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Introduction: Graph theory models a network by its nodes (the fundamental unit by 
which graphs are formed) and connections. ‘Degree’ hubs reflect node centrality 
(the connection rate), while ‘connector’ hubs are those linked to several clusters 
of nodes (mainly long-range connections).

Methods: Here, we compared hubs modeled from measures of interdependencies 
of between-electrode resting-state eyes-closed electroencephalography 
(rsEEG) rhythms in normal elderly (Nold) and Alzheimer’s disease dementia 
(ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is 
considered a ‘network disease’ and is typically associated with abnormal rsEEG delta 
(<4 Hz) and alpha rhythms (8–12 Hz) over associative posterior areas, we tested the 
hypothesis of abnormal posterior hubs from measures of interdependencies of 
rsEEG rhythms from delta to gamma bands (2–40 Hz) using eLORETA bivariate and 
multivariate-directional techniques in ADD participants versus Nold participants. 
Three different definitions of ‘connector’ hub were used.

Results: Convergent results showed that in both the Nold and ADD groups there 
were significant parietal ‘degree’ and ‘connector’ hubs derived from alpha rhythms. 
These hubs had a prominent outward ‘directionality’ in the two groups, but that 
‘directionality’ was lower in ADD participants than in Nold participants.
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Discussion: In conclusion, independent methodologies and hub definitions suggest that 
ADD patients may be characterized by low outward ‘directionality’ of partially preserved 
parietal ‘degree’ and ‘connector’ hubs derived from rsEEG alpha rhythms.

KEYWORDS

resting-state eyes closed electroencephalographic (rseeg) rhythms, alzheimer’s disease 
with dementia (add), interdependencies of rseeg rhythms, linear lagged connectivity, graph 
theory, hub topology

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative 
disorder in the elderly and causes cognitive deficits (e.g., episodic and 
working memory, executive functions, visuospatial abilities, language, 
etc.) and disabilities in activities of daily living progressively (i.e., loss of 
autonomy) belonging to dementia as a clinical syndrome (Tahami 
Monfared et al., 2022). It is provoked by the abnormal accumulation in 
the brain of Ab-42 and tau proteins, so the neurobiological in vivo 
diagnosis can be made using techniques that measure that accumulation, 
such as analysis of cerebrospinal fluid and positron emission tomography 
(Jack et al., 2019).

AD is considered a pathology affecting functional brain 
connectivity (Teipel et al., 2016). In this area of research, previous 
structural and resting-state functional magnetic resonance imaging 
(sMRI and rs-fMRI) studies showed colocalized abnormalities in both 
interhemispheric and intrahemispheric cortical connectivity in ADD 
patients compared with healthy elderly people (Nold) with unimpaired 
cognition (Delbeuck et  al., 2003; Busche and Konnerth, 2016; 
Nakamura et al., 2017). Thanks to the high spatial resolution of MRI 
techniques (i.e., millimeters), those abnormalities were mainly 
localized as follows: (1) in the posterior parietal (precuneus) and 
cingulate cortices of the cortical default mode network (DMN; Bokde 
et al., 2006; Sorg et al., 2007; Brier et al., 2012; Wang et al., 2013, 2015; 
Joo et al., 2016; Eyler et al., 2019; Talwar et al., 2021; Zhang et al., 
2021); (2) in the occipital and inferior parietal gyrus (Wang et al., 
2021); and (3) in the medial temporal lobe and other nodes of the 
limbic system (Talwar et al., 2021).

Another significant contribution made by the sMRI and rs-fMRI 
studies, together with other brain research techniques, was to unveil the 
abnormal topological organization underlying the above alterations in 
the functional brain connectivity observed in ADD patients [see reviews 
by Reijneveld et al. (2007), Xie and He (2012), Stam (2014)]. In this 
topological organization, a cortical neural network can be  formally 
represented by a ‘graph’ constituted of ‘nodes’ interconnected by ‘edges’. 
Notably, the topology of ‘nodes’ and ‘graphs’ globally reflects the 
following properties of a network: (1) near cortical nodes can be highly 
interconnected to each other forming ‘clusters’, and the nodes with more 
edges may have a prominent central role and underpin the modularity 
and segregation of the information within a network; (2) a few cortical 
nodes, the ‘hubs’, can ensure long-range interconnections between 
‘clusters’ and may reduce the path length between far nodes and 
underpin the integration of the information within a network; (3) the 
‘degree centrality’ or ‘nodal degree’ can define the importance of the hub, 
the ‘hub centrality’, in the information transmission within a brain 
network; (4) a hub can be classified as ‘connector’, connecting several 
different network modules, or ‘provincial’, mostly connecting nodes in 
the same network module as measured by the hub ‘participation 

coefficient’; (5) the number of the shortest paths that pass through a 
cortical node defines the node importance, the ‘betweenness centrality’, 
in the information transmission within a brain network; (6) a few highly 
connected cortical nodes may show dense interconnections with each 
other and form a sort of ‘rich club’ structure with a particular importance 
in the network information processing; (7) the topological distance 
between nodes, i.e., the mean number of edges to connect them, the 
‘global efficiency’, is inversely related to effective parallel information 
transfer and integrated processing; and (8) an optimal balance between 
the network modularity (segregation) and integration of the nodes 
defines the so-called ‘small worldness’ structure, which is a favorable for 
information processing and shows resilience to insults impairing 
cortical nodes (Bullmore and Sporns, 2009, 2012; He and Evans, 2010; 
van den Heuvel and Sporns, 2011; Sporns, 2013; Wang et al., 2015; Liao 
et al., 2017).

Previous rs-fMRI studies also showed that compared with Nold 
people, ADD patients were characterized by decreased network 
segregation, as revealed by lower clustering/modular structure of the 
network graphs (Supekar et al., 2008; Chen et al., 2013) and higher 
network integration structure, as revealed by lower characteristic path 
length among the cortical nodes (Sanz-Arigita et al., 2010). Furthermore, 
prodromal ADD patients with mild cognitive impairment (ADMCI) 
compared with controls showed a higher global ‘clustering coefficient’, 
while ADD patients presented a higher hub ‘participation coefficient’ in 
the inferior parietal cortex, prefrontal cortex, precuneus, and 
somatomotor cortex (Ng et al., 2021). By contrast, diffusion MRI showed 
the following opposite picture in ADD patients over Nold persons: (1) 
lower network segregation, as revealed by a higher ‘clustering coefficient’ 
(Yao et al., 2010; Daianu et al., 2013); (2) lower efficiency of the network 
structure in relation to memory and executive performances (Lo et al., 
2010; Reijmer et  al., 2013); and (3) lower network integration, as 
revealed by higher characteristic ‘path length’ (Lo et  al., 2010; Yao 
et al., 2010).

It should be  remarked that the rs-fMRI has a low temporal 
resolution of about 1 s, which is insufficient to investigate the 
interdependency between the emerging activity of neural brain 
populations at frequencies higher than 0.5 Hz. Therefore, 
electroencephalographic (EEG) techniques were used to explore that 
interdependency at a larger frequency spectrum, as they have a high 
temporal resolution of <1 ms, despite a moderate spatial resolution of 
centimeters (de Haan et  al., 2012). Previous EEG studies showed 
abnormalities in several measures of the interrelatedness of rsEEG 
rhythms at electrode or source pairs. Compared with Nold persons, 
ADD patients presented lower ‘spectral coherence’ at alpha (8–12 Hz) 
and beta (13–20 Hz) rhythms, especially at temporo-parieto-occipital 
and fronto-parietooccipital electrode pairs; notably, ‘spectral coherence’ 
is the most popular linear measure of the interrelatedness of rsEEG 
activity (Leuchter et al., 1992; Dunkin et al., 1994; Locatelli et al., 1998; 
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Jelic et al., 2000; Adler et al., 2003). Similarly, ADD and ADMCI patients 
exhibited lower interrelatedness of temporo-parieto-occipital and/or 
fronto-parietooccipital rsEEG alpha rhythms, as revealed by the 
following procedures: the ‘phase lag index’, a spectral measure of the 
phase difference distribution asymmetry (Stam et al., 2007b; Yu et al., 
2016; Peraza et  al., 2018), ‘synchronization likelihood’, a measure 
sensitive to both linear and non-linear interrelatedness of rsEEG activity 
(Babiloni et  al., 2004b, 2006b), and ‘linear lagged connectivity’, a 
measure of the interrelatedness of rsEEG activity without the zero-lag 
component sensitive to the head volume conduction effects (Babiloni 
et al., 2018, 2019).

The above rsEEG findings were confirmed and extended by 
measures reflecting the directionality of the interrelatedness of rsEEG 
activity from one electrode/source to another, such as the ‘directed 
transfer function’ derived from Granger causality and autoregressive 
methods (Blinowska, 2011; Blinowska et al., 2017). ADD and ADMCI 
patients exhibited lower interrelatedness of the temporo-parieto-
occipital and/or fronto-parietooccipital rsEEG alpha rhythms, as 
revealed by “directed transfer function” (Dauwels et al., 2009, 2010). 
Furthermore, there was a reduced prominence of the interrelatedness 
from parietal to frontal electrodes at the alpha and beta (13–35 Hz) 
rhythms (Babiloni et al., 2008, 2009a,b; Blinowska et al., 2017).

Concerning the rsEEG delta (<4 Hz) and/or theta (4–7 Hz) rhythms, 
most of the studies showed higher measures of the interrelatedness of 
topographically widespread rsEEG activity, intrahemispherically and 
inter-hemispherically; those measures were derived from the ‘spectral 
coherence’, ‘directed transfer function’, and ‘linear lagged connectivity’ 
(Babiloni et al., 2008, 2009a,b, 2010, 2018, 2019; Sankari et al., 2011; 
Canuet et al., 2012; Yu et al., 2016; Blinowska et al., 2017), with some 
exceptions (Knott et al., 2000; Adler et al., 2003).

Previous rsEEG studies also revealed the abnormal network 
topology of the interrelatedness of rsEEG rhythms at electrode/source 
pairs in ADD patients. Compared with Nold people, ADD and ADMCI 
patients showed a more random topology of the interrelatedness of 
rsEEG rhythms at an electrode or source pairs, possibly due to reduced 
‘small worldness’ properties of brain networks (Reijneveld et al., 2007; 
Stam et al., 2007a; de Haan et al., 2009; Frantzidis et al., 2014; Vecchio 
et al., 2014, 2016; Hallett et al., 2020). This general effect was reported at 
the delta, alpha, and beta rhythms on the whole scalp (Stam et al., 2007a; 
de Haan et al., 2009; Vecchio et al., 2014, 2016) and in AD-vulnerable 
regions, such as the frontal and parietal regions (Frantzidis et al., 2014).

Moreover, beyond the ‘small worldness’ property, ADD patients 
were characterized by abnormalities in the following graph network 
indexes: (1) a shift of the ‘betweenness centrality’ center of mass from 
posterior to anterior alpha rhythms in relation to disease severity, as 
revealed by the ‘phase lag index’ (Engels et al., 2015); (2) a parietal and 
occipital loss of the network organization from theta and alpha rhythms, 
as revealed by the ‘phase lag index’ (Yu et  al., 2016); (3) hub 
rearrangement and functioning at different rsEEG frequency bands, as 
revealed by several interrelatedness measures (Stam et al., 2007a; De 
Haan et al., 2009; Frantzidis et al., 2014; Engels et al., 2015; Song et al., 
2019; Das and Puthankattil, 2022); (4) lower ‘global efficiency’, increased 
‘local efficiency’, and lower resilience of cortical networks from the 
rsEEG alpha and beta rhythms, as revealed by the Granger ‘directed 
transfer function’ (Afshari and Jalili, 2017); and (5) reduced graph ‘local 
and global efficiency’ values from lower inward and outward directions 
of the interrelatedness derived from the whole-band rsEEG activity by 
another Granger measure based on a conditional multivariate vector 
autoregression model. Notably, the maximum abnormalities of the ‘hub 

degree’ were observed at parietal electrodes (Franciotti et al., 2019), 
whereas no changes in the global network organization from the whole-
band rsEEG activity were found by ‘mutual information’ measures of 
that interrelatedness (Franciotti et al., 2022).

Considering the above rsEEG findings, both ADD and ADMCI 
patients showed reduced efficient information exchange in the cortical 
neural networks, as revealed by their more random topology. However, 
no previous study in those patients focused on the integrity of the 
parietal hubs derived from the rsEEG alpha rhythms, although it is well 
known that ADD patients show the following significant abnormalities: 
(1) impairment in the parietal nodes of the cortical DMN (Bokde et al., 
2006; Sorg et al., 2007; Brier et al., 2012; Wang et al., 2015; Joo et al., 
2016; Eyler et  al., 2019; Talwar et  al., 2021; Zhang et  al., 2021); (2) 
reduced interrelatedness of the parietal rsEEG alpha rhythms electrode 
or source pairs (Leuchter et al., 1992; Locatelli et al., 1998; Jelic et al., 
2000; Babiloni et al., 2004a, 2006a, 2018, 2019; Stam et al., 2007b; Yu 
et al., 2016; Peraza et al., 2018); and (3) reduced power density of the 
occipital and parietal rsEEG alpha rhythms (reviewed by Babiloni 
et al., 2021).

In ADD patients, the abnormal reduction in rsEEG alpha rhythms 
may be related to disorders in the regulation of quiet vigilance. This 
functional interpretation is based on, among others, the following 
findings: (1) in healthy volunteers, posterior (eyes closed) rsEEG alpha 
rhythms were modulated in amplitude after transcranial magnetic 
stimulations over angular gyrus, a core region of the DMN, but not over 
control regions of the dorsal attention network (Capotosto et al., 2012); 
(2) those rsEEG alpha rhythms also reduced in amplitude 1 min before 
the onset of sleep stage 1 (Morikawa et al., 2002); (3) furthermore, they 
decreased in amplitude and theta rhythms increased in amplitude 
during the transition from quiet vigilance to drowsiness, behaviorally 
tested by both EEG spectral measures and reaction time and decision 
making to auditory stimuli (Jagannathan et al., 2018, 2022); and (4) 
moreover, a night of sleep deprivation reduced the posterior rsEEG 
alpha rhythms in healthy volunteers and visual attention performances 
(placebo condition), whereas an acute dose of an amphetamine 
(experimental condition) after sleep deprivation recovered both the 
posterior EEG alpha rhythms and those performances (Del Percio 
et al., 2019).

To fill the above literature gap, the present study explored the 
integrity of the parietal graph-based hubs derived from the rsEEG alpha 
rhythms in mild-to-moderate ADD patients compared with Nold 
people. In the present study, all methods for estimating the directional 
(isolated lagged effective coherence, iCoh) and non-directional (linear 
lagged connectivity, LLC) interrelatedness of the rsEEG activity at 
electrode pairs are implemented in the freeware platform called 
eLORETA.1 Along the same line, the methods for computing the Graph 
Theory indexes are implemented in the freeware platform called 
GraphVar.2 These methods were chosen to (1) use different mathematical 
approaches to measure that interrelatedness, (2) compare the results, (3) 
promote open science, and (4) allow easier cross-validation of the 
present results in the future. Notably, we did not want to provide a 
methodological standard for applying graph theory analysis. Rather, 
we provided a proof of concept of how the results may be affected by 
different thresholds and criteria.

1 https://www.uzh.ch/keyinst/loreta

2 https://www.nitrc.org/projects/graphvar
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2. Materials and methods

2.1. Subjects

For the present study, we used the clinical and rsEEG data of 40 
ADD patients and 40 control Nold people carefully matched for age, 
gender, and education and enrolled by clinical units of our Consortium 
(data from three ADD patients were irremediable artifacts or relevant 
missing data, so were not considered further). The Local institutional 
Ethics Committees approved the present study. All experiments were 
performed with the informed and overt consent of each participant or 
caregiver, in line with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki) and the standards established by 
the local Institutional Review Board.

Table  1 summarizes the most relevant demographic (i.e., age, 
gender, and education) and clinical (i.e., MMSE score) features of the 
Nold and ADD participants. Furthermore, it shows the results of the 
statistical comparisons (p < 0.05) of age (t-test), gender (Fisher test), 
education (t-test), and MMSE score (Mann–Whitney U test) between 
the two groups. As expected, a statistically significant difference was 
found for the MMSE score (p < 0.001), indicating a higher score in the 
Nold group than the ADD group. No difference was found for the age, 
gender, and education between the two groups (p > 0.05 uncorrected).

In Table 1, the mean values of TF and IAF for the Nold and ADD 
groups, together with the results of the statistical comparisons between 
them (t-test), are also reported. No statistically significant differences 
were observed for TF and IAF values (p > 0.05 uncorrected).

2.2. Diagnostic criteria

In all clinical units, probable ADD was diagnosed based on the 
criteria of the Diagnostic and Statistical Manual of Mental Disorders, 
fourth edition (DSM-IV-TR; American Psychiatric Association), and the 
National Institute of Neurological Disorders and Stroke-Alzheimer 
Disease and Related Disorders (NINCDS-ADRDA) working group 
(McKhann et al., 1984, 2011). Diagnostic criteria refer to the time period 
when diagnoses were performed. All ADD individuals underwent 
medical, neuropsychological, neurological, psychiatric, and neuroimaging 
evaluations, according to standard procedures at each center and based 
on the expertise of each clinician. The procedures followed by all clinical 
units included the Instrumental Activities of Daily Living scale (IADL; 
Lawton and Brody, 1969), the Mini-Mental State Examination (MMSE; 
Folstein et al., 1975), the Clinical Dementia Rating scale (CDR; Hughes 
et al., 1982), the Geriatric Depression Scale (GDS; Yesavage et al., 1982), 
and the Hachinski Ischemic Score scale (HIS; Rosen et al., 1980).

Inclusion criteria included the clinical diagnosis of AD based on the 
above procedures and the determination of a worsening episodic 

memory in the last 6 months, thus referring to patients with typical ADD 
clinical presentation. According to the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI),3 the MMSE score had to be 24 or lower. 
Additionally, inclusion criteria included the visual analysis of structural 
T1-weighted magnetic resonance images (MRIs) by local radiologists; 
those images had to be compatible with ADD diagnosis (Albert et al., 
2011). Cognitive deficits were assessed by standard neuropsychological 
tests in the domains of episodic memory, language, executive function/
attention, and visuoconstruction abilities (local normative reference 
thresholds). Only some of the patients received the CERAD-plus battery. 
In general, the tests assessing episodic memory included the delayed 
recall of Rey figures (Rey, 1959) and/or the delayed recall of a story 
(Spinnler and Tognoni, 1987). The tests assessing language included the 
1-min verbal fluency for letters, fruits, animals, or car trades (Novelli 
et al., 1986), and/or the Token test (Spinnler and Tognoni, 1987). The 
tests assessing executive function and attention included the Trail 
Making Test Part A and B (Reitan, 1958). Finally, the tests assessing 
visuoconstruction abilities included the copy of Rey figures (Rey, 1959). 
This inhomogeneity derived from the retrospective nature of the study, 
with data collected during a clinical routine at each center.

Exclusion criteria included major neuropsychiatric disorders and 
other types or causes of dementia, such as frontotemporal dementia 
(Rascovsky et al., 2011), vascular dementia diagnosed based on the 
National Institute of Neurological Disorders and Stroke and Association 
Internationale pour la Recherché et l’Enseignement en Neurosciences 
(NINDS-AIREN) working group (Gorelick et  al., 2011), Parkinson 
disease (Gelb et al., 1999), dementia with Lewy Bodies (McKeith et al., 
2005), metabolic syndrome, nutritional deficits, tumors, epilepsy, etc. 
Exclusion criteria also included visual analysis of structural T2-weighted 
MRIs by local radiologists to exclude major cerebrovascular lesions, as 
well as the chronic use of psychoactive drugs except for 
acetylcholinesterase inhibitors (all patients chronically took them) and/
or NMDA receptor antagonists.

The Nold participants received a cognitive, physical, and 
neurological examination to exclude the presence of cognitive deficits 
and psychiatric disorders. According to ADNI, the MMSE score had to 
be 27 or higher. Additionally, all Nold participants had a GDS score 
lower than the threshold of 5 (no depression) or were verified as not 
having depression after an interview with a physician or clinical 
psychologist. Those affected by chronic systemic illnesses (e.g., diabetes 
mellitus) were excluded, as well as participants receiving chronic 
psychoactive drugs. Assessed Nold people were also excluded if they 
had, currently or historically, neurological or psychiatric diseases and 
drug or alcohol abuse issues.

3 http://adni.loni.usc.edu

TABLE 1 Demographic, clinical, neuropsychological, and neurophysiological characteristics of the normal elderly (Nold) subject and Alzheimer’s Disease 
with Dementia (ADD) patients enrolled in the present study.

Group N Age (± SEM) Education (± SEM) Gender (M/F) MMSE (± SEM) TF (± SEM) IAF (± SEM)

Nold 40 73.8 (± 1.0) 9.1 (± 0.5) 20/20 28.6 (± 0.2) 5.7 (± 0.1) 9.0 (± 0.2)

ADD 37 73.7 (± 1.0) 8.7 (± 0.8) 17/20 18.7 (± 0.6) 5.3 (± 0.2) 8.6 (± 0.3)

Statistical 

comparisons

– t test, n.s. t test, n.s. – Mann–Whitney, 

p < 0.0001

t test, n.s. t test, n.s.

SEM, standard error of the mean; MMS, Mini-Mental State Examination; TF, transition frequency; IAF, individual alpha frequency; n.s., not significant.
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In ADD and Nold participants, pharmacological administration 
(when planned) of routine drugs was postponed until after the rsEEG 
recordings and performed in hospital settings in the morning. Although 
this procedure did not guarantee a full washout of the drugs, it 
synchronized the timing of drug administration. Longer periods of 
suspension would not have been valid for obvious ethical reasons.

2.3. Resting state eyes-closed 
electroencephalographic recordings

In all clinical units, the Nold and ADD participants were kindly 
asked to stay relaxed with their eyes closed during the experiments. They 
were also kindly asked not to move or talk and keep their mind 
wandering without focused mentalization. During the experimental 
recordings, the researchers controlled for the subject’s behavioral 
condition and ongoing rsEEG traces (specifically the amplitude of alpha 
waves on posterior regions and the onset of slow-wave activity in frontal 
regions), helping the participants to keep an adequate level of vigilance 
(i.e., avoiding drowsiness and sleep onset). These alarms were annotated 
in the protocol for the preliminary rsEEG data analysis phase. The above 
instructions and procedures were similar in all clinical units even if the 
respective protocols were not identical.

At least 5 min of electrophysiological data were recorded by 
professional digital EEG systems authorized for clinical applications (i.e., 
EB-Neuro Be-light, Micromed, Brain Product, etc.). For this purpose, 
19 exploring scalp electrodes were placed according to the 10–20 
montage system (i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, 
P3, Pz, P4, P8, O1, and O2; Figure 1).

The ground electrodes were placed in the posterior midline, while 
the reference electrodes were located in different positions across 
participating clinical units (i.e., linked earlobes, mastoids, vertex, etc.), 
in line with local standard protocols and clinical trials. During the 
rsEEG recordings, scalp electrode impedances were kept below 5 KOhm. 
The rsEEG recordings were performed using 128 Hz or a higher 
sampling rate (i.e., 128–1,024 Hz) with an adequate antialiasing band 
pass between 0.01 Hz and 60–100 Hz.

In addition to the rsEEG recording, bipolar vertical and horizontal 
electrooculographic (EOG) signals and one-channel 
electrocardiographic (ECG) signals were also acquired using the same 
sampling frequency adopted for recording the rsEEG data 

(128–1,024 Hz). Consequently, rsEEG, EOG, and ECG signals had the 
same sampling rate, so EOG and ECG signals could be used for artifact 
detection and their off-line correction when adequate.

As mentioned above, some rsEEG datasets were recorded using a 
relatively low sampling frequency of 128 Hz (i.e., 6 out of 40 rsEEG 
datasets collected for the Nold group and 4 out of 37 rsEEG datasets 
collected for the ADD group). It should be  remarked that such a 
sampling frequency is suboptimal for an ideal reconstruction of rsEEG 
signal beyond 40 Hz without aliasing. Ideally, a factor of 3–4 between 
the low-band pass limit and the rsEEG sampling frequency 
should be set.

2.4. Preliminary rsEEG data analysis

Data analysis was centrally performed by the group located at the 
Department of Physiology and Pharmacology ‘Erspamer’ of Sapienza 
University of Rome, Italy. In the preliminary analysis, the rsEEG data 
were split into 2-s epochs and analyzed off-line. This segmentation 
allowed the use of standard toolboxes for the spectral analysis of 
rsEEG activity, such as fast Fourier transform (FFT) implemented in 
the official eLORETA platform. This analysis assumes the stationarity 
of rsEEG activity. Furthermore, it allowed for the minimization of the 
rejection of rsEEG data for artifactual activity. The use of those 
procedures allowed a better understanding of the present results in 
light of previous reference evidence of the PDWAVES Consortium 
(Babiloni et al., 2015, 2016; Lizio et al., 2016; more information can 
be found at www.pdwaves.eu), but it implied the focus on the linear 
components of rsEEG signals.

Two independent researchers (GN and RL) performed a visual 
analysis of EOG and rsEEG data blind to the clinical diagnosis associated 
with the electrophysiological datasets. They rejected those with artifacts 
due to instruments, electronic noise, head–neck movements, and face 
muscle tension. They also rejected rsEEG epochs with amplitude values 
exceeding 100 μV. Particular attention was given to the contamination 
of saccades and blinking on electrophysiological data recorded by 
frontal (i.e., F7, F3, Fz, F4, and F8) and frontopolar (Fp1 and Fp2) 
electrodes. This specific exam was based on the comparison of EOG and 
rsEEG traces. The rsEEG epochs with artifacts marked as eye movements 
and blinking were provided as inputs to a software toolbox based on an 
autoregressive model for their possible correction (MATLAB 6.5, 
MathWorks Inc.). Technical details and performances of this procedure 
have been reported elsewhere (Moretti et al., 2003) and validated in 
several previous studies by the present research group (Babiloni et al., 
2004a, 2006a, 2008). Of note, the outcome of this procedure was visually 
revised by the two researchers (G. N. and R. L.). All Nold and ADD 
datasets showed less than 25% of artifact-free rsEEG epochs, without 
significant differences between the Nold and ADD groups (t-test, 
p > 0.05, two tails). More specifically, the total number of artifact-free 
epochs was as follows: 135 ± 11 (SE) epochs for the Nold group and 
115 ± 8 (SE) epochs for the ADD group, with a total duration spanning 
between 3.5 and 4.5 min, respectively.

To harmonize rsEEG data recorded using different reference 
electrodes and sampling frequency rates, artifact-free rsEEG epochs 
were off-line frequency-band passed at 0.1–45 Hz and downsampled, 
when appropriate, to make the sampling rate of all artifact-free rsEEG 
datasets in the Nold and ADD participants equal to 128 Hz. For the sake 
of harmonization of all datasets, the recorded rsEEG data were 
re-referenced to the common average reference.

FIGURE 1

Scalp electrode positioning of the 19 electrodes according to the 
international standard 10–20.
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2.5. The spectral analysis of rsEEG epochs

A standard digital FFT-based analysis (Welch technique, Hanning 
windowing function, no phase shift) computed the power density of 
scalp rsEEG rhythms (0.5 Hz of frequency resolution). As mentioned 
above, only rsEEG epochs free from artifacts were used.

The EEG frequency bands of interest were individually identified 
based on the following frequency landmarks: the transition frequency 
(TF) and the individual alpha frequency (IAF) peak (Klimesch, 1999). In 
the EEG power density spectrum, the TF marks the transition frequency 
between the theta and alpha bands, defined as the minimum of the 
rsEEG power density between 3 and 8 Hz (between the delta and the 
alpha power peak). The IAF is defined as the maximum power density 
peak between 6 and 14 Hz. These frequency landmarks were previously 
well described by Dr. Wolfgang Klimesch (Klimesch, 1996, 1999; 
Klimesch et al., 1998). Specifically, the TF and IAF were measured on 
averaged rsEEG power density spectra at parietal and occipital electrodes.

The TF and IAF were computed for each subject involved in the 
study. Based on the TF and IAF, we estimated the individual delta, theta, 
and alpha bands as follows: delta from TF −4 Hz to TF −2 Hz, theta 
from TF −2 Hz to TF, low-frequency alpha (alpha 1 and alpha 2) from 
TF to IAF, and high-frequency alpha (or alpha 3) from IAF to IAF + 
2  Hz. Specifically, the individual alpha 1 and alpha 2 bands were 
computed as follows: alpha 1 from TF to the frequency midpoint of the 
TF-IAF range and alpha 2 from that midpoint to IAF.

The other bands were defined based on the standard fixed frequency 
ranges used in the reference study series (reviewed by Babiloni et al., 
2021): beta 1 from 14 to 20 Hz, beta 2 from 20 to 30 Hz, and gamma from 
30 to 40 Hz. See Supplementary Figure 1 in the Supplementary materials 
for the graphical representation of the above-mentioned frequency bands.

Of note, important aspects of the procedure were as follows:

 (1) The alpha band was divided into sub-bands because, in the rsEEG 
data, dominant low-frequency alpha rhythms (alpha 1 and alpha 
2) may denote the synchronization of diffuse neural networks 
regulating the fluctuation of the subject’s global awake and 
conscious states, while high-frequency alpha rhythms (alpha 3) 
may denote the synchronization of more selective neural 
networks specialized in the processing of modal specific or 
semantic information (Pfurtscheller and Klimesch, 1992; 
Klimesch, 1999). When the subject is engaged in sensorimotor 
or cognitive tasks, alpha and low-frequency beta (beta 1) rhythms 
do reduce in power (i.e., desynchronization or blocking) and are 
replaced by fast EEG oscillations at high-frequency beta (beta 2) 
and gamma rhythms (Pfurtscheller and Klimesch, 1992).

 (2) We considered individual delta, theta, and alpha frequency bands 
because a clinical group may be characterized by a mean slowing 
in the peak frequency of the alpha power density without any 
substantial change in the magnitude of the power density. In that 
specific case, the use of fixed frequency bands would result in a 
statistical effect erroneously showing alpha power density values 
lower in the clinical group than in the control group. In some 
specific cases, the groups of AD patients and control participants 
may not show statistically significant differences in the mean 
values of TF and IAF. Nevertheless, we used those values as a 
research model to allow the identification of delta, theta, 
low-frequency alpha bands, and high-frequency alpha bands on 
an individual basis to ensure the spectral measures were accurate 
within those bands, in line with our reference rsEEG studies 

performed in patients with AD and related neurodegenerative 
disorders (Babiloni et al., 2017, 2018, 2019, 2020).

 (3) Fixed frequency ranges were used for the beta and gamma bands 
because the individual beta and gamma frequency peaks were 
only evident in a few subjects (<10%).

 (4) We selected the beginning of the beta frequency range at 14 Hz 
to avoid overlapping between individual alpha and fixed beta 
frequency ranges (i.e., the individual alpha frequency band 
ranged from TF to 14 Hz with an IAF of 12 Hz).

During rsEEG recording, very careful attention was paid to the 
amplitude of alpha rhythms on posterior regions and the abnormal 
slow wave on frontal regions. Overall, specific spectral features should 
be respected, namely:

 (1) The physiological decrease of the EEG power density after the 
IAFp as a function of the increase of the frequencies in the range 
of 1–40 Hz (related to residual muscular activity);

 (2) The absence of an offset of power density across all frequencies 
at some scalp electrodes (especially visible as big differences in 
gamma rsEEG power density among the ROI);

 (3) The absence of several peaks of high-power density in the range 
of 1–40 Hz; and.

 (4) Visible IAFp in the range between 6 Hz and 14 Hz, especially on 
posterior regions.

We carefully checked the presence of IAFp in the present cohort of 
AD patients, as in a mild-to-moderate dementia stage, AD 
neuropathology should not impair the neurophysiological synchronizing 
mechanism inducing a total disruption of IAFp. If an IAFp was not 
clearly present, we attributed the cause to substantial artifacts rather 
than AD neuropathology.

2.6. Estimation of linear lagged connectivity 
(LLC) and isolated lagged effective 
coherence (iCoh)

As mentioned above, LLC and iCoh are two complementary and 
mathematically independent approaches available at the freeware 
platform called LORETA (see technical details at https://www.uzh.ch/
keyinst/loreta; Pascual-Marqui, 2007) for measuring the 
interrelatedness of rsEEG activity at electrode (source) pairs. 
Comparing the results with two techniques probed the intrinsic 
variability of this kind of readout and allowed us to select and discuss 
the one that was most consistent.

LLC belongs to the popular bivariate techniques that compute the 
non-directional interrelatedness of rsEEG activity at electrode pairs (e.g., 
spectral coherence, phase lag index, synchronization likelihood, etc.) 
without considering the interrelatedness of rsEEG activity across the other 
electrode (source) pairs. It has the conceptual advantage of not considering 
the interrelatedness of the rsEEG activity at the zero-lag phase, which may 
be affected by the instantaneous spread of the electric field to the well-
known head volume conduction effects (Pascual-Marqui et al., 2011).

By contrast, iCoh belongs to a group of techniques based on an 
autoregressive model that computes the directional interrelatedness of 
rsEEG activity at electrode pairs (e.g., spectral coherence, phase lag 
index, synchronization likelihood, etc.), removing the linear component 
of the interrelatedness of rsEEG activity across the other electrode 
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(source) pairs. It has the conceptual advantage of being multivariate (as 
opposed to bivariate) and exploring the directionality of that 
interrelatedness (Pascual-Marqui et al., 2014).

Using the iCoh procedure, we  obtained not only a ‘directional’ 
measure of the interdependencies of rsEEG rhythms at electrode pairs 
but also a ‘non-directional’ measure. The directional measure was 
computed as the absolute difference of the iCoh values between the two 
‘directions’, while the ‘non-directional’ measure was obtained by the 
mean of the two ‘directional’ values. The latter measure allowed cross-
validation of (‘non-directional’) LLC measures.

For each participant, LLC, mean iCoh between the two ‘directions’, 
and the absolute difference of the iCoh values for the two ‘directions’ 
were calculated at each frequency bin between 0.5 and 45 Hz (matrix of 
19 rows × 19 columns). LLC and iCoh values within the frequency bands 
individually identified based on the TF and IAF landmarks were 
averaged to obtain delta, theta, alpha 1, alpha 2, and alpha 3 bands. LLC 
and iCoh values for beta 1, beta 2, and gamma LLC were based on fixed 
frequency bands, as mentioned above.

To reduce statistical comparisons, we averaged the LLC or iCoh 
values calculated between scalp electrode pairs for regions of Interests 
(ROI). Specifically, we considered frontal, central, parietal, temporal, 
and occipital ROI. For each frequency band, LLC or iCoh values for 
interhemispheric comparisons were calculated as follows: (1) frontal 
ROI, mean values of Fp1-Fp2, F3-F4, and F7-F8 electrodes; (2) central 
ROI, the values of C3-C4 electrodes; (3) parietal ROI, the values of 
P3-P4 electrodes; (4) temporal ROI, mean values of T7-T8 and P7-P8 
electrodes; and (5) occipital ROI, the values of O1-O2 electrodes.

Similarly, for each frequency band, LLC or iCoh values for 
intrahemispheric comparisons were calculated as follows: (1) left frontal 
ROI, mean values of electrode pairs between Fp1, F3, and F7 electrodes 
and all the left hemispheric electrodes; (2) right frontal ROI, mean 
values of electrode pairs between Fp2, F4, and F8 electrodes and all the 
right hemispheric electrodes; (3) left central ROI, mean values of 
electrode pairs of the left hemi-scalp involving the C3 electrode and all 
the left hemispheric electrodes; (4) right central ROI, mean values of 
electrode pairs of the right hemi-scalp involving the C4 electrode and 
all the right hemispheric electrodes; (5) left parietal ROI, mean values 
of electrode pairs of the left hemi-scalp involving the P3 electrode and 
all the left hemispheric electrodes; (6) right parietal ROI, mean values 
of electrode pairs of the right hemi-scalp involving the P4 electrode and 
all the right hemispheric electrodes; (7) left temporal ROI, mean values 
of electrode pairs of the left hemi-scalp involving the T7 and P7 
electrodes and all the left hemispheric electrodes; (8) right temporal 
ROI, mean values of electrode pairs of the right hemi-scalp involving 
the T6 and P8 electrodes and all the right hemispheric electrodes; (9) 
left occipital ROI, mean values of electrode pairs of the left hemi-scalp 
involving the O1 electrode and all the left hemispheric electrodes; and 
(10) right parietal ROI, mean values of electrode pairs of the right hemi-
scalp involving the O2 electrode and all the right hemispheric electrodes.

2.7. Graph theory analysis of LLC and iCoh 
values

For each participant, the LLC, mean iCoh, and absolute difference 
of iCoh values at the frequency bands showing statistically significant 
differences between the ADD and Nold groups were used as input for 
the graph theory analysis. This analysis was performed using the 
GraphVar 2.0 software platform (Waller et al., 2018).

For this purpose, matrices of LLC, mean iCoh, and absolute 
difference of iCoh values were converted into binary matrices having ‘0’ 
or ‘1’ in the cells. LLC or iCoh values associated with ‘1’ were considered 
as ‘significant’ and considered for the computation of the graph indexes 
of interest in the Nold and ADD groups. Notably, we converted the LLC 
and iCoh matrices into binary (‘1’ and ‘0’) graphs to (1) mitigate the 
inclusion of ‘spurious’ interdependencies of rsEEG rhythms at electrode 
pairs and (2) compare graphs with the same number of those 
interdependencies for the Nold and ADD groups.

For the identification of the ‘significant’ values of LLC or iCoh (‘1’ 
in the binary matrices), two arbitrary percentage thresholds were 
used, namely 10% (0.1) and 20% (0.2). For each frequency band and 
group of participants (Nold and ADD), the threshold at 10% did set to 
‘1’ the 10% of the highest values of LLC (iCoh), considering all 
electrode pairs, and ‘0’ for the remaining ones. This procedure was 
repeated for LLC, mean iCoh, and the absolute difference of iCoh 
values. Specifically, 10% of the highest values of LLC corresponded to 
17 electrode pairs. The same number of electrode pairs was true for 
(‘non-directional’) mean iCoh and the absolute difference of the two 
‘directional’ iCoh values.

Following the same procedure, the threshold at 20% did set to ‘1’ the 
20% of the highest values of LLC (iCoh), considering all electrode pairs, 
and ‘0’ for the remaining ones. Specifically, 20% of the highest values of 
(‘non-directional’) LLC corresponded to 34 electrode pairs. Again, this 
procedure was repeated for LLC, mean iCoh, and the absolute difference 
of iCoh values.As another step of the graph theory analysis, 
we arbitrarily used the nodal degree (ND), participation coefficient 
(PC), and local clustering coefficient (CC) graph indexes to scalp 
electrodes as degree hubs and then differentiate them into provincial 
and connector hubs.

For this purpose, ND was defined as the number of links (i.e., 
‘significant’ interdependencies of rsEEG rhythms at electrode pairs 
represented as ‘1’ in the previously mentioned binary matrices) 
characterizing a given node (electrode). Among nodes with a high 
number of links (high-degree nodes = degree hubs), PC denoted the 
discriminant feature of their connection profile. In general, provincial 
hubs primarily link other nodes located within a single network region. 
By contrast, connector hubs predominantly link nodes located in several 
network regions (Sporns et al., 2007; Power et al., 2013). Here, this 
classification as provincial hub vs. connector hub was further confirmed 
by the CC index, which is a measure of the tendency of network nodes 
to form local clusters. High CC values mainly characterize provincial 
hubs rather than connector hubs.

In the present experimental context, we  operationally defined 
degree hubs and then differentiated them into provincial and connector 
hubs using the following three approaches:

 (1) Hubs were defined according to ND and classified into connector 
and provincial hubs according to the PC and CC calculated at 0.1 
and 0.2 graph thresholds, in line with the Franciotti and 
Bonanni approach.

 (2) Hubs were defined according to ND and classified into connector 
and provincial hubs according to the PC and betweenness 
centrality (BC) calculated at 0.1 and 0.2 graph thresholds, in line 
with the approach described by Cole et al. (2015).

 (3) Hubs were defined according to the within-module degree 
z-score and classified into connector and provincial hubs 
according to the PC calculated at 0.1 and 0.2 graph thresholds, in 
line with the approach described by Power et al. (2013).
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Furthermore, we  used the four following alternative criteria for 
testing the consistency of the results (they were applied for each 
frequency band and each group of participants):

 (1) According to the first criterion, degree hubs were defined as 
nodes (electrodes) with ND (number of links) higher than one 
standard deviation (SD) from the group mean of significant 
node links (i.e., ‘1’ in the previously mentioned binary matrices) 
within the network (electrode montage). Provincial hubs were 
then defined as degree hubs with an ND and a CC higher than 
one SD and PC lower than one SD from the group mean of 
significant node links within the network. Connector hubs were 
defined as degree hubs (electrodes) with an ND and a PC higher 
than one SD from the network mean and a CC lower than one 
SD from the group mean of significant node links within 
the network.

 (2) According to the second criterion, degree hubs were defined as 
nodes with an ND higher than the 80th percentile from the 
group mean of significant node links within the network. 
Provincial hubs were then defined as degree hubs with an ND 
and a CC higher than the 80th percentile and a PC lower than 
the 20th percentile from the group mean of significant node links 
within the network. Connector hubs were defined as degree hubs 
with an ND and a PC higher than the 80th percentile from the 
network mean and a CC lower than the 20th percentile from the 
group mean of significant node links within the network.

 (3) According to the third criterion, degree hubs were defined as 
nodes with an ND higher than the 70th percentile from the 
group mean of significant node links within the network. 
Provincial hubs were then defined as degree hubs with an ND 
and a CC higher than the 70th percentile and a PC lower than 
the 30th percentile from the group mean of significant node links 
within the network. Connector hubs were defined as degree hubs 
with an ND and a PC higher than the 70th percentile from the 
network mean and a CC lower than the 30th percentile from the 
group mean of significant node links within the network.

 (4) According to the fourth criterion, degree hubs were defined as 
nodes with an ND higher than one standard error of the mean 
(SEM) from the group mean of significant node links within the 
network. Provincial hubs were then defined as degree hubs with 
an ND and a CC higher than one SEM and a PC lower than one 
SEM from the group mean of significant node links within the 
network. Connector hubs were defined as degree hubs with an 
ND and a PC higher than one SEM from the network mean and 
a CC lower than one SEM from the group mean of significant 
node links within the network.

All results obtained with the above criteria are reported in detail in 
the tables featured in the Supplementary materials (see Results). Of note, 
the selection of the criteria was performed to provide an index of the 
result variability using different mathematical threshold definitions.

2.8. Directionality of degree hubs by iCoh 
values

To evaluate the directionality of the interdependencies of rsEEG 
rhythms between degree hubs (electrodes), ‘directional’ iCoh values for 
pairs of those hubs were calculated at each frequency bin between 0.5 

and 45 Hz and for each participant of the ADD and Nold groups. Then, 
these iCoh values were averaged according to individual frequency 
bands from delta to alpha 3. To limit the statistical comparisons, the 
subsequent analysis was focused on individual delta, alpha 2, and alpha 
3 bands, which are typically abnormal in rsEEG rhythms recorded in 
ADD patients (Babiloni et al., 2021). For each frequency band and group 
of participants, the global output (outward) value of a given degree hub 
was obtained averaging all output iCoh values from it to the other degree 
hubs. The global input (inward) value of that degree hub was obtained 
averaging all input iCoh values to it coming from the other degree hubs.

2.9. Statistical analysis

To evaluate the study hypotheses, the following statistical sessions 
were performed by the commercial tool STATISTICA 10 (StatSoft Inc.).4 
As analysis of variance (ANOVA) implies that dependent variables have 
Gaussian distributions, we tested this feature with the LLC and iCoh 
values using a Kolmogorov–Smirnov test (null hypothesis of 
non-Gaussian distributions tested at p > 0.05). Both the LLC and iCoh 
values showed non-Gaussian distributions, so we Log10 transformed 
them and retested Gaussian status. Such a transformation is a popular 
method for transforming a skewed data distribution with all positive 
values, such as LLC and iCoh values, to Gaussian distributions, as 
required when using ANOVA. Indeed, the outcome of the procedure did 
approximate the distributions of LLC and iCoh values to Gaussian 
distributions (p > 0.05), allowing the use of the ANOVA model.

For the session using ANOVAs, Mauchly’s test evaluated the 
sphericity assumption, and degrees of freedom were corrected using the 
Greenhouse–Geisser procedure when appropriate (p < 0.05). the Duncan 
test was used for post-hoc comparisons (p < 0.05, corrected for 
multiple comparisons).

The results of the following ANOVAs were controlled by the iterative 
(leave-one-out) Grubbs’ test detecting for the presence of one or more 
outliers in the distribution of the LLC and iCoh values showing the 
significant effects in relation to the study hypotheses. The null hypothesis 
of the non-outlier status was tested at the arbitrary threshold of p > 0.001 
to remove only values with the highest probability of being outliers.

In the first statistical session, we evaluated whether the LLC, mean 
iCoh, and absolute difference of iCoh interhemispheric values may 
differ between the ADD and Nold groups at parietal delta and alpha 
rhythms. To this aim, we developed three ANOVA designs with the 
Log10-transformed LLC, mean iCoh, and absolute difference of iCoh 
values as dependent variables, respectively. The factors were group 
(Nold, ADD; independent variable), ROI (frontal, central, parietal, 
temporal, and occipital), and band (delta, theta, alpha 1, alpha 2, alpha 
3, beta 1, beta 2, and gamma). The confirmation of the hypothesis 
would require (1) a statistically significant ANOVA interaction, 
including the factors group, ROI, and band (p < 0.05), and (2) a post-
hoc Duncan test indicating statistically significant (p < 0.05) 
differences in the LLC values at parietal delta and alpha rhythms 
between the Nold and ADD groups (i.e., Nold ≠ ADD, p < 0.05).

In the second session, we evaluated whether the LLC, mean iCoh, 
and absolute difference of iCoh intrahemispheric values may differ 
between the ADD and Nold groups at delta and alpha rhythms within 
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the two hemispheres. To this aim, we developed three ANOVA designs 
with the Log10-transformed LLC, mean iCoh, and absolute difference of 
iCoh values as dependent variables, respectively. The factors were group 
(Nold, ADD; independent variable), hemisphere (left, right), ROI 
(frontal, central, parietal, temporal, and occipital), and band (delta, theta, 
alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma). The confirmation 
of the hypothesis would require (1) a statistically significant ANOVA 
interaction, including the factors group, ROI, and band (p < 0.05), and 
(2) a post-hoc Duncan test indicating statistically significant (p < 0.05) 
differences in the LLC values at parietal delta and alpha rhythms between 
the Nold and ADD groups (i.e., Nold ≠ ADD, p < 0.05).

In the third session, we evaluated whether the global output and 
input iCoh values of parietal degree hubs (identified by the previous 
graph theory analysis) may differ between the ADD and Nold groups at 
delta and alpha rhythms. We also evaluated whether, within each group, 
a difference between global output and input iCoh values for degree hubs 
could be observed. To these aims, for each frequency band, we developed 
an ANOVA design with the Log10-transformed global iCoh values as a 
dependent variable and the group (Nold, ADD; independent variable), 
hub (all degree hubs), and direction (output, input) as factors. The 
confirmation of the hypothesis would require (1) a statistically significant 
ANOVA interaction, including the factors group, hub, and direction 
(p < 0.05), (2) a post-hoc Duncan test indicating statistically significant 
(p < 0.05) between-group differences in the parietal iCoh values at delta 
and alpha rhythms between the Nold and ADD groups (i.e., Nold ≠ 
ADD, p < 0.05), and (3) a post-hoc Duncan test indicating statistically 
significant (p < 0.05) within-group differences between the global output 
and input iCoh values (i.e., output ≠ input, p < 0.05).

3. Results

3.1. Demographic, clinical, 
neuropsychological, and rsEEG features in 
the Nold and Add groups

Table  1 summarizes the most relevant demographic (i.e., age, 
gender, and education) and clinical (i.e., MMSE score) features of the 
groups of Nold (N = 40) and ADD (N = 37) participants. Furthermore, 
it reports results of the statistical comparison (p < 0.05) of age (t-test), 
gender (Fisher test), education (t-test), and MMSE score (Mann–
Whitney U test) between the two groups. As expected, a statistically 
significant difference was found for the MMSE score (p < 0.001), 
indicating a higher score in the Nold group than in the ADD group. No 
difference was found for age, gender, and education between the two 
groups (p > 0.05 uncorrected).

In Table 1, the mean values of TF and IAF for the Nold and ADD 
groups, together with the results of the statistical comparisons between 
them (t-test), are also reported. No statistically significant differences 
were observed for TF and IAF values (p > 0.05 uncorrected).

3.2. Interdependencies of rsEEG rhythms at 
parietal electrode pairs as revealed by LLC 
and iCoh values

Results showed a statistically significant ANOVA interaction (F[28, 
2,100] = 2.25, p < 0.05) in interhemispheric LLC values among the factors 
group (Nold and ADD; independent variable), ROI (frontal, central, 

parietal, temporal, and occipital), and band (delta, theta, alpha 1, alpha 2, 
alpha 3, beta 1, beta 2, and gamma; Supplementary Figure 2). Compared 
with the Nold group, the ADD group was mainly characterized by (1) 
lower alpha 2 and alpha 3 LLC values at parietal and temporal ROI and 
(2) higher delta LLC values at frontal, parietal, and occipital ROI 
(p < 0.05). No significant ANOVA effect was observed in the 
interhemispheric iCoh values (p > 0.05; see Supplementary Figures 3, 4).

Additionally, a statistically significant ANOVA interaction (F[28, 
2,100] = 3.32, p < 0.05) in intrahemispheric (non-directional) LLC 
values among the factors group, ROI, and band (Supplementary Figure 5) 
was observed. Compared with the Nold group, the ADD group was 
mainly characterized by (1) lower LLC alpha 2 and alpha 3 values at the 
central, parietal, and occipital ROI and (2) higher LLC delta values at 
frontal, parietal, and occipital ROI (p < 0.05).

Another statistically significant ANOVA interaction (F[28, 
2,100] = 1.91, p < 0.05) was found in intrahemispheric (non-directional) 
mean iCoh values among the factors group, hemisphere, ROI, and band 
(Supplementary Figure 6). No significant post-hoc effect was observed 
in the planned tests (p > 0.05). There was just a trend for lower left-
parietal iCoh alpha 2 and alpha 3 values in the ADD group compared 
with the Nold group.

Finally, a statistically significant ANOVA interaction (F[28, 
2,100] = 2.13, p < 0.05) was found in the intrahemispheric (directional) 
absolute difference of iCoh values among the factors group, hemisphere, 
ROI, and band (Supplementary Figure 7). Again, no significant post-hoc 
effect was observed in the planned tests (p > 0.05) but there was a trend 
showing lower left-parietal iCoh values in the ADD group compared 
with the Nold group.

Table  2 reports all the results from the planned post-hoc tests 
(p < 0.05) for the above significant ANOVA effects. Notably, the above 
findings based on LLC and iCoh values were not due to outliers, as 
shown by Grubbs’ test with an arbitrary threshold of p > 0.001 (see 
Supplementary Figures 8, 9, respectively).

Globally, the above LLC and iCoh findings showed that 
interdependencies of rsEEG alpha 2 and alpha 3 rhythms at parietal 
electrode pairs were lower in the ADD group than in the Nold group. 
By contrast, results on interdependencies of rsEEG delta rhythms at 
scalp electrode pairs were inconsistent considering LLC and iCoh 
measures, so we did not use those measures for the graph hub analysis.

3.3. Parietal graph degree hubs from LLC 
and iCoh values at alpha rhythms

In the Supplementary material Tables 2–7 report detailed results 
about the graph degree hubs derived from LLC and iCoh alpha 2 and 
alpha 3 values computed in the Nold and ADD groups. As explained in 
the Materials and Methods section, those degree hubs were defined by 
the ND graph index using four different quantitative thresholds of 
qualification (i.e., mean + 1 SD, 80th percentile, 70th percentile, 
mean + 1 SEM).

Figure 2 illustrates those graph degree hubs computed from LLC 
and iCoh alpha 2 and alpha 3 values in the Nold and ADD groups. For 
sake of concision, the 0.1 and 0.2 thresholds are displayed in the 
same figure.

Although there was a certain spread of degree hubs over the scalp 
at alpha 2 and alpha 3 bands, LLC and iCoh measures showed 
converging evidence of parietal degree hubs at these bands in both 
the Nold and ADD groups. Even using the most conservative 
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criterion for the degree hub qualification (i.e., mean + 1 SD), 
consistent degree hubs from alpha 2 and alpha 3 rhythms were 
observed at parietal electrodes (i.e., P3, Pz, and P4). Notably, the iCoh 
values showed no substantial between-group differences in the 
topology of the parietal degree hubs at the alpha 2 and alpha 
3 bands.

3.4. Parietal graph connector hubs from LLC 
and iCoh values at alpha 2 and alpha 3 
bands

In the Supplementary material Tables 8–13 report detailed results 
about the graph connector and provincial hubs derived from LLC and iCoh 
alpha 2 and alpha 3 values computed in the Nold and ADD groups. Notably, 
the results showed no substantial graph provincial hub in the two groups.

Figures 3, 4 illustrate the localization of the graph connector hubs 
at the alpha 2 and alpha 3 bands in the Nold and ADD groups. For sake 

of concision, such a localization was computed considering the 0.1 and 
0.2 thresholds together. There was a certain spread of connector hubs 
over the scalp at those bands. However, LLC and iCoh measures 
showed convergent evidence of parietal connector hubs at alpha 2 and 
alpha 3 bands in both the Nold and ADD groups. Even using the most 
conservative criterion for the connector hub qualification (i.e., mean + 1 
SD), consistent connector hubs for alpha 2 and alpha 3 bands were 
observed at parietal electrodes (i.e., P3, Pz, and P4). Notably, the iCoh 
values showed no substantial between-group differences in the 
topology of the parietal connector hubs at the alpha 2 and alpha 
3 bands.

3.5. Directionality of hubs from LLC and 
iCoh values at alpha 2 and alpha 3 bands

Figures 5, 6 plot the global output (outward) and input (inward) 
iCoh alpha 2 and alpha 3 values at all electrodes denoted as a degree or 

TABLE 2 Post-hoc p-values (Duncan test) relative to the ANOVA interaction effects on the global output and input isolated lagged effective coherence 
(iCoh) in the alpha 2 and alpha 3 bands.

Global alpha2 iCoh Global alpha3 iCoh

Statistical comparison p-value Statistical comparison p-value

Nold > ADD Output P3: 0.026011

Output Pz: 0.038590

Nold > ADD Output Pz: 0.021034

Input > Output (Nold) Fp2: 0.044984

F3: 0.024305

F4: 0.026964

F7: 0.038887

Input > Output (Nold) Fp2: 0.034870

F3: 0.026717

F4: 0.027734

F7: 0.026067

Input > Output (ADD) Pz: 0.013233

Output > Input (Nold) P3: 0.000002

P4: 0.000002

Output > Input (Nold) P3: 0.000002

P4: 0.000003

Pz: 0.027605

Output > Input (ADD) P3: 0.014394

P4: 0.000001

Output > Input (ADD) P3: 0.007453

P4: 0.000005

FIGURE 2

Degree hubs for the alpha 2 and alpha 3 linear lagged connectivity (LLC, left column), mean (middle column), and absolute difference isolated lagged 
effective coherence (iCoh, right column) values in the Nold and ADD groups defined according to nodal degree (ND) calculated at 0.1 and 0.2 graph 
thresholds. Colors correspond to the different criteria adopted (mean and SD, 80th percentile, 70th percentile, mean and SEM).
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FIGURE 3

Connector and provincial hubs for the alpha 2 linear lagged connectivity (LLC, left column), mean (middle column), and absolute difference isolated lagged 
effective coherence (iCoh, right column) values in the Nold and ADD groups defined according to the three approaches used in the present study. Upper 
row: hubs were defined according to nodal degree (ND) and classified into connector and provincial hubs according to the participation coefficient (PC) 
and clustering coefficient (CC) calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Franciotti and Bonanni. Middle row: hubs 
were defined according to nodal degree (ND) and classified into connector and provincial hubs according to the participation coefficient (PC) and 
betweenness centrality (BC) calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Cole et al. (2015). Lower row: hubs were 
defined according to the within-module degree z-score and classified into connector and provincial hubs according to the participation coefficient (PC) 
calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Power et al. (2013). Colors correspond to the different criteria adopted 
(mean and SD, 80th/20th percentile, 70th/30th percentile, mean and SEM).

FIGURE 4

Connector and provincial hubs for the alpha 3 linear lagged connectivity (LLC, left column), mean (middle column), and absolute difference isolated lagged 
effective coherence (iCoh, right column) values in the Nold and ADD groups defined according to the three approaches used in the present study. Upper 
row: hubs were defined according to nodal degree (ND) and classified into connector and provincial hubs according to the participation coefficient (PC) 
and clustering coefficient (CC) calculated at 0.1 and 0.2 graph thresholds, in line with the approach described by Franciotti and Bonanni. Middle row: hubs 
were defined according to nodal degree (ND) and classified in connector and provincial hubs according to the participation coefficient (PC) and 
betweenness centrality (BC) calculated at 0.1 and 0.2 graph thresholds, in line the approach described by Cole et al. (2015). Lower row: hubs were defined 
according to the within-module degree z-score and classified into connector and provincial hubs according to the participation coefficient (PC) calculated 
at 0.1 and 0.2 graph thresholds, in line with the approach described by Power et al. (2013). Colors correspond to the different criteria adopted (mean and 
SD, 80th/20th percentile, 70th/30th percentile, mean and SEM).
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FIGURE 5

Global isolated lagged effective coherence (iCoh) values (mean across subjects ± SEM) in the alpha 2 frequency band within electrodes classified as 
substantial degree or connector hubs relative to a statistically significant ANOVA interaction (F [10, 750] = 2.42, p < 0.05) among the group (Nold and ADD), 
hubs (Fp2, F3, F4, F7, P3, P4, Pz, P7, P8, O1, and O2), and direction (output and input) factors. No statistically significant outliers were found according to 
Grubbs’ test (p < 0.0001).

a connector hub in the above analysis. Results showed a statistically 
significant ANOVA interaction of the iCoh alpha 2 values among group 
(Nold and ADD; independent variable), hub (electrodes with hub 
features), and direction (output and input) factors (F[10, 750] = 2.42, 
p < 0.05). Compared with the Nold group, the ADD group showed lower 
output global iCoh alpha 2 values at parietal electrodes (i.e., P3 and Pz; 
p < 0.05).

A statistically significant ANOVA interaction of the iCoh alpha 3 
values was also observed among group, hub, and direction (F[10, 
750] = 2.48, p < 0.05). Compared with the Nold group, the ADD group 
showed lower output global iCoh alpha 3 values at one parietal electrode 
(i.e., Pz; p < 0.05).

Additionally, a statistically significant ANOVA interaction of the 
iCoh alpha 3 values was observed among group, hub, and direction 
(F = 2.48, p < 0.05). Compared with the Nold group, the ADD group 
showed lower output global iCoh alpha 3 values at one parietal electrode 
(i.e., Pz; p < 0.05).

Supplementary material Table 1 reports the results of the Duncan 
planned post-hoc (p < 0.05) test relative to the ANOVA interaction 
effects. Of note, the above results were not caused by outliers, as 
shown by Grubbs’ test with an arbitrary threshold of p > 0.001 (see 
Supplementary Figure 10).

Overall, the above iCoh results showed no substantial between-
group differences in the topology of the iCoh alpha 2 and alpha 3 
values, with those values being maximized at parietal electrodes. 
However, the output iCoh alpha 2 and alpha 3 values at parietal 
electrodes were lower in the ADD group than in the Nold group.

3.6. Control analysis on parietal connector 
hubs identified at alpha 2 and alpha 3 bands 
by other graph theory measures

To control for the robustness of the present results about the parietal 
connector hubs computed at the alpha 2 and alpha 3 bands, we used the 
following additional graph measures and definitions of those hubs 
(GraphVar 2.0 platform). According to Cole et al. (2015), a connector hub 
can be associated with high values of ND, PC, and Betweenness Centrality 
(BC). Notably, BC of a node is defined as the number of shortest graph 
paths that goes through that node (Rubinov and Sporns, 2010). According 
to Power et al. (2013), a connector hub can be associated with high values 
of the within-module degree z-score and PC.

Figures 3, 4 illustrate the results of this control analysis. There was 
again a certain spread of connector hubs over the scalp at alpha 2 and 
alpha 3 bands. However, convergent results showed significant 
connector hubs located at the parietal electrodes (i.e., P3, Pz, and P4) 
in both the Nold and ADD groups. Supplementary material Tables 14–25 
report detailed results of this control analysis.

3.7. Control analysis of the influence of 
normalized rsEEG spectral power density on 
iCoh values

To evaluate the influence of potential intergroup differences in the 
rsEEG spectral power density on iCoh (and LLC as the second 
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interdependency measure) values, we included a control analysis for 
the comparison of the rsEEG power spectra for each frequency band 
of interest between the Nold and ADD groups. To this aim, we used 
the normalized rsEEG spectral power density calculated at each 
individual frequency band of interest (from delta to gamma) as the 
dependent variable in an ANOVA design, with group (Nold and ADD; 
independent variable), ROI (frontal, central, parietal, temporal, and 
occipital), and band (delta, theta, alpha 1, alpha 2, alpha 3, beta 1, beta 
2, and gamma) as factors. The ROI were defined as those used for the 
interhemispheric iCoh analysis. We  used the Log10-transformed 
rsEEG spectral power density values to meet the requirement of 
Gaussian distribution of the dependent ANOVA variable.

Results are illustrated in Supplementary Figure 11. Compared with 
the Nold group, the ADD group was characterized by (1) lower 
widespread alpha 2 and alpha 3 spectral power density values, especially 
at parietal and occipital ROI, and (2) higher widespread delta spectral 
power density values (p < 0.05).

Owing to the above-mentioned intergroup differences, we repeated 
the main statistical analyses by introducing the global alpha 2 or the 
alpha 3 regional normalized spectral power density as a covariate. 
Global values were calculated by averaging the regional values (as 
intergroup differences in the alpha 2 and alpha 3 bands were 
widespread). Results confirmed the previous main findings except for 
the intrahemispheric (non-directional) LLC values (no statistically 
significant interaction among the factors group, ROI, and band with 
global alpha 2 or alpha 3 spectral power densities as covariates; p > 0.05). 
In detail, the following results were obtained:

 • intrahemispheric (non-directional) mean iCoh—covariate, global 
alpha 2 spectral power density: a statistically significant ANOVA 
interaction (F[28, 2072] = 3.55, p < 0.05) among the factors group, 
hemisphere, ROI, and band. Again, no significant post-hoc effect 
was observed in the planned tests (p > 0.05).

 • intrahemispheric (non-directional) mean iCoh—covariate, global 
alpha 3 spectral power density: a statistically significant ANOVA 
interaction (F[28, 2072] = 3.02, p < 0.05) among the factors group, 
hemisphere, ROI, and band. Again, no significant post-hoc effect 
was observed in the planned tests (p > 0.05).

 • intrahemispheric (non-directional) absolute difference iCoh—
covariate, global alpha 2 spectral power density: a statistically 
significant ANOVA interaction (F[28, 2072] = 2.81, p < 0.05) among 
the factors group, hemisphere, ROI, and band. Again, no significant 
post-hoc effect was observed in the planned tests (p > 0.05).

 • intrahemispheric (non-directional) absolute difference iCoh—
covariate, global alpha 3 spectral power density: a statistically 
significant ANOVA interaction (F[28, 2072] = 2.02, p < 0.05) among 
the factors group, hemisphere, ROI, and band. Again, no significant 
post-hoc effect was observed in the planned tests (p > 0.05).

 • interhemispheric LLC—covariate, global alpha 2 spectral power 
density: a statistically significant ANOVA interaction (F[28, 
2072] = 2.22, p < 0.05) among the factors group, ROI, and band. A 
planned Duncan post-hoc test showed that, compared with the Nold 
group, the ADD group was mainly characterized by (1) lower LLC 
alpha 2 and alpha 3 values at the parietal and temporal ROI and (2) 
higher LLC delta values at frontal, parietal, and occipital ROI (p < 0.05).

FIGURE 6

Global isolated lagged effective coherence (iCoh) values (mean across subjects ± SEM) in the alpha 3 frequency band within electrodes classified as 
substantial degree or connector hubs relative to a statistically significant ANOVA interaction (F [10, 750] = 2.48, p < 0.05) among the group (Nold and ADD), 
hubs (Fp2, F3, F4, F7, P3, P4, Pz, P7, P8, O1, and O2), and direction (output and input) factors. No statistically significant outliers were found according to 
Grubbs’ test (p < 0.0001).
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 • interhemispheric LLC—covariate, global alpha 3 spectral power 
density: a statistically significant ANOVA interaction (F[28, 
2072] = 2.19, p < 0.05) among the factors group, ROI, and band. A 
planned Duncan post-hoc test showed that, compared with the Nold 
group, the ADD group was mainly characterized by (1) lower LLC 
alpha 2 and alpha 3 values at the parietal and temporal ROI and (2) 
higher LLC delta values at frontal, parietal, and occipital ROI (p < 0.05).

With regard to the directionality of hubs from iCoh values at alpha 
2 and alpha 3 bands, we used the global alpha 2 and alpha 3 spectral 
power densities, respectively, as covariates in the main statistical 
analysis. Results with the global alpha 2 spectral power density as 
covariate confirmed a statistically significant ANOVA interaction of the 
iCoh alpha 2 values among group (Nold and ADD; independent 
variable), hub (electrodes with hub features), and direction (output and 
input) factors (F[10, 70] = 1.97, p < 0.05). Compared with the Nold 
group, the ADD group showed lower output global iCoh alpha 2 values 
at parietal electrodes (i.e., P3 and Pz; p < 0.05). No statistically significant 
ANOVA interaction (p > 0.05) was observed, including with global alpha 
3 spectral power density as a covariate.

4. Discussion

4.1. Converging evidence of LLC and iCoh 
measures about the interdependencies of 
rsEEG rhythms at electrode pairs

In the present study, both bivariate LLC and multivariate iCoh 
measures showed that, compared with the Nold participants, the ADD 
patients were characterized by lower interdependencies of rsEEG alpha 
rhythms, especially at parietal electrode pairs. This effect was more 
spatially sharp with multivariate iCoh measures than with bivariate LLC 
measures. These results confirm the spatial variability of the effects 
derived from different techniques estimating interdependencies of 
rsEEG rhythms at electrode pairs and emphasize the importance of 
using more than one technique, including at least one multivariate 
approach (Blinowska, 2011; Blinowska et al., 2017).

The current results are globally in line with the bulk of previous 
rsEEG studies showing that ADD patients exhibit lower interrelatedness 
of rsEEG rhythms at alpha and higher frequencies at posterior electrode 
pairs (Leuchter et al., 1992, 1994; Besthorn et al., 1994; Dunkin et al., 
1994; Sloan et al., 1994; Stam et al., 1995, 1996, 2003, 2009; Jelic et al., 
1998, 2000; Locatelli et al., 1998; Anghinah et al., 2000; Knott et al., 2000; 
Adler et al., 2003; Babiloni et al., 2004a, 2006a, 2018; Pogarell et al., 2005; 
de Haan et al., 2009; Fonseca et al., 2011, 2013).

Additionally, the current results showed certain effects of ADD on 
the interdependencies of rsEEG delta rhythms at electrode pairs, but 
only when the bivariate LLC technique was used. Compared with the 
Nold group, the ADD group exhibited higher LLC values at frontal, 
parietal, and occipital delta rhythms. These effects were globally in 
agreement with previous rsEEG evidence obtained using bivariate 
techniques (e.g., FFT-based spectral coherence or LLC) to investigate the 
effects of ADD on the interdependencies of rsEEG rhythms (Locatelli 
et al., 1998; Babiloni et al., 2010, 2018; Hsiao et al., 2013, 2014). Given 
the lack of effects of ADD on interdependencies of rsEEG delta rhythms 
derived from multivariate iCoh measures, we did not estimate hubs at 
delta rhythms. Notably, the results at delta rhythms indicated that the 
present iCoh measures were not redundant compared with those of 

spectral power density, which showed greater widespread rsEEG delta 
power in the ADD group than the Nold group.

4.2. Converging evidence of LLC and iCoh 
measures about graph hubs at parietal 
electrodes and alpha rhythms

The present alpha LLC and iCoh measures showed converging 
evidence of prominent degree and connector hubs at parietal electrode 
pairs (i.e., P3, Pz, and P4). Furthermore, both groups were characterized 
by a prominent alpha iCoh outward direction (output or outflow) from 
parietal electrodes to other electrodes exhibiting degree hub properties. 
This effect was lower in the ADD group than in the Nold group and was 
consistent with the three definitions of connector hubs (Rubinov and 
Sporns, 2010; Power et al., 2013; Cole et al., 2015).

Taken together, it can be speculated that the present alpha LLC-iCoh 
and graph results may reflect abnormalities in parietal networks 
underpinning the regulation of quiet vigilance in ADD patients but with 
a global preservation of the parietal hub function, as revealed by the 
present analysis of the rsEEG alpha rhythms.

In line with this speculation, previous studies investigating 
directional interdependencies of rsEEG rhythms in cognitively 
unimpaired adults showed prominent outflow measures at alpha (and 
beta) rhythms from parietal electrodes, based on the computation of 
multivariate directed transfer function (Kuś et al., 2004; Blinowska and 
Kaminski, 2013). These measures were reduced in relation to a decrease 
in vigilance and an increase in errors during a continuous cognitive 
task in those adults (Liu et al., 2010). When applied to AD patients, 
directed transfer function measures at rsEEG alpha (and beta) rhythms 
exhibited lower outflow from parietal to frontal electrodes in ADD and 
ADMCI patients than in Nold participants (Babiloni et  al., 2008, 
2009a,b; Blinowska et al., 2017). These effects might be partially caused 
by abnormal ascending inputs coming from the thalamic and 
cholinergic basal forebrain regions (Hughes and Crunelli, 2005; 
Babiloni et al., 2006a, 2009a,b, 2020a, 2021; Wan et al., 2019).

4.3. What might graph hubs from rsEEG 
alpha rhythms tell us about add patients?

At this early stage of the research, we can only speculate about the 
neurophysiological significance of the present results. As novel and 
original neurophysiological findings, the present study showed evidence 
of prominent parietal hubs from interdependencies of the rsEEG alpha 
rhythms but with reduced outward iCoh measures in AD patients with 
mild-to-moderate dementia (mean MMSE score of approximately 
19/30). An exciting hypothesis for future longitudinal studies is that the 
AD progression to severe dementia might be  associated with (1) 
outward alpha iCoh measures that are even more reduced from parietal 
electrodes, (2) loss of degree and connector hubs from the present LLC 
and iCoh measures, and (3) increased disorders in the regulation and 
maintenance of quiet vigilance during the daytime, with frequent 
episodes of drowsiness, misperceptions, and light sleep. If confirmed, 
the present rsEEG evidence of partially preserved parietal hubs in mild-
to-moderate ADD patients would reflect a sort of resilience or initial 
vulnerability of the brain networks underpinning quiet vigilance.

In line with this speculation, previous rsEEG evidence showed 
several signs of topographically widespread impairment of brain 
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networks in ADD patients, as revealed by graph theory indexes. 
Multivariate directional techniques based on a Granger causality matrix 
from rsEEG alpha and beta rhythms unveiled that ADD patients were 
globally characterized by lower global efficiency, increased local 
efficiency, and lower resilience of cortical networks (Afshari and Jalili, 
2017). Furthermore, these patients were characterized by lower inward 
and outward directions of interdependencies of the whole-band rsEEG 
activity recorded from posterior electrodes, with maximum 
abnormalities of degree hubs at parietal electrodes (Franciotti et al., 
2019), but not replicated with a bivariate mutual information technique 
(Franciotti et al., 2022).

In the resting state condition, prominent outward directionality of 
the present hubs at parietal electrodes and alpha rhythms might reflect 
the synchronization and interdependence of neural activity into 
posterior thalamocortical and corticothalamic loops, which might 
maintain cortical arousal underpinning vigilance against sleep 
intrusion (Hughes and Crunelli, 2005; Lörincz et  al., 2008, 2009; 
Crunelli et al., 2015). Indeed, the greater the posterior rsEEG alpha 
rhythms, the greater the cortical inhibition in quiet vigilance, the 
lower the attention to external stimuli (Pfurtscheller and Klimesch, 
1992; Boksem et al., 2005; Babiloni et al., 2020b). Those thalamic and 
cortical reciprocal interactions might influence several cortical areas, 
including the nodes of the ‘default mode network’ (Raichle et al., 2001; 
Buckner et al., 2008). Overall, such traveling alpha rhythms may flow 
from higher-to lower-order areas in the visual and somatosensory 
cortices (Halgren et  al., 2019). The effect may be  to facilitate the 
scanning of internal and external environments (Liu et  al., 2010; 
Al-Shargie et  al., 2019), extract relevant features on demand 
(Ermentrout and Kleinfeld, 2001), and support communications 
within nodes of brain networks in relation to vigilance (Han et al., 
2008; Crunelli et al., 2018).

4.4. Methodological limitations of the 
present study

This study was not performed within a unique multicentric clinical 
trial, so the present recording units did not follow the identical clinical, 
neuropsychological, and neuroimaging procedures during the 
enrollment of Nold and ADD participants. This makes the present study 
exploratory in nature.

Standard biomarkers of AD neuropathology (e.g., cerebrospinal 
diagnostic measures of Ab42/phospho tau or amyloid positron emission 
tomography) were not systematically measured in the present Nold and 
ADD participants, so only the strongest and most robust results could 
emerge at the group level. This limitation may explain some significant 
variability of graph indexes at rsEEG delta rhythms.

We used a low number of scalp electrodes to record rsEEG activity 
(i.e., 19 electrodes placed according to 10–20 system), two standard 
bivariate (LLC) and multivariate (iCoh) techniques estimating the 
interrelatedness of the rsEEG activity at electrode pairs, and well-known 
graph indexes in line with the general methodology of several previous 
successful studies; those studies investigated the graph-based rsEEG 
topology in ADD patients based on ‘synchronization likelihood’, ‘phase 
lag index’, ‘synchronization likelihood’, ‘generalized composite multiscale 
entropy vector’, and ‘mutual information’ techniques applied to rsEEG 
data recorded from ≤19 scalp electrodes (Stam et al., 2007a; De Haan 
et al., 2009; Engels et al., 2015; Yu et al., 2016; Song et al., 2019; Das and 
Puthankattil, 2022; Franciotti et al., 2022).

This intrinsic low resolution of the present rsEEG approach was 
partially considered by averaging the LLC and iCoh measures in large 
scalp ROI. Furthermore, head volume conduction effects may inflate 
LLC and iCoh measures. Indeed, electric fields can instantaneously 
spread from a brain source to several scalp electrodes, thus generating 
spurious (fake) interdependencies of rsEEG rhythms at electrode pairs. 
These effects of head volume conduction are partially mitigated by the 
fact that LLC and iCoh measures are insensitive to zero-lag 
interdependencies of rsEEG rhythms. However, the present application 
of those techniques at scalp electrodes ignores observational equations 
modeling confounding effects of head volume conduction and position/
orientation of cortical sources of scalp EEG activity (Babiloni et al., 
2020). Therefore, confounding non-zero-lag head volume conduction 
effects and false ‘interrelatedness’ cannot be  excluded in the 
interpretation of the present results. In this framework, it should 
be remarked that bivariate techniques (including LLC) may be more 
prone to those confounds than multivariate techniques (including 
iCoh), as the latter typically remove common correlations of the rsEEG 
activity among the electrode pairs (Blinowska and Kaminski, 2013; 
Babiloni et al., 2020b).

The intrinsic methodological limits of all bivariate and multivariate 
techniques (including LLC and iCoh) were recently discussed by an 
Expert Panel of the International Federation of Clinical Neurophysiology 
(IFCN; Babiloni et al., 2020b). The Expert Panel agreed that all bivariate 
(e.g., LLC, synchronization likelihood, phase lag index, etc.) and 
multivariate (e.g., iCoh, directed transfer function, etc.) techniques 
estimating the interrelatedness of the rsEEG activity at scalp electrode 
pairs may be subject to unmodeled effects of (1) brain neural populations 
‘invisible’ to EEG recordings and (2) head volume conduction. 
Furthermore, the Expert Panel shared the following recommendations 
to fruitfully tackle (Babiloni et al., 2020b): (1) the use of the locution 
‘measures of the interrelatedness of rsEEG activity at scalp electrodes’ 
rather than locutions such as “measures of cortical functional connectivity 
from rsEEG activity” to emphasize that the head volume conduction 
effects cannot be entirely taken into account when those techniques are 
applied at scalp electrode pairs; (2) the development of exploratory 
rsEEG studies carried out by investigators belonging to independent 
research institutions, to ensure a significant intersubjectivity in the 
interpretation of the results; (3) the use of at least two independent 
techniques for estimating the interrelatedness of the rsEEG activity at 
scalp electrodes, to compare the results and represent their intrinsic 
variability dependent on the methodology used; and (4) the exploitation 
of open science to cross-validate the research results using, when 
possible, freeware techniques validated by independent research groups. 
We grounded the present study design on these recommendations.

Keeping in mind the previously mentioned low spatial resolution 
and head volume conduction effects, we included a relatively low number 
of network nodes (corresponding to the standard 10–20 electrode 
montage) in the graph analysis. This low-resolution EEG method could 
not allow the disentanglement of the contribution of the nodes of the 
default mode network or associate parietal cortex. Therefore, future 
studies may improve the methodological approach with the following 
solutions: (1) large samples of the enrolled ADD, ADMCI, and Nold 
participants and a longitudinal design to enhance the statistical power of 
the study and test the impact of disease severity and progression on the 
topology of the interrelatedness of rsEEG activity; (2) harmonized 
protocols in the multicentric studies; (3) >48 scalp electrodes for the 
rsEEG recordings; (4) mathematical source and head volume conduction 
models for an rsEEG source estimation probing the activity of more 
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cortical nodes, including those located in the default mode and other 
relevant cortical networks; (5) a multimodal approach, including the 
rs-fMRI recordings, to correlate the AD-related abnormal topology of 
the cortical functional connectivity, as revealed by rs-fMRI and rsEEG 
data; and (6) a more systematic variation of statistical thresholds to 
qualify the significant associations between sensors and the criteria used 
to define and describe the present hubs with those thresholds.

5. Conclusion

In the present exploratory study, we compared hubs modeled from 
measures of interdependencies of between-electrode rsEEG alpha 
rhythms in Nold and mild-to-moderate ADD participants. We tested 
the hypothesis of abnormal posterior hubs from those measures in ADD 
versus Nold participants. To report robust results, we  measured 
interdependencies of rsEEG rhythms using both bivariate LLC and 
multivariate (directional) iCoh measures. Furthermore, we used three 
different definitions of ‘connector’ hub.

Convergent results of LLC and iCoh measures showed that in both 
Nold and ADD groups there were significant ‘degree’ and ‘connector’ 
hubs at parietal electrodes derived from rsEEG alpha rhythms. 
Furthermore, these hubs showed a prominent outward directionality in 
both groups of participants. As a main difference between the two 
groups, the outward ‘directionality’ of the hubs at parietal electrodes was 
lower in the ADD group than in the Nold group.

Future longitudinal high-resolution rsEEG studies in ADD patients 
will have to test hypotheses about the resilience or vulnerability of those 
parietal hubs derived from rsEEG alpha rhythms and their relationships 
with the neuropathological burden, derangement in the DMN, and the 
neurophysiological regulation and maintenance of quiet vigilance 
during daytime.
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