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Lateral static overload on immediately restored implants decreases
the osteocyte index in peri-implant bone: a secondary analysis
of a pre-clinical study in dogs
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Abstract
Objectives This animal study was conducted to evaluate the osteocyte index in the peri-implant bone around immediately
restored implants under static lateral overload.
Material and methods Sevenmongrel dogs received three implants on each side of themandible. Forty-two implants were distributed
into three groups (14 implants per group); each animal received two implants connected to a 4.5-mm opened expansion device
(experimental group); in the other mandible side, two implants were connected into an expansion device without activation (control
group); one implant each side of themandiblewas left submerged (unload group). After 4months under dailymechanical and chemical
plaque control, the animals were euthanized; dental implants and surrounding bone were removed and processed to obtain thin ground
sections. Histomorphometry was used to evaluate the osteocyte index in the peri-implant bone contact to implant.
Results A higher, statistically significant mean number of osteocytes × 10−5 μm2 (54.74 ± 23.91) was found in the control group
compared with the test group (22.57 ± 22.55) (p = 0.0221). The correlation between percentage of bone-implant contact and
osteocyte index for submerged implants was not statistically significant (p = 0.2667), whereas the value for immediately loaded
implants was statistically significant (p = 0.0480).
Conclusion The lower number of osteocytes in the peri-implant bone around overloaded implants could be related to the need for
functional adaptation of the bone tissue to overloading and to the hypothesized involvement of the osteocytes in the maintenance
of the bone matrix in the control group.
Clinical relevance Osteocytes play a pivotal role in bone adaptation to mechanical loading, and the osteocyte network has been
regarded as being the main mechanosensory mechanism.
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Introduction

Primary or mechanical stability of dental implants is a prereq-
uisite concept in initiating the process of osseointegration.

Several factors, such as metabolism, genetics, and nutrition,
may affect the bone tissue structure that is characterized by a
constant turnover process, in response to mechanical stimuli
such as occlusal loading. Osteocyte cells play an essential role
in the regulation of bone mass and structure, together with the
coordinated actions of osteoblasts and osteoclasts that lead to
the mechanical adaptation of bone, which are orchestrated by
the osteocytes that have been considered the main mechano-
sensitive cells in the bone [1, 2].

Balanced mechanical loading is essential for the mainte-
nance of skeletal homeostasis and bone tissue formation [1,
2]. Therefore, the transformation of mechanisms of
mechanotransduction, i.e., the conversion of a physical stim-
ulus into a cellular response or damage, is an actively updated

* Dimorvan Bordin
dimorvan_bordin@hotmail.com

1 Department of Periodontology and Oral Implantology, Dental
Research Division, Univeritas UNG, Guarulhos, SP, Brazil

2 Univeritas UNG, Praça Tereza Cristina, 01 – Centro,
Guarulhos, SP 07023-070, Brazil

3 Department of Medical, Oral and Biotechnological Sciences,
University of Chieti-Pescara, Chieti, Italy

https://doi.org/10.1007/s00784-020-03662-1

/ Published online: 5 November 2020

Clinical Oral Investigations (2021) 25:3297–3303

http://crossmark.crossref.org/dialog/?doi=10.1007/s00784-020-03662-1&domain=pdf
http://orcid.org/0000-0002-8466-9558
mailto:dimorvan_bordin@hotmail.com


topic under research [3, 4]. Under a slight load, the
mechanosensation of osteocytes inhibits the regulatory signal
of osteoblasts for bone formation, whereas excessive loading
and bone microdamage have been associated with higher os-
teocyte apoptosis followed by an increased RANKL in bone,
leading to osteoclastogenesis and bone resorption [3–7].

Self-regulating stress on bone tissue produces strain; the
load-induced fluid flow regulates the bone matrix at tissue
level due to the shear stress created [6, 7]. Previous studies
[1, 2] have reported that loaded dental implants showed more
total bone tissue volume and more newly formed bone trabec-
ulae than unloaded dental implants. The functional role of
osteocyte cells is being extensively researched at present,
and their important role in the regulation of skeleton remod-
eling has been suggested. Replacement of bone tissue with
fatigue microdamage occurs through local osteocyte apopto-
sis, probably related to the attenuation of the inhibitory signals
released by the osteocytes [3]. In fact, the effects of prosthetic
component misfit or static lateral loading on immediate load-
ing protocols could also influence this process. Modifications
in the osteocyte environment release growth factors and cyto-
kines that affect both osteoblast and osteoclast activities [6, 7];
additionally, osteocyte apoptosis determines the remodulation
of bone matrix [8]. A previous study has shown the associa-
tion between osteocyte loss and bone microdamage [8, 9].
Nevertheless, the literature is not clear about the level of load-
ing necessary for homeostasis without bone damage [10]. The
recent consensus report of periodontal and peri-implant dis-
eases and conditions [11] has classified “occlusal
overloading” as a force that surpasses/exceeds the adaptative
capacity of tissues. Moreover, a recent systematic review [10]
has indicated that up to now, the literature still lacks reports
about the effect of traumatic forces on peri-implant tissues.
Thus, the aim of this animal study was to evaluate the effect
that static lateral overload on immediately restored implants
has on the osteocyte index.

Materials and methods

In this animal study, a secondary analysis of a clinical and
histological study is presented, which was designed and
powered to compare the effects of static lateral loading on
immediately restored implants. The primary outcome variable
was the difference between the mean value of the bone-to-
implant (BIC) contact. The materials and methods were pre-
viously detailed [12]. The main aspects of this study design
have been summarized below.

Experimental design

Forty-two implants were distributed into three groups (14 im-
plants per group); each animal received two implants

connected to an expansion device that was opened to
4.5 mm (experimental group). On the other side of the man-
dible, in the control group, two implants were connected to an
expansion device without activation; one implant on each side
of the mandible was left submerged (unload group).

Animals and surgeries

After obtaining approval from the Institutional Animal Care of
University of Guarulhos, seven male dogs (average age of 2
years and weight of 18 kg) received three implants bilaterally
as previously described [12] (total of 42 implants). All surgi-
cal and clinical procedures, as well as implant-supported res-
toration procedures, were performed under general anesthesia
at the Veterinary School of University of Guarulhos. The
number of animals was based on previous preclinical studies
[13–17]. Animal selection, management, and surgical proto-
col were conducted in compliance with routines approved for
this study by the Institutional Animal Care of University of
Guarulhos. Briefly, all mandibular first molar and premolars
were extracted creating an edentulous ridge. In addition, max-
illary premolars were extracted to prevent negative impacts of
trauma from interfering during the healing period and avoid
possible bias to the study model involving immediately re-
stored implants [12]. Bacterial biofilm control was performed
with 0.12% chlorhexidine daily and scaling and root planing
once a month for 2 months.

After a healing period of 2 months, a periodontist (J.A.S)
performs all surgeries and prosthetic procedures. A total of 42
external hexagon dental implants (Ø3.75 × 10 mm) with
sandblasted acid-etched surface topography were randomly
allocated among the dogs as follows: control group (static
loading) (n = seven pairs/restorations)—crowns connected to
an orthodontic expansion screw without activation; test
group—static overloading (n = 7 pairs/restorations)—crowns
connected to an orthodontic expansion screw opened to 4.5
mm; unloaded group (n = 14 single implants)—implants that
were left submerged. The implants of the unloaded group
were evaluated and the mean value found for each animal
was subjected to statistical analysis. An external surgeon not
related with the surgical procedures (G.I.) performed the ran-
domization. Tossing a coin was used to randomize which side
(left or right) was assigned as control or test load protocol.
Dental implants from unloaded group were placed in both
mandibular ridges.

Immediate restoration and static lateral load

Immediately after dental implant placement procedures, im-
pression posts were tightened directly into the implants and
connected to each other with a self-curing composite resin.
Laboratory implant analogs were attached to the impression
posts and a master cast was constructed. Prosthetic titanium
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abutments were welded to an orthodontic expansion screw.
All orthodontic expansion screws (control and test groups)
were placed at 10 mm between dental implants (margin-to-
margin) and fitted to the implants. All the experimental pros-
thetic devices were delivered within 2 h. For the test group
(static lateral overloading), the expansion screw was opened
to 4.5 mm, resulting in a force of 20 kg. Figure 1 shows a
schematic diagram of the expansion device. The control group
received only the restoration without any expansion device;
abutment screws were tightened in accordance with the man-
ufacturer’s instructions. The screw access of the restoration
was then covered with light-cured temporary resin.

At the time of delivery of the implant-supported restora-
tion, periapical radiographs were taken to check the implant
position and fit of the prosthetic components. Once a month,
all restorations were checked to replace the loosened abut-
ment screws. If the implant restoration showed mobility or
abutment screw loosening, the orthodontic device was
closed, then repositioned, and re-tightened onto the im-
plants. The abutment screws were checked once a month,
and then, the expansion screws were opened again (in order
to test the groups).

Histological procedures

The animals were euthanatized after 4 months when the
healing period ended. Dental implants and surrounding tissues
were dissected and immediately fixed at 10% buffered forma-
lin immersion and processed [12].

The ground mesiodistal sections were evaluated under nor-
mal transmitted light microscope connected to a high-
resolution video camera (Leica DFC 320) and interfaced with
a monitor and a computer. The optical system was associated

with a software package with image-capturing capabilities
(Leica QWin Plus V 3.5.0, Leica Microsystems, Heerbrugg,
Switzerland). Bone-to-implant contact (BIC%), i.e., the
amount of mineralized bone in direct contact with the entire
extent of the dental implant, was measured.

A single masked and calibrated examiner (C.D.C) per-
formed the histometric parameters. A total of 12 ground sec-
tions (4 of each group) were used for the calibration exercise.
The sections were analyzed twice with a 1-week interval be-
tween measurements. Paired t test statistics showed no signif-
icant differences (P > 0.05) in intra-examiner reproducibility.
The standard errors of the mean differences of histometric
analysis were 5.5%. The osteocyte index was calculated by
the ratio of the number of osteocytes (counted in bone tissue
[for each slide] at a magnification of × 200) to the bone-area
(μm2) with the above-mentioned software package. The mea-
surements were performed in bone tissue (in the thread length,
mean 0.45 ± 0.05 mm) along the entire perimeter of the dental
implants. The measurements were performed in the coronal
(the first 1/3 of the length of the implant with bone-to-implant
contact region of interested—ROI). Threads were used to
guide ratio calculation (Fig. 2).

Statistical analysis

Osteocyte index and BIC% were calculated for each implant,
then for each group (control, test, and unloaded). Differences
among the groups were compared by nonparametric mixed
models to evaluate the data clustered, within the dog. The
Spearman rank correlation was used to evaluate the correla-
tions between percentage of bone-implant contact values and
osteocyte index. The significance test was two-tailed and con-
ducted at a 0.05 level of significance.

Fig. 1 a Frontal view and schematic figure represents abutments connected though expansion device which was opened to 4.5 mm to create static lateral
overload. b Lateral view
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Results

Osteocyte index and bone-to-implant contact (BIC%) are
shown in Figs. 3 and 4. Implants of the test group showed a
sharp decrease in the osteocyte index values when compared
with the implants of the control and unloaded groups.

The major portion of peri-implant bone was trabecular, and
there were osteocytes in their lacunae, while the newly formed
bone exhibited different stages of maturation and remodeling,
mainly in the loaded groups. Evident differences were ob-
served among the groups, mainly in the dental implants of
the test group that exhibited extensive peri-implant bone loss.
A higher, statistically significant osteocyte index × 10−5 μm2

(54.74 ± 23.91) was found in the control group compared with
the test group (22.57 ± 22.55) (p = 0.0221). The unloaded

group had a mean osteocyte index of 45.59 ± 4.33. The cor-
relation between the percentage of bone-implant contact and
osteocyte index for submerged implants was not statistically
significant (p = 0.2667) whereas for the control group, it was
statistically significant (p = 0.0480).

Discussion

The results of the present study showed a lower osteocyte
index around overloaded implants; this result could be attrib-
uted to the lack of capacity for adaption of peri-implant bone
tissues under static lateral overloading. Nevertheless, the role
of osteocytes in maintaining the bone matrix in this group
could be hypothesized.

Fig. 3 Box-plot (min.max) of osteocyte index (μm2) around implants of
control, test, and unloaded groups—animals (n = 7 dogs). Kruskal-Wallis
test (p = 0.0162)–Dunn post hoc test p < 0.05 (control > unloaded > test)

Fig. 4 Box-plot (min.max) of bone-to-implant contact (BIC%) around
implants of control, test, and unloaded groups—animals (n = 7 dogs).
Kruskal-Wallis test (p < 0.0001)–Dunn post hoc test p < 0.05 (control =
unloaded > test)

Fig. 2 (a) Implant threads were
used to guide osteocyte ratio
calculation (× 16 magnification)
(b) at higher magnification (× 40
magnification)
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Bonewald and Johnson [18] previously demonstrated that
osteocytes were mandatory for the maintenance of bone tissue
mass in response to “regular” loading; their presence was
probably associated with the ability of bone tissue to efficient-
ly remodel itself to maintain the normal levels of mineraliza-
tion and to repair microdamage [18, 19]. It could be speculat-
ed that the excessive loading jeopardized this process, increas-
ing microdamage and reducing the ability of the bone tissue
adaptative capacity to maintain its level. A minimum number
of osteocytes seem to be crucial for their operational network
[7, 20]; however, the scientific evidence about the cut-off
point of cells to maintain the homeostasis process is still
lacking.

The osteocyte canaliculi, which must enter into the narrow
bone spaces and recruit osteoclast precursor cells or induce
mesenchymal stem cell differentiation [18], may have been
interrupted. Mechanical loading of bone tissue stimulates the
interstitial fluid flow through the pericellular space surround-
ing osteocytes and their mechanisms. Consequently, this flow
activates signaling molecules in the cells, which are able to
regulate the activity of osteoblasts and osteoclasts [21, 22] as
was indirectly observed in the control group.

In addition, a previous study [23] has suggested that cyto-
plasmic processes were more mechanosensitive than cell bod-
ies. The cytoplasmic processes probably have a cell body
provided with a more robust structure which might explain
how osteocytes transduce a mechanical signal into a chemical
response, mainly under excessive loading. These aforemen-
tioned factors could partly explain how difficult it is to com-
pare studies about overloading tissues in both implant-
supported restorations [23–25] and restored teeth.

The dissipation of the static lateral force onto the dental
implants might show distinct effects: increase in the bone
osteocyte index when there are controlled forces or peri-
implant bone loss as result of mechanical disruption of osteo-
cytes. However, the unclear definition or even the measure-
ment of occlusal overloading must be emphasized. Several
studies have discussed the mechanical behavior, stress, strain,
and viscoelasticity of peri-implant bone under different load-
ing conditions [9, 26, 27] in an endeavor to clarify these
questions.

The present study was limited to evaluating different levels
of loading force to determine threshold: control, test
(overloaded), and unloaded. The five dental implants lost from
the experimental group during the study clearly showed that
static lateral overloading resulted in the excessive transmis-
sion of force and consequently jeopardized the bone healing
around peri-implant bone tissue. The mechanical performance
of peri-implant bone that governs alveolar function and the
mechanism of osteocyte are complex. The properties of bone
tissue are closely related to load conditions, especially during
growth and development [8, 26], with the latter being the
target in the present study. The dental implants were

immediately restored, and excessive lateral forces were ap-
plied in experimental group while a lower or incipient force
was applied on the control group and no force on the unloaded
group. Loading in the early phases of peri-implant wound
healing has an osteogenic effect on bone healing and could
be also enhanced by implant surface topography. In addition,
long-term survival of the implant-supported restorations is
more dependent on the ability of bone tissue to adapt effec-
tively under the occlusal loads than merely on the amount of
the peri-implant tissue and the mechanical properties of the
bone [12, 28].

The expansion screws of experimental groups were al-
most totally opened, creating an excessive lateral force
throughout the entire study period. An adaptive remodel-
ing process of the peri-implant bone was observed in the
control group, although no statistical significance was
found [29–31]. Restorations were checked once a month
and re-tightened and this clinical situation might also have
increased the peri-implant bone loss as previously demon-
strated [32, 33]. Finally, the use of external hexagon den-
tal implants showed a detrimental effect on loading trans-
fer as has previously been found [32, 34]

Therefore, within the limitations of this animal model, it
could be concluded that static lateral overloading negatively
affected the osteocyte index around the peri-implant bone of
immediately restored implants. Further studies are needed to
gain better understanding of the impact of load transmission
on peri-implant bone behavior.

Conclusion

Within the limitation of this preclinical study, it could be con-
cluded that immediately restored dental implants under static
lateral overload had a lower number of osteocytes in the peri-
implant bone.
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