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Abstract: Nowadays, the preservation and restoration of a historical building needs to be faced in
accordance with a novel sensibility regarding the environment in order to preserve the building for
future generations. In this context, the scientific community is focusing on novel and sustainable ma-
terials and techniques that allow for durability and mechanical performance as well as compatibility
with the existing heritage. Alkali-activated materials represent a great challenge to the production
of new materials, starting from the existing ones, with the goal of reducing consumption, emission
of greenhouse gases and environmental impact. This study deals with the valorisation of waste
materials coming from demolition and construction activities in the manufacture of geocomposites
suitable for the restoration and conservation of historical heritage. In particular, waste from tuff
sawing and brick grinding were used as raw materials, and then the geopolymeric samples produced
were characterized based on a physical-chemical and mechanical point of view in order to investigate
their performance and evaluate their suitability as materials for a historical building’s recovery. The
results showed that brick waste-based geocomposites were more compact than the tuff-based ones,
as shown by the higher-density values and the lower values of open porosity and water absorption
and as further confirmed by the trend of the mechanical performance. Moreover, experimental data
showed that the physical and mechanical properties of both bricks and tuff waste-based geocompos-
ites, even with different waste content, are compatible with existing building materials as well as
traditional repairing products.

Keywords: waste recycling; brick waste; geopolymers; tuff waste; alkali activation; historical building
restoration; circular materials

1. Introduction

When considering interventions regarding cultural heritage or historical built heritage,
it is fundamental to investigate, in a transversal way, the themes inherent to traditional ma-
terials and techniques and their degradation. At the same time, the innovative approach of
modern techniques and materials, which respond in a global way both to the compatibility
problems and to the growing environmental emergencies that characterise today’s daily
life, has to be seriously considered.

In fact, it is important to emphasise that, in addition to the problems created by the
huge quantities of waste material produced [1], in Italy, most of the building stock is not
only extremely poorly maintained [2] but is also characterised by a historical building that,
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although not subject to constraints, requires all of the measures related to the compatibility
of materials that are typical of the sensitivity adopted in the field of restoration.

The Cultural Heritage and Landscape Code defines restoration (in Art. 29, paragraph 4)
as: “the direct intervention on the property through a complex of operations aimed at the
material integrity and recovery of the property itself, at the protection and transmission
of its cultural values”. The interaction with the environment, in fact, entails that over
time an alteration of the original characteristics of the artefacts and the materials that
compose them will occur; they will undergo degradation phenomena due to physical
agents such as humidity, water, thermal shock or even wind erosion or photo-oxidative
phenomena caused by solar radiation, biological agents and chemical agents. The study of
materials and techniques to be used for the recovery of this ‘material integrity’ must also be
guaranteed for that part of the unrestricted historical heritage that needs to be recovered.
Moreover, reuse of materials as a recovery practice has its origins in a very ancient time
where the practice of spoliation was very common and abandoned building heritage, both
residential and monumental, was literally reused as a quarry of materials to be utilized in
the construction of new buildings [3].

Actually, the valorisation of construction and demolition waste (CDW) materials
represents a kind of return to the origins, suitable to solve the problem of the disposal
of huge quantities of waste and, at the same time, guarantee compatibility with the his-
torical substrate using innovative mixtures that reproduce the same mineralogical and
physical features [4–7]. Accordingly, geopolymers and alkali-activated materials represent
the most promising and sustainable alternative to cement-based binders/concretes [8–12].
Geopolymers are obtained by chemically reacting a starting alumino-silicate powder with
a strongly concentrated aqueous alkali hydroxide and/or silicate solution, resulting in
the production of a synthetic amorphous-to-semicrystalline alkali alumino-silicate new
phase [13–15]. In the last decade, the production of geopolymeric materials from industrial
waste, agricultural waste and municipal waste has been widely explored [16–27]. In fact,
waste-based geopolymers offer several advantages which contribute to environmental
sustainability and economic benefits. The use of various kinds of solid waste can lead both
to different performances and properties of geopolymers, depending on the waste’s own
features, such as chemical composition, morphology, particle size, and water absorption
as well as to their different ways of being used, such as precursors, aggregates, fibres,
etc. Waste-derived geopolymers combine all the excellent features typically related to
geopolymeric materials (high durability, thermal and fire resistance, resistance to chemical
corrosion, high mechanical strength) [11,13] with high sustainability, reduction in waste
disposal, conservation of natural resources and potential to lower CO2 emissions. For these
reasons, scientific research is always more interested in finding new ways to optimize the
use of waste geopolymers for various innovative applications and to address the challenges
related with their use. In particular, considering the chemical nature of construction and
demolition (C&D) waste, geopolymerization technology has begun to be considered as an
advantageous and smart reusable possibility for them instead of landfilling [28–31]. The
use of alkali-activated material in the building sector can provide a low environmental
impact either in terms of energy consumption or natural resource saving, together with
high mechanical and durability performances [11]. Furthermore, in regard to historical
building restoration, chemical, physical and mechanical compatibility with the original
material becomes mandatory, as well as the ability to show similar aesthetic features [32–36].
Chemical-physical and mechanical properties, combined with other specific peculiarities of
geopolymeric materials, such as fast drying and good adhesion to the ceramic, allow their
potential use as an alternative to traditional materials in the conservation and restoration
of cultural heritage [33,37–41]. Starting from these considerations, this paper reports the
progress of the research experiments carried out on the production of waste-based geocom-
posites, which were produced from waste deriving from the demolition and construction
activities of historical heritage, in order to promote the possible future applications of
innovative and sustainable materials in restoration and conservation activities.
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2. Experimental

Details of geopolymer precursors, additives and alkaline activator solutions used for
the production of geocomposites are provided.

2.1. Raw Materials and Preparation of the Geocomposites

Starting with the identification of local resources, strongly integrated with the territory
from a historical point of view, different types of construction and demolition waste were
used to produce geocomposites either as geopolymer precursors or as natural aggregate
replacements (Figure 1):

(1) Waste from red clay bricks (BW): a commercial product supplied by CTS s.r.l. (Altavilla
Vicentina, Italy) and recovered from construction and demolition activities, properly
sieved and divided it into two particle-size fractions of less than 0.3 mm and between
0.3 and 4 mm.

(2) Waste of tuff sawing (TW): a mixture of two typical Italian tuffs, such as Neapolitan
Yellow Tuff (NYT) and Viterbo red tuff (VT), was used. TW was crushed and sieved
to select two particle-sized fractions of less than 0.3 mm and between 0.3 and 4 mm.

(3) Fly ashes (FA): derived from combustion in coal-fired power plants for the production
of electricity; they were also added as partial replacement of the waste (10 or 20%).
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A sodium silicate solution (SS) (Na2O 8.15%, SiO2 27.40%), provided by Prochin Italia
S.r.L. (Caserta, Italy), and a 10 M sodium hydroxide solution (N), prepared by dissolving
NaOH in pellets (NaOH 98%, J.T. Baker) in bi-distilled water, were used as activators.

Geocomposites were produced as follows: powdered materials were previously dry-
mixed and homogenized, and then the activator solution was added to the dry mixture.
An aggregate/binder ratio of 0.5 was selected.
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The alkaline activator solution was prepared by mixing sodium silicate solution
(SS) with 10 M sodium hydroxide solution (N). The weight ratio SS/N/binder was 1:1:3.
The activator/binder ratio was fixed at 0.66 for all the mixtures. Both the experimental
parameters and the procedure used to manufacture the geocomposites were properly
selected and optimized from previous studies [16,28]. For each waste, three mixtures were
prepared using 0, 10 or 20% of fly ashes as partial replacement. Specimens were prepared in
three different geometries according to the specific requirements of the European standards
for physical and mechanical characterization (see Figure 2):

- cylindrical (diameter 45 mm; height 50 mm),
- cubic (side 50 mm),
- prismatic (40 × 40 × 160 mm3).
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Figure 2. TW-based (a) and BW-based (b) geocomposite specimens produced.

The two different granulometry fractions were used as follows: fine fraction, less than
0.3 mm, as binder precursor and coarse fraction, with particle size between 0.3 and 4 mm,
as aggregate.

The curing conditions selected for all the specimens were: 3 days, 60 ◦C in an oven,
100% relative humidity (sealed vessels). At the end of the curing, all the specimens were
removed from the moulds and stored at room temperature for 28 days, following the
prescription for traditional cementitious materials in terms of samples ageing, in order to
perform the whole characterization in standard and comparable conditions. All the tests
were performed in triplicate.

The compositions, the labels of all the manufactured geocomposites and the main
experimental parameters are summarized in Table 1.
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Table 1. Geocomposite labels, relative compositions and experimental parameters.

Sample Binder
(Fine Fraction, %wt) Ag./Bin.

Ratio Act. Sol. NaOH Liquid/Powder Curing
Time

Curing
Temperature

FA BW TW

BW80 20 80 /

0.5 NaOH + SS 10 M 0.6 72 h 60 ◦C

BW90 10 90 /

BW100 / 100 /

TW80 20 / 80

TW90 10 / 90

TW100 / / 100

2.2. Mineralogical and Chemical Characterization of Raw Materials

The mineralogical composition was evaluated by XRD analysis on a powder sample
using a Panalytical X’Pert Pro diffractometer equipped with a PixCel 1D detector (operative
conditions: CuKa1/Ka2 radiation, 40 kV, 40 mA, 2θ range from 5 to 80, step size 0.0131
2θ, counting time 40 s per step). X-ray fluorescence spectroscopy (XRF; AXIOS Panalyti-
cal Instrument; Malvern PANalytical, Almelo, The Netherlands) has been performed to
determine the chemical composition of samples in the form of pressed pellets.

2.3. Physical and Chemical Characterization of the Geopolymeric Mortars

The water absorption under vacuum and the open porosity of the geocomposites were
measured according to the Italian Standard UNI 11060 [42]. Firstly, the specimens were
dried at 60 ± 5 ◦C until constant mass (M1, g) was reached. Then, they were immersed in
water at room temperature in an evacuation vessel and the pressure was lowered to about
20 mmHg and kept constant for 2 h. After that, pressure was returned to atmospheric value
and the samples were first weighed immersed in water (hydrostatic weighing, M2, g) and
finally, after being gently wiped with a damp cloth, they were weighed again, determining
their water-saturated mass (M3, g). Each test was performed in triplicate and the results
are the average values.

The water absorption (WA%) and the open porosity (OP%) were expressed as follows:

WA% =
M3 − M1

M1
× 100

OP% =
M3 − M1

M3 − M2
× 100

The values of apparent and real density (δA and δR, respectively) of the geopolymeric
samples can be also deduced from the measurements performed according to the Italian
Standard [42]. Moreover, capillarity tests were carried out in accordance with European
Standard UNI EN 15801 [43] in order to assess the amount of water absorbed (Q) per
surface unit as a function of time. Tests were performed in triplicate and then the mean
value of capillary absorption coefficient (CA, g·cm−2·s−1/2) was determined. Considering
that, for short times, the relation between the water adsorbed (Q) and the square root of
time is quite linear, CA value may be evaluated as the slope of the straight line in the first
30 min of the capillarity test [43]. Finally, the degree of geopolymerization and the influence
of the waste addition on the chemical features of the produced samples were deduced
by means of FTIR spectroscopy, performed at room temperature by using a Spectra 3000
(Perkin Helmer, Waltham, MA, USA) in ATR mode, and selecting a wavenumber resolution
of 4 cm−1 for 32 scans from 4000 to 600 cm−1.
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2.4. Mechanical Characterization of the Geopolymeric Mortars

The flexural strength tests were performed according to UNI EN 196-1:2016 [44] on
prismatic specimens with dimensions 40 × 40 × 160 mm3, using the Ibertest as the testing
machine. For the compressive strength tests, the load is applied to the two broken portions
of the specimens from the previous flexural strength tests. All the tests were carried out
after a curing time of 28 days. Further information about the mechanical properties has
been obtained by a surface hardness test [45], considering the hole that is produced on the
sample under test, following the application of a fixed force on each sample, measured in
Shore D units varying in a range from 0 (softest) to 100 (hardest).

3. Results and Discussion
3.1. Characterization of the Raw Materials

Crystalline structures of the geopolymer precursors, which were analysed with X-ray
diffraction (XRD) technique, are shown in Figure 3.
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Chemical compositions of the raw materials, used for the production of geopolymeric
samples and reported in Table 2, confirmed the main silico-aluminate nature of all of them.
The oxides of the major elements determined were SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO,
Na2O and K2O, whose concentrations are expressed in weight percentages (wt.%).

Table 2. Chemical compositions of the raw materials.

Sample
Major Elements (wt%)

SiO2 Al2O3 Fe2O3 MgO Na2O K2O CaO TiO2

BW [28] 47.90 31.82 2.99 4.14 3.75 3.59 4.52 /
NYT [46] 58.82 19.10 4.60 1.11 3.44 9.39 3.10 0.53
VT [47] 53.75 16.86 4.00 1.55 1.60 8.15 5.21 0.51

FA 58.13 23.28 5.98 2.04 0.97 2.80 4.22 1.02
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3.2. Physical and Chemical Characterization of the Geopolymeric Mortars

The effects of waste addition on some relevant physical characteristics of the geopoly-
meric composites (i.e., density, open porosity and water absorption) were evaluated and
the experimental results, as average values of triplicate tests, are reported in Table 3. The
apparent density values of both TW-based and BW-based geopolymeric mortars remain
basically unchanged regardless of the waste content. It is worth noting that the BW-based
geocomposites showed higher density values compared to the TW-based ones, revealing
a higher compactness, further confirmed by the lower values of open porosity and water
absorption, as well as the experimental results presented in the following sections. More-
over, considering the effects of waste addition on the open porosity of all the geopolymeric
samples, it is possible to deduce that samples produced without FA as partial replacement
turned out to be the most porous ones. This can be explained by considering that FA,
even in low percentages, promoted the formation of more compact geopolymeric matri-
ces [16,48], as confirmed also by the lower values of water absorption of all the samples
containing FA. In particular, this effect is more evident for the BW-based samples, which
showed very similar values of open porosity and water absorption regardless of the specific
amount (10 or 20%) of FA added and lower if compared to BW100 sample. On the contrary,
the open porosity and water absorption of TW-based geocomposites were affected by the
percentages of FA added, exhibiting increasing values with decreasing FA amount. This
could be explained by taking into account the lower reactivity of tuff waste powders, due
to the higher crystallinity of their silico-aluminate species, which caused the TW-based
samples to be more affected by the presence of FA.

Table 3. Main physical properties of geopolymeric mortars.

Sample Apparent Density
(g/cm3) Open Porosity (%) Water Absorption (%) CA (mg/cm2 s−1/2) Qmax (mg/cm2)

TW80 1.35 ± 0.08 39.44 ± 1.03 26.70 ± 0.97 20.97 ± 0.34 1518
TW90 1.40 ± 0.01 41.92 ± 0.96 29.89 ± 0.87 23.93 ± 1.19 1770
TW100 1.37 ± 0.01 42.32 ± 0.54 30.97 ± 0.48 33.36 ± 0.11 1907

BW80 1.76 ± 0.01 27.68 ± 0.50 15.71 ± 0.38 19.53 ± 0.82 1137
BW90 1.75 ± 0.01 26.24 ± 0.01 15.02 ± 0.04 21.89 ± 0.24 1236

BW100 1.73 ± 0.01 34.16 ± 0.21 19.75 ± 0.02 26.67 ± 1.89 1333

The capillary absorption curves and the relative values of capillary absorption coeffi-
cients for all geocomposites are reported, respectively, in Figure 4 and in Table 3. The data
indicated that all the samples reached water saturation after 48 h. Moreover, the water ab-
sorption rate decreased with time, probably as consequence of the increased water content
inside the specimen and of the reduced participation of the less-accessible pores [49]. At the
same time, it is possible to note that the absorption rate, especially in the first minutes of
the test, increased with the increase of the waste amount added, following the same trend
of the porosity values (Table 3). Capillary absorption coefficients showed higher values for
the geopolymeric samples produced without FA addition, as expected from the porosity
results (see Table 3). Finally, considering the values of Qmax reported in Table 3, it is worth
noting that, in accordance with previous results, BW-based geopolymers showed lower
amounts of absorbed water by capillarity, further confirming their higher compactness.

The analysis of FTIR spectra is a valid method of investigating and monitoring the
chemical modification of the silico-aluminate phases involved during the geopolymer-
ization process [50]. The FTIR spectra of waste-based geopolymers (Figure 5a,b) turned
out to be characterized by a broad absorbance band, ranging between around 700 and
1200 cm−1, typical of the overlapping of single peaks related to the asymmetric stretching
of T–O–Si (T = Si and Al) bonds present in the amorphous structure of aluminosilicate [51].
Moreover, all the geopolymeric systems showed absorbance at around 1430 cm−1 and at
880 cm−1 attributed to the stretching of carbonate ions in sodium carbonate [52]. In the



Materials 2023, 16, 6619 9 of 15

FTIR spectra of NYT and TW-based samples (Figure 5a), the symmetric stretching vibration
of Si–O and Al–O was noticed in the range of 750–690 cm−1 and attributed to the presence
of phillipsite [53]. The peaks appearing at about 780 cm−1 and at 693 cm−1 in Figure 5b
are assigned to quartz as the crystalline phase in the starting brick waste powder. The
comparison between the spectra of raw materials (black lines in Figure 5a,b) and geocom-
posites was evidenced by a slight shift of the T–O–Si asymmetric stretching band towards
lower wavenumbers, in particular from region about 1030–1000 cm−1, typical of zeolites,
for NYT [53] and from around 1050 cm−1 for BW. This spectral change can be related to
chemical modifications of the aluminosilicate structure of the raw materials induced by the
alkaline activation [54].
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3.3. Mechanical Characterization of the Geopolymeric Mortars

The average values of flexural and compressive strength for each geopolymeric mix-
tures are reported in Table 4.

Table 4. Flexural and compressive strengths of the geocomposites.

Sample Flexural Strength (MPa) Compressive Strength (MPa)

TW80 1.23 ± 0.05 1.34 ± 0.18
TW90 0.62 ± 0.04 1.48 ± 0.08
TW100 0.39 ± 0.01 0.81 ± 0.06

BW80 4.58 ± 0.06 13.44 ± 0.36
BW90 3.60 ± 0.30 13.39 ± 0.47

BW100 * 2.85 ± 0.73 5.34 ± 0.66
* Data already reported in [28].

The mechanical properties followed the same trend already evident for the physical
properties. In fact, the addition of FA, regardless of the 10 or 20%, led to more resistant
geopolymeric matrices, in terms of both flexural and compressive behaviour, for both
TW-based and BW-based specimens, as expected also from porosity values (Table 3).
Moreover, it is worth noting that BW-based geocomposites showed much better mechanical
performance with a compressive strength equal to ≈13 MPa for BW80 and BW90 samples,
which is much higher if compared to that equal to ≈1.5 MPa of the corresponding TW-
based geopolymeric samples. Probably, the improvement of compressive strength for
BW-based samples can be related to a more effective leaching of silica and alumina from the
brick waste powder at high alkalinity, which promoted the geopolymerization process [55].
Furthermore, mechanical properties of geocomposites depend not only on the strength of
the geopolymeric binder, but also on the mechanical response of aggregates and on the
interface between binder and aggregate produced during the consolidation process [16]; so
in this case, the adherence at the interface developed by tuff powder, used as aggregate,
was worse than the brick waste.

The results obtained from the Shore-D surface hardness tests are shown in Table 5
and further confirmed the tendency of the mechanical properties previously discussed. In
fact, as expected, all the BW-based geocomposites exhibited higher hardness values, in
particular, the BW80 and BW90 samples which showed very similar hardness in accordance
with density values (see Table 3).

Table 5. Shore-D hardness test results.

Sample Surface Hardness

TW80 53.73 ± 2.20
TW90 32.56 ± 2.32

TW100 26.50 ± 0.82

BW80 74.55 ± 1.17
BW90 75.80 ± 3.02
BW100 31.17 ± 0.33

The correlations of the waste amount with shore-D hardness and compressive strength
values for TW-based and BW-based geocomposites are reported in Figure 6. For all the
typologies of waste-based geopolymers, correlation was well described by the second-
degree polynomial function with a correlation coefficient equal to R2 = 1 for both shore-D
hardness and compressive strength. This means that the increase in waste amount causes a
decrease in mechanical properties, following a fluctuating trend.
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3.4. Comparison with Typical Materials Used in Cultural Heritage

To validate and verify the suitability of TW-based and BW-based geocomposites in
the restoration and conservation of cultural heritage, some of the experimental results
obtained in this paper were compared with the scientific literature for several typologies of
traditional and widely used products. Historical mortars, in fact, are very complex systems,
containing aerial or hydraulic binders or a blend of them, aggregates and eventually
additions. For this reason, different traditional mortars made with aerial lime and natural
hydraulic lime (NHL) were selected as the basis for comparison (see Table 6). Moreover,
considering that, in order to design compatible restoration mortars, it is fundamental to
investigate the physical and mechanical properties of both the original and repair mortars,
an experimental repair mortar, a natural limestone and a cement-based mortar were also
considered as reference materials for comparison with the geopolymeric samples.

Porosity, capillary absorption and mechanical properties have been selected as the
main factors used to verify the compatibility between ancient and restored structures [56].
As regards physical properties, it is possible to determine that the BW-based samples
showed similar values of open porosity and capillary absorption coefficient, especially the
BW80 and BW90 samples (see Table 3), and even lower amounts of water absorbed by
capillarity, if compared to all the reference mortars (Table 6). TW-based geocomposites
exhibited higher open porosity and capillary absorption coefficients (Table 3) but were
always comparable to existing building materials [57].

Taking into account that repair mortars should have similar behaviour in the presence
of water, especially in relation to their permeability to water and to water vapour compared
to the existing masonry materials, the geocomposites’ performance can be considered more
than adequate in terms of compatibility because their physical features should allow a quick
water evaporation through the mortar pores, which is also a key factor in salt-induced decay.
Moreover, a repair mortar should not be stronger than the existing one and, at the same
time, not be weaker than the masonry units [58]. Accordingly, TW-based samples showed
compressive strengths very similar to the reference mortars. BW-based geopolymers were
characterized by higher values of flexural and compressive strength (Tables 3 and 6), in
accordance with the requirements for historical mortars.

Table 6. Physical and mechanical properties of some mortars widely used for restoration purposes.

Sample Open Porosity
(%) CA (mg/cm2 s−1/2) Qmax

(mg/cm2)
Compressive

Strength (MPa)
Flexural Strength

(MPa)

Aerial lime mortar CL-90 [59,60] 25.90 13.90 2870 0.48 0.24
Hydraulic lime mortar NHL 5 [59,60] 23.50 9.40 3970 3.70 1.00
OPC mortar (CEM II B/L 32.5) [60] 18.80 3.40 2030 24.80 4.70

Repair mortar NHL-Z 3.5 with
crushed bricks and silica sand [56] 26.23 * 24.16 * n. d. 3.48 n. d.

Historical magnesian mortar [56] 30–40 28.51 n. d. n. d. n. d.
Natural Bioclastic Limestone [56] 24–30 31.32 n. d. 10.09 n. d.

* Evaluated after 12 months. n. d.: not determined.

4. Conclusions

Working on the heritage means not only preserving its historical, cultural and land-
scape value, but also promoting a unique economic resource, promoting social development
and increasing environmental protection. The direction to follow must therefore aim at
the approach of circular economies, considering conservation not only as a limitation, but
as a means of re-functionalizing and redeveloping spaces in an innovative way without
forgetting or erasing the intrinsic value of the territory.

Bricks and tuff wastes coming from construction and demolition activities have been
successfully used to produce geocomposites suitable to restoration practices. A deepened
physical-chemical and mechanical characterization of the geopolymeric samples was car-
ried out order to investigate their performance. In particular, brick waste-based samples
showed higher density and lower values of open porosity and water absorption than the
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tuff-based ones. The higher compactness of the brick waste-based geocomposites was fur-
ther confirmed by their mechanical performance. Finally, experimental results showed that
the physical and mechanical properties of both brick and tuff waste-based geocomposites,
also with different waste content, are compatible with existing building materials and with
all the traditional repairing products.

Accordingly, the alkali activation of construction waste can represent a novel and
sustainable approach that promotes performance and compatibility achievement in the
protection and restoration of heritage buildings.
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