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Abstract: The study of the organizational kinetics in the area surrounding the transmucosal part of
dental implants promises to ensure an accurate diagnosis of the healing process, in terms of osseoin-
tegration and long-term implant success. In this demonstrative work, the morphological, qualitative
and quantitative characteristics of 3D images of collagen bundles obtained by synchrotron-based
high-resolution X-ray tomography were analyzed. Data analysis was performed using deep learn-
ing algorithms, neural networks that were applied on multiple volumes extracted from connective
portions of different patients. The neural network was trained with mutually consistent examples
from different patients; in particular, we used a neural network model, U-Net, well established when
applying deep learning to datasets of images. It was trained not only to distinguish the collagen
fibers from the background, but also to subdivide the collagen bundles based on the orientation
of the fibers. In fact, differently from conventional thresholding methods, deep learning semantic
segmentation assigns a label to each pixel, not only relying on grey level distribution but also on the
image morphometric (shape or direction) characteristics. With the exception of Pt2 biopsies that, as
confirmed by the polarized light investigation, were shown to present an immature tissue condition,
the quantity, the anisotropy degree and the connectivity density of transverse bundles were always
demonstrated to be higher than for longitudinal ones. These are interesting and new data; indeed, as
collagen bundles are organized in an intertwining pattern, these morphometric and 3D complexity
parameters, distinguished in transversal and longitudinal directions, give precise indications on the
amount and distribution of connective tissue forces exerted during the healing process.

Keywords: wound; collagen; dental implant; imaging; artificial intelligence; deep learning

1. Introduction

Wound healing is an essential process for restoring tissue integrity after trauma. While
large skin wounds often heal with hypertrophic scarring, resulting in disfigurement and
reduced joint mobility, these adverse healing outcomes were not generally observed in
oral mucosa, which generally heals faster than skin [1]. Several studies have identified
differences between oral and cutaneous wound healing [2–5]. It has been observed that
the faster wound closure in the oral mucosa compared to that in skin could be due to the
presence of saliva, a faster immune response, and increased extracellular matrix remodeling.
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In particular, during remodeling, oral wounds show less contraction and better restoration
of tissue architecture in terms of collagen structure [1].

However, in comparison to skin, much less is known about the kinetics of remodeling
during oral mucosa healing [6]. In particular, understanding the organizational kinetics
of the area surrounding the transgingival part of dental implants would ensure more
accurate monitoring of the healing process, with favorable effects in terms of implant
osseointegration and long-term success.

Until now, tissue tension during wound healing has been attributed to cellular forces
produced by tissue-resident (myo-)fibroblasts alone; more recently, the storage of tensile
forces in the extracellular matrix has been shown to have a significant, hitherto overlooked,
contribution to macroscopic tissue tension. In particular, it has been shown that the
organization of collagen fibrils is related to tissue contraction, indicating a mechanical
contribution of the collagen fibrils to tension in the contraction process [7,8].

In this direction, reorganization of the soft tissues in the early stages following the
placement of the dental implant was recently imaged using high-resolution tomography
based on synchrotron radiation, discovering how the collagen bundles of the newly formed
connective tissue intertwine impart tensile strength to the entire peri-implant soft tissue. It
was, therefore, hypothesized that good organization of collagen bundles may reduce the
risk of early bone resorption by reducing the infiltration of inflammatory cells [9]. However,
the limitation of the previous synchrotron study was related to the fact that conventional
techniques of segmentation of the tomographic image are based on the discrimination of
grey levels, i.e., the physical density of the tissues. Therefore, conventional segmentation
techniques fail to discriminate the orientation of the collagen fibers, as they all have the
same physical density.

In recent years, artificial intelligence (AI) has been applied to different types of images
(MRI [10], tomography [11,12], X-ray and ultrasound [13]) and for different purposes
(detail detection, object recognition and noise reduction [14]). This allowed the various
disciplines to interface with new methodologies and to analyze images and data with a
support they had not previously considered [15]. In particular, AI has also established
itself as a support tool in dentistry [16], especially in facilitating diagnosis and treatment
planning [17]. Recently, AI has been used to improve image interpretation in 2D and
3D dental radiology [18], identifying dental caries [19] and automatically segmenting
anatomical structures such as maxilla, mandible and teeth [20,21].

In this demonstrative study, for the first time to the authors’ knowledge, AI was
applied directly on highly resolved images acquired by synchrotron tomography to au-
tomatically segment collagen bundles of the peri-implant connective tissue. We trained
the algorithm starting from available data, the so-called training data, and then we made
it acquire the ability to predict new information, called test data. Once the basic model
was set up, the artificial neural networks were able to distinguish the internal portions
of the soft tissue not only according to the grey levels of the synchrotron image, as con-
ventional thresholding methods do, but also according to the orientation of the collagen
bundles themselves. In this way, we were able to quantitatively distinguish longitudinal
and transversal peri-implant collagen bundles, with evidence of the times and modalities
of connective tissue formation around the implant during the wound healing process.

2. Materials and Methods
2.1. Samples

The peri-implant soft tissues of four patients (posterior jaw) were retrieved from the
archives of the Dental School of the University of Chieti-Pescara, Italy.

They were selected based on the specific characteristics listed in Table 1.
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Table 1. Description of the investigated samples. Ctr1_st_wt: immediately loaded and retrieved after
6 weeks (st: short time; wt: immediately loaded). This specimen had already been studied [9,12].
Ctr2_lt_no-wt: the abutment was inserted subgingivally, healed without loading for 6 months and then
placed on the surface with the healing screw; the final prosthesis was made after another 3 months,
with a total of 9 months before applying the masticatory load (lt: long time; no-wt: not immediately
loaded). Pt1_st_no-wt: patient test 1—not loaded and retrieved after 6 weeks. Pt2_st_no-wt_r: patient
test 2—not loaded and retrieved after 8 weeks. Right side of the jaw (r); Pt2_st_no-wt_l: patient test
2—not loaded and retrieved after 8 weeks. Left side of the jaw (l).

Sample Name Time before
Retrieval Immediately Loaded Region

Ctr1_st_wt 6 weeks YES -

Ctr2_lt_no-wt 10 years NO -

Pt1_st_no-wt 6 weeks NO -

Pt2_st_no-wt_r 8 weeks NO right

Pt2_st_no-wt_l 8 weeks NO left

The use of these specimens for these scientific purposes was approved by the Ethical
Committee of the University of Chieti-Pescara (CODE: BONEISTO, 15 September 2019).
Indeed, the implants included in this study had been archived in previous years.

Before being stored in the archives, the samples were fixed by immersion in 10%
buffered formalin, dehydrated in an increasing series of alcoholic rinses and finally em-
bedded in glycol-methacrylate resin (Technovit 7200 VLC; Kulzer, Wehrheim, Germany).
After retrieval from the archives, they were processed according to Ref. [9]: briefly, they
were sectioned along their longitudinal axis in order to obtain two portions: the first was
examined by synchrotron-based microtomography after removal of the abutment, and
subsequently sectioned along its longitudinal axis for histological analysis; the second
portion was used to obtain histologic transversal sections of the peri-implant soft tissue.

2.2. Synchrotron Radiation-Based Phase-Contrast Microtomography

The microtomography experiment was performed at the SYRMEP beamline of the
ELETTRA Synchrotron Facility (Basovizza, Italy); the following parameters were set:
1800 projections, each with 0.2 s exposure time, over a total range of 180◦; peak energy at
~17 keV; sample-detector distance at 100 mm, achieving a pixel size of the projections of
890 nm. The high-resolution acquisition exploited the propagation-based phase-contrast
setting, made possible by the coherence characteristics of the synchrotron beam. The refrac-
tive index n = 1 − δ + iβ was reconstructed, where the phase shift term δ is related to the
electron density of the tissues inside the sample, and β is proportional to the absorption
index. The Paganin method [22] was used to retrieve the different phases (collagen, vessels,
etc.), assuming a constant δ/β ratio of 100.

The next phase of image processing was the data elaboration: it was performed with
the Dragonfly software (Vers. 2022.1; Object Research Systems, Montreal, QC, Canada) [23]
and in particular with the deep learning tool, able to apply artificial intelligence to the
segmentation process. Moreover, the open-source Fiji software [24] was used to perform
a threshold image segmentation and the following extraction of quantitative morphome-
tric parameters. In particular, the morphometric evaluation of the collagen bundles was
calculated with the BoneJ plugin [25] of the Fiji software. It was performed by exploiting
the structural indices usually measured in bone samples: collagen specific volume (ex-
pressed as a percentage), the degree of anisotropy and the connectivity density (expressed
as pixel−3). The percentage volume is the amount of collagen tissue per unit of volume
considered; the degree of anisotropy gives information on the directionality of the collagen
bundles. The more anisotropic an object is, the more the parameter will tend from zero to
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one; the connectivity density quantifies how much collagen fibers are connected to each
other, presenting an index of interlacing per unit of volume.

2.3. Training and Test Data

Four connective tissue volumes of 600 × 300 × 300 pixels3 (around 0.04 mm3), taken
at the interface with the implant, were selected from each sample to form a dataset as
uniform as possible so as not to create a bias within it. The ORS Dragonfly software was
used to manually segment slices with an artificial intelligence tool, which provides all of the
instruments required to best separate fibers (longitudinal and transversal) and background
and create a network that distinguishes three classes (Figure 1).
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Figure 1. Manual segmentation in three classes (transversal fibers in yellow, longitudinal fibers in blue,
and background in teal) with ORS Dragonfly AI tool. Ctr1_st_wt raw slice example (a), respective
manual segmentation (b); Ctr2_lt_no-wt raw slice example (c), respective manual segmentation (d).

The training dataset was formed using a total of 50 slices as input to the algorithm:
10 slices were manually segmented in each of 3 volumes of Ctr1_st_wt and in each of
2 volumes of Ctr2_lt_no-wt. This training dataset was given as input to the AI tool, which
internally separates training and validation. Training parameters chosen after several tests
and set before starting the algorithm are reported in Table 2. The network was tested on all
slices of each volume (including the ones remaining from those used for training) in order
to visualize the network’s performances when applied to a 3D volume.

The graphics card of the PC on which the training was conducted was an NVIDIA
GeForce RTX 3070, Version 512.59.

Due to the scarcity of input datasets, the data augmentation method [26] was applied.
In fact, it is usually applied when the input data are insufficient to train the network or
when the dataset is not varied enough: with this method, we wanted to obtain a more
robust and wider dataset, avoiding redundancies that could lead to overfitting. The method
aims to “deform” the data by means of geometric techniques such as flipping, rotation,
scaling, zooming, cropping, or techniques that deal with image enhancement such as
gamma correction and histogram equalization. Thus, both the original and modified
images are introduced as input into the algorithm. The neural network does not notice the
difference and sees the two groups as unique and makes predictions on both. This method
was used in the online version [27] inside the ORS Dragonfly AI tool to artificially increase
the input dataset.
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Table 2. Training parameters chosen after several tests and set before starting the algorithm.

U-Net

Class count 3

Depth level 5

Initial filter count 64

Patch size 32

Stride ratio 1

Batch size 32

Epochs number 300

Loss function Categorical Cross-Entropy

Optimization algorithm Adadelta

Metrics Categorical Accuracy

Early stopping NO

Reduce learning rate on plateau YES

Training/Validation 90/10

2.4. Image Segmentation (by Thresholding as Comparative Method)

Two segmentation algorithms, aiming to separate different image features based on
different properties, were used: the Otsu histogram-based threshold technique [28] and the
deep learning semantic segmentation method.

The former is based on the choice of a segmentation threshold applied to the grey level
histogram that separates pixels into two groups that have more similar grey levels (propor-
tional to the physical densities—mg/cm3), usually foreground and background [29]. Otsu
calculates the maximum variance between them and sets the threshold on this value [30]. In
this study, the Otsu algorithm was applied to each volume selected (consisting of 300 slices),
and it chose a single threshold for each of them.

Conversely, the deep learning semantic segmentation method assigns a label to each
pixel, not only relying on grey level distribution but also on the image morphometric
characteristics. Thus, if objects inside the image have a different shape or direction, they
will be classified as two distinct subgroups, and, therefore, associated with a different color.
The use of the semantic segmentation method involves neural networks; we chose to use
U-Net. It was developed by Olaf Ronneberger et al. [31] and was designed for biomedical
image segmentation. The architecture is divided into two parts; the first is called encoder,
which is the contracting path to capture context in the image and find key elements, while
the second is the symmetric expanding path called decoder, which employs the learned
pooling layers to enable precise localization of features.

2.5. U-Net Structure and Parameters

U-Net corresponds to the network predominantly used in biomedical applications;
the reference model is the one proposed by Olaf Ronneberger et al. [31].

After several tests, we chose the training parameters listed in Table 2. The patch size is
a subsection of the image on which the convolution kernel iterates, while the stride ratio
indicates how much that kernel moves through the different patches of the image. The
batch size defines the number of slices that will be propagated through the network at
each training step. Categorical Cross-Entropy is the loss function chosen to understand
the performance of the algorithm as a function to be minimized [32]. The optimization
algorithm is Adadelta, and the metric is Categorical Accuracy. To ensure the robustness
of the model and prevent overfitting, 10% of input slices were used as validation; we
selected a small portion because of the limited number of images. The epochs number
was fixed to 300 to guarantee the uniqueness of all evidence; consequently, Early Stopping
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was deactivated. Data Augmentation was chosen to secure enough input slices and to
differentiate them; in that way, geometric applications such as flipping, rotation, shearing
and scaling are made to the images and added to the standard dataset by convincing the
network that they are new incoming images.

2.6. Comparative Light Microscopy Investigations

Longitudinal and transversal sections were obtained for histological evaluation. Histo-
logical examinations were performed using a light microscope (Laborlux S, Leitz, Wetzlar,
Germany) connected to a high-resolution video camera (3CCD, JVCKY-F55B, JVC, Yoko-
hama, Japan) and to a PC.

Birefringence was measured using polarized light microscopy to determine the orien-
tation of the collagen bundles. An Axiolab optical microscope was used to examine thin
transversal tissue sections (Laborlux S, Leitz, Wetzlar, Germany). Two linear polarizers
and two quarter-wave plates were used in this instrument to transmit circularly polarized
light. Because of the variation in the existing light refraction, collagen bundles aligned
transversely to the light propagation direction, i.e., parallel to the section plane, appeared
bright, whereas collagen fibers aligned along the light propagation axis, i.e., perpendicular
to the plane of the section, appeared in a different color because refraction did not occur.

2.7. Statistical Methods

The following tests were used for statistical analysis: Welch t-test (deep learning vs.
thresholding segmentation and transversal vs. longitudinal collagen bundles), Brown–
Forsythe and Welch ANOVA tests and Dunnett’s multiple comparisons between samples
for each morphometric parameter (only deep learning data). These tests were preferred to
the classic ANOVA in order to also include data failing equivariance conditions. The tests
were executed by GraphPad Prism 6.0 (GraphPad, Inc., San Diego, CA, USA).

3. Results

The aim of the semantic segmentation technique was to label each image pixel with
a corresponding color that indicates the membership class of what is being represented.
Thus, it was possible to quantify the collagen bundles and reconstruct the pattern of the
connective tissue during the wound healing in the peri-implant site. This information is of
paramount relevance in order to understand the action of forces in this site and, eventually,
how the presence of the masticatory load can cause the collagen tissue to adapt to better
respond to these stresses.

3.1. U-Net: Accuracy and Loss for Training and Validation

The U-Net network was trained and validated by following its performance epoch
by epoch and verifying that the training was moving in the right direction, i.e., that the
loss function decreases (Figure 2a) and the accuracy function (Figure 2b) increases until an
acceptable level is reached. In this way, it was proved that the network learned without
incurring overfitting [33].

At the end of the process (300 epochs), an accuracy of 83% was achieved on training
and 87% on validation. The latter was higher most probably because of the absence of
regularization techniques (that were applied in the training phase); the reason behind this
choice was to avoid overfitting by making the network more generic at the expense of a
lower accuracy level.

The accuracy already reached the regime in the first 100 epochs, exceeding 80%: this
percentage can be considered a good level of learning, taking into account the scarcity of
the samples [34].
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around this level.

3.2. Semantic vs. Otsu Thresholding Segmentation

Semantic and Otsu thresholding segmentation were compared in order to verify if the
results obtained by AI with the semantic segmentation method were superimposable with
those obtained by common thresholding techniques.

The thresholding segmentation was applied using the open-source Fiji software [24].
As the first step, the Histogram Equalization Fiji plugin was used to enhance contrast in the
spatial domain, adjusting the pixel intensity from 0 to 255 [35,36]. Subsequently, the Otsu
segmentation process was chosen as the thresholding segmentation method (Figure 3a,c,e).
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The semantic segmentation was performed with the Dragonfly software [23]. The se-
mantic segmentation allowed us to distinguish not only background from connective tissue
signals but also, unlike Otsu segmentation, transversal bundles from longitudinal bundles
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(Figure 4 and Video S1 in Supplementary Materials); this was achieved with a training
based on three classes. However, to compare the semantic with the Otsu thresholding
method, in the former, the two classes of collagen bundles (transversal and longitudinal)
were grouped and just distinguished from the background (Figure 3b,d,f). The following
morphometric parameters were considered: the percentage volume, the anisotropy degree,
and the connectivity density. They were represented, in Python, by means ± standard
deviation (Table 3) of the four volumes extracted from each sample (Figure 5).
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Table 3. Welch t-test between deep learning vs. thresholding segmentation; Brown–Forsythe and
Welch ANOVA test, Dunnett’s multiple comparisons between samples per parameter (only deep
learning data). Test executed by GraphPad Prism 6.0 (GraphPad, Inc., San Diego, CA, USA). c,
•: p < 0.05; b, a, ••: p < 0.01; b,d, •••: p < 0.001.

Volume Percentage (%) Anisotropy Degree Connectivity Density
(×10−4 px−3)

Deep Learning Thresholding Deep Learning Thresholding Deep Learning Thresholding

Ctr1_st_wt 40.3 ± 8.8 47.9 ± 1.8 0.691 ± 0.049 0.627 ± 0.040 3.48 ± 0.33 a 2.34 ± 0.85

Ctr2_lt_no-wt 53.8 ± 1.9 • 47.5 ± 3.0 • 0.753 ± 0.040 0.771 ± 0.056 2.83 ± 0.22
•••,b 1.08 ± 0.36 •••

Pt1_st_no-wt 50.7 ± 1.7 47.4 ± 2.4 0.818 ± 0.014 0.809 ± 0.029 4.00 ± 0.47 ••,c 1.57 ± 0.05 ••

Pt2_st_no-
wt_r 52.3 ± 9.5 50.1 ± 2.6 0.649 ± 0.066 0.657 ± 0.050 3.45 ± 0.91 ••,d 1.00 ± 0.24 ••

Pt2_st_no-
wt_l 51.8 ± 1.1 49.5 ± 2.6 0.430 ± 0.143 0.428 ± 0.121 7.75 ± 0.80

•••,a,b,c,d 2.53 ± 0.34 •••
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Figure 5. Box plots of volume percentage, degree of anisotropy and connectivity density calculated
on each volume segmented with deep learning semantic method (red) and Otsu thresholding (blue).
For deep learning, both longitudinal and transversal fibers were considered together for comparison.

Referring to the volume percentage, in general, the average values obtained by deep
learning through semantic segmentation were similar to those obtained by the thresholding
segmentation method. Interestingly, the volume percentage distribution throughout the
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whole sample of Ctr2_lt_no-wt was significantly wider using semantic segmentation than
in the case of the Otsu thresholding method.

The degree of anisotropy trend was found to be similar using the thresholding or the
semantic segmentation techniques.

Conversely, referring to the connectivity density, the average values obtained by deep
learning through semantic segmentation were significantly higher than those obtained by
the Otsu thresholding segmentation method in all of the samples except for the Ctr1_st_wt.
This higher level of connectivity was probably due to a better discrimination of the single
fibers; consequently, each intertwinement was better recognized.

Interestingly, using semantic segmentation, the connectivity density was significantly
higher in Pt2_st_no-wt_l than in all of the other samples. This was most likely attributable
to the immaturity of the connective tissue present in this biopsy, also demonstrated by the
morphological evidence shown in Figure S1 of the Supplementary Materials. In fact, the
abundant presence of micro vessels (Figure S1a) and the presence of collagen fibers still
strongly disorganized (Figure S1b) at a three-dimensional level suggested the presence of
a connective tissue only at the beginning of the remodeling phase, with a wound not yet
completely healed at the connective level.

3.3. Transversal vs. Longitudinal Bundles

Since semantic segmentation allows one to distinguish transversal bundles from
longitudinal ones, the quantitative analysis of these two classes of bundles was performed
on samples segmented by deep learning. Thus, the transversal and longitudinal collagen
bundles, isolated by the neural network, were quantitatively analyzed in four different
subvolumes extracted from each sample. This information could not have been obtained
by thresholding segmentation, which merely analyzes the image based on grey levels (i.e.,
on the physical density mismatches) without looking at the morphology of the tissue itself.
This quantitative analysis, made possible by semantic segmentation that discriminates
transversal from longitudinal bundles, was reported by mean ± standard deviation (Table 4)
and by box plots (Figure 6).

Table 4. Welch t-test between morphometric data in transversal vs. longitudinal collagen bundles;
Brown–Forsythe and Welch ANOVA test, Dunnett’s multiple comparisons between samples per
parameter (only deep learning data). Test executed by GraphPad Prism 6.0 (GraphPad, Inc., San
Diego, CA, USA). a,b,c,d,•: p < 0.05; ••: p < 0.01; •••: p < 0.001; ••••: p< 0.0001.

Samples
Volume Percentage

(%) Anisotropy Degree Connectivity Density
(×10−4 px−3)

Transversal Longitudinal Transversal Longitudinal Transversal Longitudinal

Ctr1_st_wt 28.2 ± 8.9 • 11.9± 6.3 • 0.747 ± 0.014 • 0.619 ± 0.065 • 2.32 ± 0.70 • 0.90 ± 0.60 •

Ctr2_lt_no-wt 48.0 ± 3.6 •••• 5.8± 2.2 a,•••• 0.787 ± 0.037 • 0.609 ± 0.108 • 2.10 ± 0.49 •• 0.30 ± 0.31 d,••

Pt1_st_no-wt 45.4 ± 2.5 •••• 5.3± 1.6 •••• 0.834 ± 0.017
•••

0.747 ± 0.009
b,••• 2.77 ± 0.31 ••• 0.12 ± 0.11 •••

Pt2_st_no-wt_r 38.6 ± 13.0 • 13.8 ± 10.6 • 0.720 ± 0.065 0.719 ± 0.058 c 1.87 ± 0.98 1.14 ± 1.34

Pt2_st_no-wt_l 30.2 ± 6.7 21.6± 5.7 a 0.647 ± 0.036 • 0.497 ± 0.065
b,c,• 1.96 ± 0.58 4.24 ± 1.52 d
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In terms of volume percentage, the quantity of transverse bundles was always shown
to be higher than for longitudinal ones.
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The anisotropy degree was found to be significantly lower for longitudinal bundles than
for transversal ones in all of the samples but Pt2_st_no-wt_r. Interestingly, Pt2_st_no-wt_l
presented the lowest degree of anisotropy for both longitudinal and transversal bundles.

With regard to the connectivity density parameter, almost all samples, with the unique
exception of those referred to patient 2, showed significantly higher values in the transversal
direction than in the longitudinal one. Notably, the connectivity density of longitudinal
bundles in the Pt2_st_no-wt_l sample was found to be considerably larger than in the
other samples.

In general, referring to Pt2 (i.e., both Pt2_st_no-wt_r and Pt2_st_no-wt_l samples),
high standard deviations were found, both considering the volume percentage and the
connectivity density; this was not the case with Ctr1, Ctr2 and Pt1 samples. As previously
observed, the biopsies extracted from patient 2, in particular the one referring to the left
side of the jaw, had very particular characteristics, with high volume percentages and
connectivity in the longitudinal direction and low anisotropy degree. This morphometric
evidence was compatible with a probable immaturity of the connective tissue (already
highlighted in Figure S1 of the Supplementary Material and probably linked to the patient’s
clinical history).

Polarized light microscopy confirmed the semantic segmentation results referred to the
detection of transversal and longitudinal collagen bundles. It showed that the peri-implant
mucosa was constituted by different collagen bundles, distinguishable both in transversal
(Figure 7a–e) and longitudinal (Figure 7f–j) sections.
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Figure 7. Polarized light microscopy. Transversal sections (a–e): (a) Ctr1_st_wt showed bundles
better organized; (b) Ctr2_lt_no-wt, (c) Pt1_st_no-wt, (d) Pt2_st_no-wt_r, (e) Pt2_st_no-wt_l showed a
predominance of transversal bundles. Longitudinal sections (f–j): (f) Ctr1_st_wt and (h) Pt1_st_no-wt
showed fibers parallel to the long axis of the implant abutment; a network composed by woven
bundles was observed in (g) Ctr2_lt_no-wt; (i) Pt2_st_no-wt_r and (j) Pt2_st_no-wt_l (a,f) from
Ref. [9], licensed under an open access Creative Commons CC BY 4.0 license.

Regarding transversal sections, it was possible to observe how the semi-circular fibers
coming from different collagen bundles intersected with each other by showing the semi-
circular orientation of the collagen fibers around the transversal abutment profile. In
Ctr1_st_wt (Figure 7a), the bundles were better organized, and the transversal fibers were
alternated with collagen fibers parallel to the long axis of the implant (dark areas), whereas
in all other cases (Figure 7b–e), transversal bundles predominated.

Regarding longitudinal sections, only Ctr1_st_wt (Figure 7f) and partially Pt1_st_no-
wt (Figure 7h) showed, near the surface, longitudinal bundles distributed parallel to the
long axis of the implant abutment. In all other cases (Figure 7g,i,j), a network composed of
woven bundles was observed.
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4. Discussion

In this demonstrative study, artificial intelligence was used, for the first time to the
authors’ knowledge, to perform morphometric analysis on high-resolution synchrotron-
based tomographic images of peri-implant connective tissue. The overall objective was to
obtain reliable quantitative information on collagen bundles and their 3D distribution. We
showed that deep learning semantic image segmentation can better identify the bundles
compared to a common thresholding segmentation technique [37]. Notably, we had recently
found, by synchrotron imaging, the presence of transversely and longitudinally oriented
(with respect to the dental implant axis) collagen bundles in the peri-implant soft tissue;
these grow and organize intertwining patterns during their development at different times
and in different quantitative distributions depending on environmental conditions, to
date not fully understood [9]. Therefore, discriminating and quantifying transversal and
longitudinal bundles turns out to be an extremely interesting step forward in understanding
the wound healing process in the peri-implant soft tissue and the role of collagen in it.

In this study, we demonstratively showed that a good way to find these features is to
use the semantic segmentation method of synchrotron-based highly resolved tomographic
images. With the support of neural networks and deep learning, it was possible to quantify
structures in the samples that were not considered before. In particular, collagen bundles
were identified by their orientation and not by their physical densities. This is fundamental
in order to discriminate transversal and longitudinal bundles that, having the same physical
density, could not have been discriminated using conventional thresholding segmentation
techniques. In practice, we have managed to create a neural network able to separate
longitudinal and transversal fibers by U-Net [30,31].

Within the limits of the extremely reduced sample size, we did not detect a statistically
significant difference in volume percentage and degree of anisotropy between data obtained
by conventional segmentation methods based on thresholding and the innovative ones
based on artificial intelligence. On the other hand, as regards the connectivity density
parameter, it was observed that the data obtained in deep learning were higher for all
samples than the data obtained with conventional thresholding (statistically significant
in all samples except for the Ctr1_st_wt); this fact is certainly attributable to a greater
discrimination of the collagen bundles and their connectivity through artificial intelligence.

Based on quantitative comparison between transversal and longitudinal bundles,
carried out in deep learning, we discovered an extremely interesting fact: considering all
the parameters globally, a clear prevalence was observed of the quantity and connectivity
of transversal bundles compared to longitudinal ones in all of the samples; moreover,
transversal bundles were found to be more anisotropically oriented (i.e., they had a pre-
ferred orientation) than the longitudinal ones. These differences were, in most cases,
statistically significant and were confirmed by polarized light microscopy observations.

This evidence could indicate that in the wound healing process in the peri-implant
area, the transverse fibers are formed first, and only subsequently the longitudinal ones.
In reality, having found in the Ctr2_lt_no-wt, investigated after permanence in vivo for
10 years, the same quantitative mismatch between transversal and longitudinal fibers as in
the other samples, we could reasonably exclude that the lower presence of longitudinal
fibers compared to transversal ones was due to the limited healing time. Thus, in general,
we can state that, even in a mature and functional peri-implant connective tissue, the
number of longitudinal fibers is always lower than the number of transversal ones; this
information is completely new and has never been observed in the literature.

However, in the Ctr1_st_wt, Pt2_st_no-wt_r and Pt2_st_no-wt_l, there were, in terms of
volume percentages, the greatest equilibria between transversal and longitudinal bundles.
This could suggest a better stability and functionality of these samples, but, as confirmed
by polarized light microscopy observations, referring to the other two morphometric
parameters, i.e., the degree of anisotropy and the density of connectivity, it could be ob-
served that both samples referring to patient 2, with particular reference to Pt2_st_no-wt_l,
showed high variability both in terms of volume percentage and connectivity. Moreover,
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Pt2_st_no-wt_l appeared to have bundles less oriented than the other samples and highly
vascularized (Figure S1a), indicating that the tissue was still highly immature. Indeed, in
three samples (Ctr2_lt_no-wt, Pt2_st_no-wt_r, Pt2_st_no-wt_l), the longitudinal sections
obtained by polarized light microscopy showed collagen fiber orientation that was never
perfectly parallel to the surface of the abutment.

In conclusion, within the limits of the sample size, this demonstrative study showed
that the implant subjected to immediate loading, i.e., the Ctr1_st_wt, presented the most
balanced distribution of collagen bundles (transversal vs. longitudinal). This evidence
would suggest a more favorable stabilization of the soft tissues, because a better balancing
between transversal and longitudinal intertwining bundles should be due to forces bal-
ancing each other in those directions. Consequently, immediate loading appears to be a
good solution, in patients where it is possible [38], since it stabilizes the connective tissue
around the neck of the implant, which thus becomes an effective barrier against the apical
migration of inflammatory cells towards the bone, thus preventing implant failure. The
positive effect of immediate loading was observed also in previous studies [39–41], but in
all of these investigations the analysis was just focused on bone tissue without searching
for correlations with the peri-implant connective tissue organization. Clearly, given the
demonstrative nature of this study and the extremely small sample size, this new finding
has to be verified within a wider sample size. Thus, in the next steps of this research, we
will expand the dataset and use a 3D U-Net with more complex models applicable with
larger amounts of data. This way, it will be possible to support this preliminary study and
validate the artificial intelligence analysis method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13074423/s1, Video S1: Semantic Segmentation: transversal
vs. longitudinal collagen bundles; Figure S1: Synchrotron imaging evidence of the connective
tissue immaturity in Pt2; (a) Pt2_st_no-wt_l transversal slice: collagen bundles (CT), bone residuals
(BR) and a rich vascularity were detected; (b) Pt2_st_no-wt_l transversal slice (detail): the collagen
bundles were isotropically oriented and often revealed a zig-zag pattern, typical of immature contexts;
(c) Ctr2_lt_no-wt transversal slice (detail): the collagen bundles were anisotropically oriented with a
smooth pattern, typical of mature contexts.
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