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Abstract: Cystic fibrosis (CF) is the most common fatal genetic disease among Caucasian people,
with over 2000 mutations in the CFTR gene. Although highly effective modulators have been
developed to rescue the mutant CFTR protein, unresolved inflammation and persistent infections still
threaten the lives of patients. While the central role of arachidonic acid (AA) and its metabolites in the
inflammatory response is widely recognized, less is known about their impact on immunomodulation
and metabolic implications in CF. To this end, here we provided a comprehensive analysis of the AA
metabolism in CF. In this context, CFTR dysfunction appeared to complexly disrupt normal lipid
processing, worsening the chronic airway inflammation, and compromising the immune responses
to bacterial infections. As such, potential strategies targeting AA and its inflammatory mediators are
being investigated as a promising approach to balance the inflammatory response while mitigating
disease progression. Thus, a deeper understanding of the AA pathway dysfunction in CF may open
innovative avenues for designing more effective therapeutic interventions.

Keywords: arachidonic acid; cystic fibrosis; CFTR; DHA; lipid peroxidation; prostaglandins; leukotrienes;
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1. Introduction

Cystic fibrosis (CF) is the most common fatal genetic disease in Caucasians, with
an incidence of 1 in 3200 births in the North European population. The basic genetic
defect has been localized in the cystic fibrosis transmembrane conductance regulator
(CFTR) gene, with more than 2000 mutations identified so far [1]. The CFTR gene prod-
uct is primarily a cAMP-activated chloride ion channel, which is highly expressed by
epithelial cells but also on endothelial cells [2], polymorphonuclear neutrophils (PMN) [3],
monocytes/macrophages [4], dendritic cells [5], platelets [6], and lymphocytes [7]. CFTR
mutations alter the fluid and electrolyte composition of secretions and the homeostasis of
organs such as lung, pancreas, and liver, and sustain an unrelenting inflammatory reaction.
Although CF affects almost every single tissue and organ in the body, chronic airway infec-
tion and inflammation, leading to pulmonary insufficiency, is responsible for at least 80%
of CF-related deaths. However, disease severity is highly dependent on genetic variability
and environmental factors (recently reviewed in [8]).

Under physiological conditions, acute inflammation requires timely resolution to
ensure the return to tissue homeostasis after the removal of the biological threat. Dur-
ing resolution, actively regulated by several mechanisms, including the production of
specialized pro-resolving lipid mediators (SPM), pro-inflammatory mediators are catab-
olized, PMN recruitment decreases, and return to tissue homeostasis is promoted by
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macrophages [9]. Failure of effective resolution leading to persistent inflammation, tissue
damage, and organ fibrosis has been documented also in CF (recently reviewed in [10–12]).

Although progress in multidisciplinary care and the introduction of modulators [13]
have led to a substantial increase in the median life expectancy of people with CF, the current
strategies may not completely restore several molecular and clinical defects [14,15]. Therefore,
new pharmacological approaches to manage inflammation in CF are still required.

In addition to cytokines, chemoattractants, and SPM, oxylipins are key regulatory
players in the inflammatory response and its resolution. Oxylipins are oxygenated products
of polyunsaturated fatty acids (PUFAs), which derive from the catabolism of the essential
PUFA linoleic acid (LA) and alpha-linolenic acid (ALA) [16]. Arachidonic acid (AA) is
widely recognized as the key oxylipin precursor driving the inflammatory process [17].
Thus, an imbalance in AA metabolism may sustain CF inflammation. Indeed, alterations in
AA precursors and metabolites have been documented in CF [18]. Therefore, a compre-
hensive understanding of the dysfunctional AA pathway in CF is relevant to gain further
knowledge about CF lung inflammation.

This review aims to summarize how dysfunctions of AA metabolism, related to CFTR-
loss-of-function, fuel CF lung disease. Furthermore, novel AA-based approaches to prevent
the progression of CF disease will be discussed.

2. Alteration of the AA Pathway in CF, from Precursors to Metabolites

AA is an omega-6 fatty acid (20:4 n-6 with 20 carbon atoms and 4 double bonds, the
last of which is in position 6 (omega) from the terminal carboxyl group) which is key in the
inflammatory response. In the following sections, we will describe the mechanisms of altered
PUFA, AA, its metabolites, and enzymes, and how they contribute to CF airway pathology.

2.1. n-3 and n-6 PUFA

AA is derived from linoleic acid (LA), the essential fatty acid, along with alpha-
linolenic acid (ALA). Although humans cannot synthesize essential fatty acids but absorb
them with the diet, the organism has developed a series of enzymes with desaturating and
elongating activity capable of converting LA to the omega-6 AA, and ALA to omega-3
eicosapentaenoic acid (EPA), which is further metabolized to docosahexaenoic acid (DHA)
(Figure 1). Once synthesized, AA, EPA, and DHA become membrane phospholipids,
the concentration of which depends on nutritional status, metabolic processes, specific
cell/tissue type, enzyme activity, and disease state [19,20].

Since the 1970s [21], alterations in fatty acid metabolism have been widely reported
in CF and recognized early in infants with CF and animal models of CF, indicating defi-
ciencies owing to the genetic defect rather than secondary to pancreatic insufficiency or
malnutrition [22,23]. Among fatty acids, cord-blood samples from CF newborns showed
the absence or reduced levels of gamma-LA (a metabolic product of LA), alfa-LA (a pre-
cursor of DHA), and DHA, with an overall reduction in n-3 metabolites as compared to
healthy newborns [22]. Similarly, the plasma of adults with CF showed LA and DHA
deficiency [24], specifically due to defective essential fatty acid metabolism [24–26], consis-
tently reproduced in mouse models (reviewed in [27]). Importantly, marked LA deficiency
was associated with more severe CFTR mutations and phenotypes, indicating a crucial
impact of this alteration on disease progression [27,28]. As discussed below, in addition to
strikingly affecting the CF inflammatory response, this PUFA unbalance impaired plasma
membrane fluidity [26], with pathobiological consequences that need to be elucidated.
Importantly, n-3 and n-6 PUFA form highly specific interactions that affect their distribu-
tion in the cell membrane, and thus their biological effects depend on their cellular ratio
rather than on their absolute levels [29]. Studies conducted on CFTR-expressing tissues in
people with CF and rodents identified an elevated AA/DHA ratio in CF samples [30–32].
Corroborating the strict interdependence and the fine balance between bioactive lipids,
DHA supplementation induced both a significant increase in DHA and a decrease in AA
levels in the lungs and pancreas of treated mice, as well as in CF in vitro systems and in
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patients [32–34]. Thus, LA and ALA may share an unbalanced metabolism followed by
dysregulated levels of both AA and DHA in CF. Indeed, most of the enzymes involved in
the AA/EPA/DHA pathways are mutual and compete for metabolism (Figure 1). In line
with this, a large body of evidence points to alteration in desaturase enzymes as responsible
for the reduced LA and DHA levels found in CF [35]. Moreover, reduced LA correlated
with boosted expression and activity of the ∆5- and ∆6-desaturase [35], suggesting that
alteration in LA metabolism in CF is due to overreactive desaturases driven by the CFTR
defect [36]. Supplementation with DHA reversed desaturase hyperactivity and restored
intrinsic alteration of the PUFA unbalance in CF in vitro [33].
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metabolic pathway components with relevance in CF. ALA metabolism to EPA, DHA, and SPM is
also depicted. Created with BioRender.com.

However, even if it is clear that DHA is reduced in CF, mechanisms leading to such
reduction are less well understood. Since ∆6-desaturase activity is shared, it is surprising
that LA levels are decreased in CF tissues, but DHA levels, the product of EPA metabolized
by the same enzyme, are not. A mechanistic explanation of this apparent paradox was
obtained in CF epithelial cell lines, where the conversion rate of EPA to DHA is reduced
while the conversion of LA to AA is increased [35]. On the other hand, recent studies have
reported that different isoforms of ∆6-desaturase and ∆5-desaturase may exist, so AA and
EPA/DHA may be differentially metabolized within the cell [37].
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2.2. Arachidonic Acid

As mentioned above, AA concentration is higher in CF tissues due to the enhanced
metabolism of LA to AA. This increase is independent of persistent P. aeruginosa infection
or chronic inflammation but is rather CF-specific [38], suggesting a CFTR-dependent
alteration. Indeed, increased phospholipid-bound AA levels and decreased DHA levels
were only found in the lung, pancreas, and ileum of CFTR −/− mice compared to healthy
controls [18]. Similarly, the AA/DHA ratio was elevated in canonical CFTR-expressing
tissues such as mucosal and submucosal nasal and rectal specimens in patients with CF [30].
Mechanistically, in addition to the increased conversion of LA to AA [35], the increase in free
AA could also be due to enhanced release from the plasma membrane by the activity of the
membrane-releasing enzyme cytosolic phospholipase A2 (cPLA2) [39,40]. Hyperactivation
of cPLA2 may contribute to the establishment of the inflammatory environment in the
CF airways even in the absence of infection. Indeed, mutant CFTR loses its inhibitory
activity against cPLA2 by disrupting the Annexin A1/CFTR/cPLA2 complex at the plasma
membrane. The hyperactivated cPLA2 drives the excessive AA release from the plasma
membranes of CF cells [41]. In addition to its role in regulating cPLA2 activation, annexin-1
is an anti-inflammatory protein downregulated in the nasal epithelial cells of patients
with CF and the lung and pancreas of CFTR KO mice [42]. Therefore, reduced annexin-1
expression driven by the basic CFTR genetic defect sustains chronic inflammation [43] and
disrupts the cPLA2-CFTR assembly at the plasma membrane, finally triggering cPLA2
hyperactivation and AA release.

In addition to altering eicosanoid levels (see the following paragraph), the increased
AA concentration modifies plasma membrane composition and fluidity, the mobility of
membrane-bound proteins, and ion channel activity [44]. Notably, AA, applied to the
cytoplasmic side of excised membrane patches of baby hamster kidney cell lines, inhibited
CFTR-dependent chloride flux by electrostatic interaction with cytoplasmic amino acid side
chains of the CFTR channel pore [45,46]. Thus, the aberrant AA concentration in the CF
airway may further contribute to aggravating the CFTR channel dysfunction. Along these
lines, lipidomic analysis of CF bronchial epithelial cell lines showed lipid modifications in
the cell membrane due to the altered balance between phospholipid types [47]. Compared
to the wild type, CF cells showed a higher accumulation of ceramide and glycosylated
sphingolipids, which are known to be involved in inflammatory processes [48]. Hence,
these findings in CF models suggest that alterations in the AA compartment may impair
both chloride efflux and plasma membrane dynamics, adding further levels of complexity
to the understanding of the role of AA in CF.

2.3. Metabolites

Among PUFAs, the biological functions of AA are closely related to inflammation since
it is the substrate of both a class of potent inflammatory lipids, the eicosanoids, and lipoxins,
a family of SPM [49]. Thus, a balanced AA metabolism is crucial to maintain a homeostatic
regulation of the inflammatory response. For this reason, the biological synthesis and
degradation of AA-derived oxylipins must be tightly regulated. AA metabolism initiates
with the release of membrane-bound AA into the cytoplasm by the action of cPLA2, which
catalyzes the hydrolysis of the acyl bond between the second fatty acid tail and the glycerol
molecule of membrane phospholipids. cPLA2 is activated by inflammatory stimuli and
its activity is the rate-limiting step in the AA pathway [50]. Once free, AA is the substrate
of three families of oxylipin-generating enzymes: cyclooxygenases (COX), responsible
for the synthesis of prostanoids; lipoxygenases (LOX) that catalyze the biosynthesis of
leukotrienes and lipoxins; and CYP450 epoxygenases form the epoxyeicosatrienoic acids
(EET). In addition, AA can be non-enzymatically oxidized by reactive oxygen species to
isoprostanes (recently reviewed in [19]) (Figure 1).
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Lung inflammation and parenchymal injury are early detectable in CF, with accu-
mulation of membrane bioactive lipids and AA metabolites. Indeed, in children with CF,
eicosanoid levels (prostaglandin G2 and isoprostanes) in bronchoalveolar lavage fluids
(BAL) were high and correlated with markers of airway inflammation such as PMN elas-
tase and myeloperoxidase, and with lung damage [51]. Therefore, the alteration of AA
metabolism deeply impacts CF inflammation and outcomes. In the following sections, we
will examine the main pathways involved in AA-derived oxylipin production, presenting
the most relevant changes occurring in CF.

2.3.1. The COX Pathway

AA can be transformed by COX-1 or COX-2 into prostaglandins (PG) or thromboxanes
(Tx) (Figure 1). Both COX isoforms release an oxygenated partially cyclic lipid, However,
COX-1 is constitutively expressed while COX-2 is inducible by inflammatory stimuli,
hormones, and growth factors [19].

One of the key COX products is PGE2, a central bioactive lipid at the interface be-
tween the pro-inflammatory and pro-resolving response. PGE2 is released by immune
cells during the onset of the acute inflammatory response, as it regulates vascular per-
meability, chemotaxis, and pro-inflammatory cytokine release. Secondly, PGE2 is also
required to boost the release of lipoxins (LX), bioactive AA metabolites known for their pro-
resolving and anti-inflammatory functions [52]. PGD2 and TxA2 could be also produced
from the same PGE2 precursor (PGH2). PGD2 is the major COX-metabolite produced by
activated macrophages and mast cells, while TxA2 is mainly released by activated platelets,
monocytes, macrophages, PMN, and lung parenchyma during inflammation [19].

Marked staining for COX-2 has been found in the sinonasal tissue of people with
CF, underlining its upregulation in the upper airways due to post-transcriptional mecha-
nisms [53,54], also confirmed by in vitro assays on cell cultures [35]. COX-1 overexpression
was also found in nasal CF polyps [54], even if its overexpression in other CF tissues is
controversial [53]. As a consequence, patients with CF had excessive levels of COX-1
products such as PGE2 in saliva, urine, sputum, and BAL and PGD2 in sputum [55–58],
suggesting their potential role in driving airway inflammation. Notably, PGE2 but not
PGD2 levels correlated with the CF genotype and disease severity. Higher levels of urinary
PGE2 and PGD2 metabolites were detected in patients with class I, II, and III mutations
and with bronchiectasis as compared to control healthy volunteers [59,60]. Consistent with
this, a longitudinal study on a cohort of children with CF showed that PGs correlated with
structural lung damage and predicted the evolution of lung disease within two years [51].

TxA2 is also a key COX-derived product involved in CF lung chronic inflammation.
Indeed, the concentration of its stable metabolite, TxB2, was consistently found to increase
in the urines of patients with CF and correlated with pulmonary dysfunction [56,61].
As TxB2 excretion is considered an in vivo index of platelet activation [62], high TxB2
concentrations were correlated to sustained platelet activation that could be partially
corrected by antioxidant supplementation [61].

2.3.2. The LOX Pathway

The involvement of AA metabolism in both pro-inflammatory and pro-resolving re-
sponses is well illustrated by the LOX pathway. There are several isoforms of this enzyme,
namely 5-, 12-, and 15-LOX. Before being converted to leukotrienes or lipoxins, AA is oxi-
dized to chiral-specific unstable intermediates denominated hydroperoxyl eicosatetraenoic
acids: 5(S)-HpETE from 5-LOX, 12(S)-HpETE from 12-LOX, and 15(S)-HpETE from 15-LOX.
The reduced products of HpETEs are hydroxy eicosatetraenoic acids (HETEs), which are
secreted by epithelial cells and leukocytes during the inflammatory response (Figure 1).
Overall, HETEs are associated with pro-inflammatory events, e.g., 5(S)-HETE and 15-
(S)HETE are potent chemoattractants for PMN and stimulate their degranulation [63]. On
the other hand, 15(S)-HETE inhibited PMN transepithelial migration, degranulation, and
superoxide production [64]. Alterations in HETEs have been described in several chronic
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inflammatory diseases such as obesity, cardiovascular disease, and cancer [65], but little is
known about HETE alterations in CF. Since 15(S)-HETE is the predominant LOX metabolite
in the human lung [66], it may play a critical role in the regulation of the inflammatory
response in CF. Thus, further investigations are needed in this field.

With 5-HpETE as an intermediate, 5-LOX converts AA to leukotriene A4 (LTA4). This
bioactive lipid mediator is best known as a sparkplug of acute inflammation, acting as a
chemoattractant for innate immune cells, but also for Th17 lymphocytes [67]. Apart from
its physiological role, LTA4 could perpetuate the inflammatory state, leading to chronicity
and further tissue damage in diseases such as asthma and atherosclerosis [68]. LTA4 is
the precursor of two major classes of leukotrienes, cysteinyl LTs and LTB4. Specifically,
LTA4 is converted by LTC4 synthase to LTC4 and finally to the stable metabolites LTD4 and
LTE4. These metabolites are collectively termed cysteinyl leukotrienes (CysLT) (Figure 1).
CysLT are contractile agonists of airway smooth muscles and stimulate mucus production
by goblet cells, resulting in bronchoconstriction and mucus accumulation, key events in CF
lung disease [69]. On the other hand, LTA4 hydrolase converts LTA4 into LTB4, a potent
chemoattractant for leukocytes during immune responses (reviewed in [70]).

LT in CF airways significantly contribute to airway inflammation. Indeed, LTB4
and CysLT in the sputum of children with CF correlated with tumor necrosis factor-
alpha (TNF-α) levels and parameters of airflow obstruction [71], pointing to key roles
for these mediators in sustaining CF inflammation. Indeed, analysis of CF sputum and
epithelial lining fluid revealed LTB4 as a major AA metabolite along with CysLT [57,72].
Elevated levels of LTB4 and CysLT are early detectable in the disease, as they were found
at nanomolar concentrations in the sputum and urine of CF infants [73]. This evidence
supports the hypothesis that the inflammatory response could be driven by altered lipid
metabolism even in the absence of infection.

Actions of 12-LOX and 15-LOX, in cooperation with 5-LOX, can convert AA into
lipoxins (LXs). Two main routes have been described for the generation of LXA4 and its
positional isomer LXB4: the 5/15-LOX and the 5/12-LOX pathways (reviewed in [74]). The
5/15-LOX pathway can be either initiated by 5-LOX or 15-LOX in PMN, eosinophil or alve-
olar macrophages, to convert AA into intermediates that are transformed by the reciprocal
LOX into both LXA4 and LXB4. Transcellular interactions between PMN and eosinophils or
PMN and lung cells has also been described to generate LX through 5/15-LOX metabolism.
Conversely, 5-LOX from PMN generates and transfers LTA4 as a precursor for platelets,
which convert LTA4 into LXA4 and LXB4 through 12-LOX activity (Figure 1) [75,76]. The bi-
ological significance of this transcellular interaction is extremely important, as the physical
proximity of inflammatory and resident cells at the site of injury promotes the initiation of
specific signals toward resolution and homeostasis. Finally, in a third biosynthetic pathway
involving transcellular interactions among PMN and endothelial or tumor cells [77,78], as
well as hepatocytes and liver cells [79], COX-2 acetylated by aspirin produces 15(R)-HETE,
which is converted by 5-LOX in 15-epimers of LXA4 and LXB4 (named aspirin-triggered
lipoxins, ATL). As LX, ATL generate a range of anti-inflammatory actions, i.e., reduction in
PMN migration and activation, and pro-resolving responses by supporting efferocytosis
and active removal of pro-inflammatory mediators and debris [37,76,80,81].

LXA4 levels are significantly low in patients with CF, both adults and children. As
compared to patients with other inflammatory lung diseases, people with CF had the lowest
LXA4 concentration in airway fluids that contribute to maintain airway inflammation.
Indeed, administration of a stable LXA4 analog to a chronically infected mouse model of
CF ameliorated markers of inflammation and lung functions [82]. Mechanistically, this
failure in LXA4 production could be ascribed to the downregulation of 15-LOX expression
observed both in CF epithelial cells [83] and BAL from children with CF even in the absence
of detectable infection [84]. On the other hand, CFTR loss-of-function deeply affects
the activity of platelet 12-LOX, reducing considerably LXA4 and LXB4 generation during
PMN/platelet coincubations [6]. In addition to the reduced LX production, CF macrophages
showed lower expression of LXA4 receptor FPR2/ALX compared to cells from healthy
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volunteers. Importantly, restoration of normal levels of FPR2/ALX improved phagocytosis
by CF macrophages, indicating the crucial role of LXA4 signaling in mechanism of CF
inflammation [85]. Therefore, defects in LOX expression, activity, metabolites, and their
receptors greatly contribute to impair resolution of inflammation in CF lung.

2.3.3. The CYP450 Pathway and Oxidative Stress

While the COX and LOX pathways are quite well studied in CF, less is known about
the AA metabolites formed by CYP450. Once recognized by this class of enzymes, AA
and its intermediates are epoxidized to EET, high-affinity ligands of PPAR-γ [86], and are
generally involved in the anti-inflammatory response [87] (Figure 1). Thus, investigating
the extent to which CYP450 and EETs are involved in non-resolving inflammation in CF
may provide further information on lipid imbalance and potential therapeutic approaches.

Interestingly, a recent study reported an AA-oxylipin produced by P. aeruginosa [88],
one of the most prevalent colonizing bacteria of CF airways [89]. Indeed, P. aeruginosa
contains CYP168A1, a cytochrome P450 enzyme with high affinity for AA, which is readily
found at high concentrations in the CF host environment. The main product of CYP168A1
catalysis is 19-HETE, a potent vasodilator and inhibitor of platelet aggregation [90], that
facilitates blood vessel permeability and leukocyte transmigration. The reason beyond the
release of 19-HETE by P. aeruginosa remains to be elucidated, but its ability to modulate
the immune response by acting on host lipid mediator signaling may be fundamental for
its persistent colonization, which remains a life-threatening condition in the compromised
airways of people with CF.

The impact of oxidative stress on CF pathophysiology is receiving increasing attention.
Accumulating evidence shows how the extent of pathological markers in CF lung parallels
that of oxidative markers, during both chronic and acute exacerbations and disease progres-
sion [91]. PMNs are recognized as a major contributor to the exaggerated release of reactive
oxygen species (ROS) during infections, due to failure of phagocytosis and continuous
contact with bacteria in CF [92,93]. Furthermore, epithelial cells support the oxidative
burst by continuously releasing ROS [94], even in the absence of infection. Worsening this
scenario, patients with CF also showed impaired antioxidant detoxification mechanisms,
such as extracellular glutathione (GSH) deficiency [95]. A contribution to lipid peroxidation
also comes from pancreatic insufficiency, which could be responsible for the malabsorption
of essential fat-soluble antioxidants [91]. Despite the generating mechanism, one imme-
diate consequence of altered oxidant/antioxidant ratio is the ROS reaction with cellular
membranes and lipoproteins [96]. Polyunsaturated fatty acid phospholipids are highly
susceptible to oxidation with conversion to bioactive or toxic lipids called isoprostanes [97].
Because of their origin, they are considered markers of oxidative stress also in lung dis-
eases [98]. In physiological conditions, isoprostanes are biologically active and are potent
mediators of inflammation [99]. For instance, they can bind to TLR2 on macrophages and
trigger the expression of COX-2 and interleukin 1-β, promoting inflammation, but they
could also boost pathogen clearance and removal of apoptotic cells [100].

The presence of isoprostanes in the lungs of patients with CF can be detected at an
early age, as found in BAL fluid from children aged 3–5 years [51]. The gold standard
used as a reliable measure of lipid peroxidation is the isoprostane 8-iso-PGF-2α, whose
levels positively correlate with markers of lung inflammation, disease severity [101], and
exacerbations [102,103]. Remarkably, antibiotic therapy against P. aeruginosa infection does
not alter levels of 8-iso-PGF2α, cys-LTs, and PGE2 in the airways, suggesting that, despite the
decreased bacterial load and improved clinical status, there is persistent lipid peroxidation of
AA [102,104]. In addition to lungs, elevated isoprostane levels have been found in the urine
and plasma of people with CF compared to healthy controls [61,105], underlying a systemic
circulation of oxidized lipids that could further affect peripheral tissues.

Moreover, also the LOX products HETEs can be non-enzymatically oxidized to form
keto-phospholipids (KETEs) [106]. In a cohort including healthy subjects, people with
CF, and people with other lung diseases, such as bronchiectasis and persistent bacterial
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bronchitis, CF samples showed significantly increased 15-KETE levels [106]. However, their
role remains to be fully elucidated.

Figure 2 summarizes the alterations in AA precursors, metabolites, and enzymes
found in CF, along with the reported molecular mechanisms leading to dysfunction.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 8 of 19 
 

 

and people with other lung diseases, such as bronchiectasis and persistent bacterial bron-
chitis, CF samples showed significantly increased 15-KETE levels [106]. However, their 
role remains to be fully elucidated. 

Figure 2 summarizes the alterations in AA precursors, metabolites, and enzymes 
found in CF, along with the reported molecular mechanisms leading to dysfunction. 

 
Figure 2. Dysregulation of the AA pathway in CF. Blue arrows indicate the enzyme/lipid mediator 
found downregulated in CF, while red arrows indicate the upregulation. See text for details. Created 
with BioRender.com. 

2.4. Role of CFTR Dysfunction in CF Abnormal Fatty Acid Metabolism 
As previously highlighted, CFTR loss-of-function directly impacts AA production 

and metabolism (Figure 3). However, with the introduction of highly effective modulator 
therapy to rescue CFTR functions, it becomes crucial to determine whether this therapy 
modulates the unbalanced AA pathway. Although CFTR could control AA metabolism, 
bacterial antigens, pro-inflammatory cytokines, and dysfunctional immune cells may also 
significantly contribute to increase eicosanoid levels in the inflamed CF lung [107].  

 
Figure 3. Infographic of the direct impact of mutated CFTR in the AA metabolism in CF. See text for 
details. Created with BioRender.com. 

Figure 2. Dysregulation of the AA pathway in CF. Blue arrows indicate the enzyme/lipid mediator
found downregulated in CF, while red arrows indicate the upregulation. See text for details. Created
with BioRender.com.

2.4. Role of CFTR Dysfunction in CF Abnormal Fatty Acid Metabolism

As previously highlighted, CFTR loss-of-function directly impacts AA production
and metabolism (Figure 3). However, with the introduction of highly effective modulator
therapy to rescue CFTR functions, it becomes crucial to determine whether this therapy
modulates the unbalanced AA pathway. Although CFTR could control AA metabolism,
bacterial antigens, pro-inflammatory cytokines, and dysfunctional immune cells may also
significantly contribute to increase eicosanoid levels in the inflamed CF lung [107].
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As mentioned, the deficiency of plasma LA and DHA, together with the excessive
release of AA, has been positively correlated with genotype severity in patients with
CF [108]. The altered circulating AA/DHA ratio may reflect the alterations in membrane
phospholipids [24]. CFTR is also localized at the cell membrane and, as a channel, can
interact with phospholipids and affect their trafficking, incorporation, and turnover [109].
Thus, CFTR may contribute to the regulation of DHA and AA processing [32]. Indeed, in
newborn pigs, CFTR loss caused blunted lung uptake of fatty acids, even if their circulating
levels were high. Interestingly, AA was the only PUFA with an increased uptake, suggesting
a specific mechanism driven by CFTR that directs AA from the bloodstream to the lung [110].
Consistent with this, the increased AA/DHA ratio occurs early in life due to changes in
lipid membrane dynamics caused by CFTR loss-of-function. In line with the role of CFTR in
regulating membrane composition, in vitro and in vivo CFTR knockout models highlighted
the impact of CFTR on the organization of lipid rafts in the cell membrane, affecting
both phospholipid and protein distribution. In human bronchial epithelial cells, CFTR
loss-of-function increased the conversion of LA to AA and decreased DHA generation
from precursors [36]. Similarly, FF508del CFTR enhanced the conversion of LA to AA
compared to cells with wild-type CFTR [111]. Therefore, CFTR mutations directly affect AA
metabolism by modulating membrane lipid dynamics. In line with this, CFTR inhibition
caused membrane destabilization with disrupted formation of protein complexes, increased
cPLA2 activity, and eicosanoid biosynthesis in airway epithelial cells [41], suggesting a
direct relationship between CFTR, plasma membrane, and AA metabolism.

In addition to membrane dynamics, CFTR could also directly modify, mainly at the
mRNA level, the expression of enzymes involved in AA metabolism, such as desaturases
and COX-2 [54]. In addition to AA enzymes, a variety of changes in gene expression
have been observed in cells with CFTR deletion [112], such as alterations in transcription
factors, cytokines, and membrane receptors that are part of the inflammatory pathway.
This reprogramming not only compensates for the absence of CFTR function but also
suggests a direct role for CFTR as a transcriptional regulator perhaps through changes in
protein–protein interactions and altered ion fluxes within the cell.

Importantly, CFTR dysfunction also causes the drastic reduction in antioxidant agents
that act as scavengers of ROS, promoting lipid peroxidation and dysregulation of AA
metabolism. Indeed, due to the impaired chloride efflux from CF cells, GSH transport in
the extracellular environment is dampened (recently reviewed in [113]), thus contributing
to enhance oxidative stress in CF.

2.5. Therapeutic Strategies to Modulate AA Metabolism in CF

The advent of CFTR modulators has revolutionized CF care. These medications
enhance CFTR protein expression and activity, leading to significant improvements in
lung function, pulmonary exacerbations, and overall quality of life [114,115]. Ivacaftor,
lumacaftor, tezacaftor, and elexacaftor are among the most widely used modulators, How-
ever, knowledge on their impacts on CF chronic inflammation, as well as their influence on
AA metabolism, remains incomplete.

Lipidomic characterization of CF cell lines treated with elexacaftor/tezacaftor/ivacaftor
demonstrated that modulators could alter membrane and intracellular lipidome [116]. In-
deed, an analysis from the GOAL study evidenced significantly reduced AA and PGE2
levels but not the rescue of LA and DHA deficiency in individuals with CF under iva-
caftor [117], suggesting that CFTR correction could partially mitigate some aspects of the
aberrant AA-derived inflammatory responses. Mechanistic studies reported that CFTR
modulators lower AA levels and increase DHA levels in CF cell lines, but not in WT cells,
thus confirming a direct impact of CFTR on lipid metabolism [118].

Dietary supplementation with omega-3 fatty acids, such as EPA and DHA, has been
proposed as an encouraging therapeutic approach to reduce inflammation and balance the
dysregulated AA/DHA ratio. These fatty acids can compete with AA for incorporation
into cell membranes and enzymatic conversion, resulting in a shift toward the production
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of anti-inflammatory and pro-resolutive lipid mediators. Indeed, both adults and chil-
dren with CF showed restoration of the lipid profile of red blood cell membranes, with
reduced AA/EPA and AA/DHA ratios [119,120]. In line with this, DHA supplementa-
tion resulted in increased levels of DHA and its anti-inflammatory metabolites, such as
17-hydroxy-docosahexaenoic acid (17OH-DHA), along with a reduction in LTB4, 15-HETE,
and PGE2 levels in the airways of adults with CF [119], confirming that DHA modifies
lipid metabolism. However, DHA supplementation did not improve pulmonary function
parameters such as forced vital capacity (FVC) and forced expiratory volume in one second
(FEV1), likely because of the short duration of the study. Supporting this hypothesis, in-
flammatory mediators and DHA-derived metabolites returned to baseline after washout,
suggesting the need for continuous DHA supplementation to maintain anti-inflammatory
effects. However, even if long-term DHA (48 weeks) in patients with CF altered the fatty
acid balance by increasing omega-3 levels and decreasing omega-6 levels, including AA,
pulmonary and inflammatory markers (interleukin release, FEV1, or pulmonary exacerba-
tions) were not affected [121]. Similarly, a meta-analysis of five randomized controlled trials
with 106 participants evidenced low benefits for DHA supplementation in CF also because
of the low quality of evidence across outcomes [122]. A recent randomized, double-blind,
placebo-controlled study reported significant improvements in FVC and FEV1 in children
with CF taking DHA [123]. In contrast, no significant differences were found in sputum
and serum levels of inflammatory biomarkers, such as PMN elastase, resolvin D1, IL-8,
and TNF-α, suggesting that the anti-inflammatory effects of DHA may be limited. Overall,
additional studies are needed to understand optimal dosage, timing, need for concomitant
administration of pancreatic enzymes, and categories of patients with patients with CF that
may benefit from DHA supplementation.

Notably, since LA levels are decreased in patients with CF, LA supplementation has
been proposed to correct this defect. However, evidence suggests that this supplementation
may even exacerbate inflammatory responses. In fact, increased LA intake leads to higher
levels of AA and its pro-inflammatory metabolites, exacerbating lung inflammation and
CF lung disease [124].

As part of anti-inflammatory treatments to reduce abnormal fatty acid metabolism in
CF, drugs that target specific enzymes involved in AA metabolism have been also used.
For example, COX inhibitors such as non-steroidal anti-inflammatory drugs (NSAIDs) can
reduce the synthesis of inflammatory PG. Among them, ibuprofen (COX-1 and COX-2
inhibitor) is recommended to slow disease progression in people with CF older than 6 years
and with mild lung disease, also based on a 4-year trial that showed slower progression in
lung disease [125]. However, the risk of side effects (mainly GI bleeding) has limited the
use of this drug, even if benefits prevailed over the risks. Interestingly, in vitro and in vivo
studies showed that ibuprofen may act as a CFTR corrector to restore CFTR trafficking in
bronchial epithelial cells [126] and has anti-microbial actions against CF-related bacterial
species [127,128]. Therefore, given this triple function, the risk–benefit ratio of ibuprofen
administration to people with CF should be carefully evaluated. In contrast, selective
COX-2 inhibitors are not recommended because of their cardiovascular side effects [129].

In addition to NSAIDs, other popular anti-inflammatory drugs such as steroids can
interfere with AA metabolism. Indeed, steroids interfere with cPLA2, thus reducing both
pro-inflammatory LT and PG production [130]. Despite that, their systemic long-term use
in CF is discouraged due to the severe side effects. Furthermore, clinical results with aerosol
steroids, used to minimize the harmful effects of systemic administration, were modest
benefits [131].

Along these lines, drugs interfering with the LOX arm of the AA metabolism have been
tested in CF to control inflammation. As mentioned, LT are elevated in CF and, in particular,
LTB4 exerts potent pro-inflammatory actions by stimulating specific membrane receptors
named BLT1 and BLT2 [132]. The potential therapeutic effects of the BLT1 antagonist have
been tested in pediatric and adult patients with CF, but the trial has been interrupted due
to serious pulmonary adverse events [133]. Another tested strategy in CF to reduce the
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excessive LTB4 aimed to reduce its production by inhibiting the LTA4 hydrolase (Figure 1).
Acebilustat is a direct and selective LTA4 hydrolase inhibitor, that was found to be safe, well
tolerated, and able to reduce inflammatory biomarkers (total leukocytes, PMN, total DNA
and elastase in sputum) [134]. Despite these promising results in patients with CF treated
with 15 days in phase I trial, in a 48-week phase II study, acebilustat failed to improve
pulmonary function or to significantly reduce exacerbations, although a trend toward
diminished exacerbations in people with CF at early stage of lung disease (FEV1 > 75)
indicated a potential effect [135].

CysLT also activates two receptors, CysLT1 and CysLT2 [136]. Montelukast, a CysLT1
receptor antagonist, has shown some efficacy in reducing eosinophilic inflammation, improv-
ing clinical symptoms such as exercise tolerance, cough, and wheezing in people with CF,
and lowering several inflammatory markers such as IL-8 and myeloperoxidase [137–140].
Similarly, Zafirlukast provided some benefits including improvement in chest radiograph
appearance and physical examination, but not in respiratory function [141]. However, more
powered studies are needed to evaluate their safety and efficacy.

Finally, as lipid peroxidation plays a crucial role in determining the distinctive lipid
unbalance in CF, antioxidant administration could be proposed as a strategy to reverse the
AA dysfunction. Indeed, administration of inhaled GSH to patients with CF significantly
reduced PGE2 levels, along with increased the levels of CD4+ and CD8+ T cells. However,
markers of oxidative stress such as 8-isoprostane were not changed [142], suggesting that
the primary benefit of GSH inhalation in people with CF may be through modulation of
the immune response rather than direct antioxidant effects.

A summary of the strategies tested to restore a balanced AA in CF in clinical trials is
presented in Table 1.

Table 1. Therapeutic strategies proposed in CF clinical trials. For each therapeutic approach the
cohort of patients with CF enrolled, the clinical outcome, and the respective reference are reported.

Strategy Target Clinical Outcome Ref.

Ivacaftor Patients with CF carrying at least one
G551D CFTR mutation (n = 40).

AA and PGE2 levels decrease, but no effects on LA
and DHA deficiency. [117]

CF pediatric patients
(mean age = 11.7 years) (n = 11),

for 12 months.

Reduced AA/EPA and AA/DHA ratios on red
blood cell membranes. [120]

DHA

Patients with CF (range 20–40 years)
(n = 15), for 6 months.

Increased DHA and 17-OH DHA levels. Reduction
in LTB4, 15-HETE and PGE2 levels, but no

improvements of FEV1 and FVC.
[120]

Five randomized controlled trials (n = 106). Low DHA benefits and relatively low side effects. [123]
CF pediatric patients

(Mean age = 11.7 years) (n = 22)
for 12 months.

Improved FVC and FEV1, but PMN elastase,
resolvin D1, IL-8, and TNF-alpha

remained unaffected.
[124]

Ibuprofen
Patients with CF with mild lung disease

(range 5–39 years) (n = 85),
for 4 years.

Slowed lung disease progression, risk of
GI bleeding. [125]

Steroids
(aerosol)

13 trials with patients with CF
(range 6–55 years) (n = 506). Modest general benefits. [130]

BLT1 antagonist

CF pediatric patients (range 6–17 years)
and adult patients (>18 years) with
mild-to-moderate lung disease, for

24 weeks.

Serious pulmonary adverse effects. [133]
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Table 1. Cont.

Strategy Target Clinical Outcome Ref.

Acebilustat

Adult patients with CF (range 28–55 years)
(n = 17) with mild-to-moderate lung

disease for 15 days.

Reduced sputum PMN and elastase. Trend toward
reduction in serum C-reactive protein and

sputum DNA.
[135]

Adult patients with CF (range 18–35 years)
(n = 199) for 48 weeks.

Absence of improvement in pulmonary function
(FEV1) and pulmonary exacerbations. Trend

toward reduced exacerbations in people with early
lung disease.

[136]

Montelukast Patients with CF (range 5–18 years)
(n = 16), for 21 days.

Reduced eosinophilic inflammation, improved
exercise tolerance, cough, and wheezing,

decreased IL-8 and myeloperoxidase levels.
[137–140]

Zafirlukast Patients with CF (range 20–32 years)
(n = 25), for 4 months.

Benefits in chest radiograph appearance and
physical examination without any improvement in

respiratory functions.
[141]

Inhaled GSH Patients with CF (range 18–39 years)
(n = 17), for 14 days.

Reduced PGE2 levels, increased CD4+ and CD8+
T-cells levels. 8-isoprostanes levels

remained unchanged.
[142]

3. Conclusions

Despite substantial advancements in care, chronic airway inflammation in CF persists
as a vexing issue, characterized by a disproportionate, persistent, malfunctional activation
of immune cells, mainly PMN, compared to the actual need for bacterial clearance. Con-
currently, increasing evidence indicates an imbalance of AA metabolites in CF. Thus, there
is an urgent need to investigate how alterations in the AA pathway could sustain chronic
inflammation and how tailored therapeutic approaches could be developed to overcome
the AA-dependent clinical complications in CF.

The AA pathway, from its membrane-bound phospholipids to its metabolites, is a key
player in immune regulation, as it orchestrates the different phases of the inflammatory
response toward resolution in a tissue- and disease-specific manner [143], modulating the
interactions between immune, resident, and endothelial cells. In line with this, a direct
cause–effect relationship in CF has been established for the excessive airway concentration
of LTB4 that induces further PMN adherence, superoxide production, degranulation, and
neutrophil extracellular traps (NET) formation in the lung environment [72], thus sustaining
PMN-mediated lung damage. Therefore, AA dysfunctions are a leading cause of CF pathology,
suggesting that strategies to restore AA metabolism could be beneficial to hamper chronic
inflammation and promote resolution. To this end, the integration of CFTR modulators,
omega-3 fatty acids, enzyme inhibitors, receptor antagonists, and antioxidants holds some
promise in preclinical studies for improving clinical outcomes through the restoration of
physiological AA metabolism. However, failure of the BLT1 trial, likely due to the impairment
of the beneficial physiological functions of LTB4, suggested that proper modulation of the
AA pathway, despite inhibition of some enzymes or mediators, might be a better-tailored
approach to preserve its physiology while dampening pathology. Importantly, inconsistent
improvements in trials with DHA or acebilustat also suggested that drug timing, dosage,
and target patients need to be carefully tailored to achieve durable drug efficacy. Thus, while
some encouraging efficacies have been found in preclinical models, consistent evidence of
improvement in patients remains elusive, highlighting the fact that future research is still
warranted to restore a proper AA metabolism for people with CF.
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