation mechanisms. These findings are in line with the 
growing evidence linking environmental exposure to biologically active compounds to αSyn pathology and 
neurodegenerative  processes42.

Similar to αSyn, alterations of TH fluorescent intensities upon EDC exposure in specific cell compartments 
were also identified by both LightGBM and XGBoost classifiers (Figs. 4G,J, 6). TH is a critical enzyme involved 
in dopamine  biosynthesis43 and the TH level increase in both cytoplasm and the neuronal membrane could 
account for an increased synthesis or for a decreased degradation the enzyme. While the increased signal at the 
membrane could also suggest an intracellular redistribution from the cytoplasm to the membrane, the overall 
increased of TH signal after BP treatment seems to rule out this hypothesis, supporting a potential BP effect on 
TH metabolism (Fig. 6B, top and middle panels). This finding is consistent with previous studies demonstrating 

Figure 6.  TH signal intensity increases following ED exposure. (A) Representative images of methanol control 
and 1 µM BPA treated mDANs. Additionally, pixel intensities are illustrated using a heatmap. (B) Dose–
response graphs and statistical analysis describing the effect of treatments on overall TH intensity (top panel), 
around the membrane (middle panel), and surface intensity increase of TH/αSyn double positive cells. Data are 
shown as normalized single values (black dots), mean (black lines) and 95% CI of the mean (gray area). *p < .05, 
**p < .01, ***p < .001 compared to methanol control. Scale bar, 10 µm.
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that BPA and BPS may affect dopaminergic pathways and neurotransmitter  function44. Similarly, PFAS-exposed 
mice, showed a decrease of TH  transcription22 while PFOS exposure upregulated TH and dopamine transporter 
in zebrafish  embryos45, suggesting that PFs could lead to a changed regulation of neuron-related proteins, related 
to the doses, treatment time and the used model. It is known that cellular TH levels decrease during PD, affecting 
dopamine  synthesis46. In our setting, the increased levels of TH could reflect an initial compensatory mechanism 
exerted by mDANs in response to EDC exposure. However, the hypothesis that TH signal increase might reflect a 
higher concentration due to the observed reduced cellular area cannot be excluded. We also noted that the overall 
cellular surface labelled by both TH and αSyn antibodies (TH/αSyn double positive cellular surface intensity) 
increased following BPA and BPS, but not PFOA or PFOS exposure. These results confirm the neurotoxic effects 
of BP exposure on human mDANs thus corroborating current literature supporting the role of this EDC class in 
the development of neurodegenerative diseases (Fig. 6B, bottom panel).

Closer analysis of neurite-related features demonstrated that exposure to BPA, BPS, PFOS, and PFOA nega-
tively impacts neurite length and the number of branching points in mDANs. These findings suggest that these 
EDCs may disrupt the structural development of neuronal processes, which are critical for proper connectivity 
and communication within neuronal  networks47. The observed effects exerted by “real life” exposure doses 
highlight the sensitivity of mDANs to these environmental chemicals, with higher concentrations leading to 
more significant alterations in neuronal morphology (Fig. 5B). The BP and PF detrimental effects on neurite 
length and branching points might have implications on neurodevelopmental processes, the proper functioning 
of dopaminergic circuits and during PD  development48,49. Moreover, our findings align with previous research 
demonstrating the neurotoxic effects of BPs on neuronal morphology and connectivity. Indeed, BPA and BPS 
decreased both normalized neurite total length and normalized maximum neurite length in neuron-like cells at 
1 nM while other analogs required higher concentration to exert such a negative  effect50. Similarly, PFOS and 
PFOA have been associated with adverse effects on neuronal development and connectivity in other experimental 
models. Liao et al. investigated the effect of different PFs on cultured rat hippocampal neurons and demonstrated 
that PFOS and PFOA decreased neurite length by about 25% and 20%,  respectively51. It is also known that BPs 
and PFs, interfering with the endocrine system, do not show a linear dose–response  effect36,37. In our study 
we found that some investigated features were altered at low (0.1 µM) and high concentration (2 µM), but not 
at medium ones (1 µM). Interestingly, these findings recapitulate the non-monotonic effect of different EDCs 
previously shown in vitro, in animal models, and  humans14. For example, acute low-dose BPS administration 
exerted a detrimental action in mouse oocytes, while higher concentrations did not show such an  effect52. Also, 
a non-monotonic, inverted U-shape dose–response relationship was demonstrated for PFOS and global cogni-
tion in  humans53.

Moreover, the importance of our findings is corroborated by the fact we treated mDANs with a range of 
concentration that include the levels found in different human body fluids (i.e., our EDC concentrations are 
representative of the real human exposure)54–56.

Taking not only single but all phenotypic features into account, Cosine distance-based clustering and data 
embedding using UMAP and PaCMAP showed that at 2 µM BPA and BPS phenotypic profiles are similar 
to each other but differ from PFOA and PFOS profiles which are also similar to each other (Fig. 3B,C). This 
particular clustering seems to suggest that xenobiotics belonging to the same class of compounds exert similar 
effects, probably due to the structural similarity and to the consequent ability to interfere with cellular biology 
in a similar manner.

One of the notable findings of this study is the ability of ML to accurately discriminate and classify the phe-
notypic profiles of mDANs treated with EDCs. Specifically, when the XGBoost algorithm was applied to our 
image-derived dataset, it correctly classified mDANs treated with EDCs and control cells with a high accuracy 
of 0.96. (Fig. 4I). We previously reported the effectiveness of ML in classifying normal and PD affected mDANs 
by applying LDA and Support Vector Machine (SVM) classifiers to image-derived  datasets27. ML can help to 
identify subtle phenotypic patterns that may be easily overlooked but that may be relevant representing the 
initial signs of cellular distress. This approach appears to be particularly important in the context of the studies 
on environmental chemicals’ effects on human health. Humans are chronically in contact with these biologically 
active substances and the consequences on the neurotransmitter systems might become evident only after a 
protracted exposure, making their risk assessment very challenging. By analyzing large datasets, ML algorithms 
can detect complex relationships and patterns that may not be immediately apparent to human observers. In 
this study, by means of the ML approach, EDC treated and untreated mDANs were differently classified based 
on relevant biological features related to PD, such as increased αSyn expression and diminished neurite network 
length. These data are particularly important, as we exposed human mDANs to BPs and PFs doses that resemble 
the real-life exposure range.

We anticipate that additional applications of ML classifiers on high-content imaging data in toxicological 
studies in different model systems are necessary to gain further insights into their predictive power. In the future 
our approach might also represent a non-animal method for pre-clinical studies, supporting the goal to decrease 
animal use in toxicology and drug discovery.

Conclusion
Our results provide important information regarding the effect of BPA, BPS, PFOS and PFOA on human mDANs, 
showing that they drive mDANs toward PD-like phenotypes, at different concentrations within the real-life 
exposure range. Importantly, our ML-supported image analysis approach can identify phenotypic changes that 
define detrimental EDCs effects, thus representing a useful tool for further mechanistic neurotoxicity studies.
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Material and methods
Preparation of medium and plates
On Day 1, Complete Maintenance Media and plates for neuron seeding were prepared. All reagents are listed in 
Table S1, and compositions of solutions and buffers are described in Table S2. For coating, Laminin was diluted 
1:10 in cold PBS+/+ and added to each well of a previously PDL coated 384-well plate and incubated overnight 
at 4 °C.

Neuron cultures and Compound treatment
Commercially available cryopreserved 35 days old human induced pluripotent stem cell (hiPSC) derived mDANs 
were used for this study (Table S1). On Day 0, neurons were thawed and, seeded in a 384 well plate in Complete 
Maintenance Medium at 15,000 cells/well in a final volume of 60 µL per well according to the manufacturers 
protocol. Plate edge wells were not used. On Day 3, medium change and compound treatment was performed. 
BPS, BPA, PFOS, and PFOA were dissolved in methanol and a 1.5X solution for all desired concentrations (0.01, 
0.1, 1, and 2 µM) was prepared using Complete Maintenance Medium. As a neutral control, the highest methanol 
concentration of each tested compound was used. To treat the cells, 40 µL of medium per well were aspirated 
and substituted with an equal volume of 1.5X compound solution. The treated neurons were then incubated at 
37 °C and 5%  CO2 for 72 h.

Fixation and staining
Neurons were fixed in 4% PFA for 30 min and then permeabilized and blocked in a 1X blocking solution 
(Table S2) for 1 h at room temperature (RT). Cells were washed, labelled with the primary antibodies diluted in 
primary staining solution (Table S2) overnight at 4 °C and stained with the appropriate secondary antibodies for 
2 h at RT. Wells were washed with PBS and nuclei counterstained with Hoechst. All the steps were performed 
using an automated liquid handler.

Imaging and analysis
Images were acquired using an automated Yokogawa confocal fluorescence microscope. A 40X objective was 
used to acquire 16 fields/well using Z-stacks consisting of 3 Z-slices separated by 2 µm. Exposure times and laser 
intensities were adjusted for each of the 4 fluorescent channels separately to obtain an optimal dynamic range 
of the fluorescent intensities and prevent signal saturation. Images were stored as TIFF files. Image segmenta-
tion and phenotypic feature extraction were required for the creation of quantitative phenotypic profiles. Our 
in-house developed software PhenoLink was used to extract quantitative information from the multichannel 
images (Table S1). Image segmentation was performed on illumination corrected raw images based on fluores-
cent channel intensity thresholds empirically determined per plate. Segmented cells were subdivided into four 
compartments: whole cell, cytoplasm, membrane, and nucleus (Fig. 3A). The cell compartment was defined as 
the total MAP2 staining positive area, while cytoplasm was defined by the cell area minus the nuclear area origi-
nating from the Hoechst stain. The membrane compartment was defined by a 5-pixel (0.81 µm2) wide window 
inside of the cell edges. Based on the segmentations, in total 126 quantitative image features were calculated and 
averaged per well (Table S3). Shape features were computed on the boundaries of segmented compartments and 
include size and shape metrics. Intensity-based features were computed from intensity values in each channel 
of the images. Texture features quantify the regularity of intensities in images. Microenvironment or context 
features include counts and spatial relationships within cells, such as the correlation of two channel intensities.

The resulting quantitative data was then used to construct median phenotypic profiles per treatment condition 
and to compare phenotypic profiles. A Python-based Jupyter notebook is provided to perform data standardiza-
tion, supervised classification, and plotting at the following link: https:// github. com/ Ksili nk/ Noteb ooks/ tree/ 
main/ Neuro/ Endoc rineD isrup torPr ofili ng (Table S1).

Data set composition, processing and statistics
Data was generated using two biological replicates representing the separate thawing and culture of mDANs from 
two cryovials. Within each biological replicate, at least three technical replicates (wells) were generated. The used 
dataset contains 126 columns with continuous phenotypic feature data derived from the image segmentation 
workflow described above. Additional columns include categorical data that detail the experimental conditions 
used, such as the position on the plate or the chemical treatment applied. Each row in the dataset represents the 
mean values per well of a 384-well plate, derived from 16 images. To be suitable for ML, all data was scaled per 
phenotypic feature using the RobustScaler method in the Python package scikit-learn. RobustScaler scales the 
data according to the interquartile range (IQR). The IQR is the range between the 1st quartile (25th quantile) 
and the 3rd quartile (75th quantile). Continuous data was graphically reported by dose–response graphs showing 
the technical replicate data points, the mean and the 95% confidence interval (CI). Since the data were normally 
distributed, analysis of variance (ANOVA) was used to determine statistically significant differences between the 
different concentration of each ED on mDAN phenotypical features. When statistical differences were found, a 
Tukey post-hoc test was employed and adjusted p-values were considered to check where difference occurred. 
Results were considered significant when p < 0.05. We provide a Python-based Jupyter notebook to reproduce 
all data standardization and plotting steps (Table S1).

ML classification
In brief, a pipeline was created for preprocessing and classification using the LDA, LightGBM and XGBoost clas-
sifiers. The data was split into training and testing sets, with 10% of the data being used for testing. Grid search 

https://github.com/Ksilink/Notebooks/tree/main/Neuro/EndocrineDisruptorProfiling
https://github.com/Ksilink/Notebooks/tree/main/Neuro/EndocrineDisruptorProfiling


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21907  | https://doi.org/10.1038/s41598-023-49364-y

www.nature.com/scientificreports/

cross-validation with 5 folds was used to find the best hyperparameters for each classifier. The pipeline was then 
trained on the full training set using the best hyperparameters found. Features importance was calculated and 
plotted to show the most important features used by the models. Predictions were made on the test set, and the 
probabilities of each sample belonging to the “control” class were calculated. The accuracy of the classifier on the 
test set was evaluated, and a confusion matrix was computed and plotted as a heatmap. Tenfold cross-validation 
scores were also calculated and plotted across the whole dataset. We provide a Python-based Jupyter notebook 
to reproduce all data pre-processing, ML, and visualization steps (Table S1).

Data availability
The dataset generated during the current study is available online: https:// github. com/ Ksili nk/ Noteb ooks/ tree/ 
main/ Neuro/ Endoc rineD isrup torPr ofili ng.
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