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Abstract: Polymer colloids have remarkable features and are gaining importance in many areas of
research including medicinal science. Presently, the innovation of cancer drugs is at the top in the
world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment.
The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic
carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the
treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with
special emphasis on the different types of colloidal materials and their applications in targeted cancer
therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives.
This article will be useful for academics, researchers, and regulatory authorities.

Keywords: polymer colloids; colloidal polymeric nanomaterials; cancer diagnosis and treatment;
future perspectives

1. Introduction

It cannot be denied that cancer has become a serious ailment from which millions of
people have died globally. Worldwide, cancer has also been a cause of 9.6 million deaths
and 18.1 million new cases in 2018 [1]. Consequently, we have to prepare ourselves more
strongly to fight this lethal ailment. Among many approaches, chemotherapy is gaining
importance as a way to treat different types of cancers [2–6] but it has been associated with
several side effects. The most serious side effects are lymphedema, severe pain, fatigue,
loss of appetite, swelling and drainage from the site of surgery, bleeding, infection, and
organ dysfunction [7–13]. In addition, multidrug resistance (MDR) is another problem
in chemotherapy. Some strategies have been developed and adopted by small-molecule
inhibitors to control MDR. These strategies have been found to be of great importance in
extending the effectiveness of chemotherapy and refining the clinical results of patients with
cancers that are vulnerable to MDR development [14]. Even then, a hundred percent success
could not be achieved in safe mode; therefore, there is a great need to develop safe and
human-friendly chemotherapy. Nowadays, this disease has been included in the theranostic
administration of numerous ailments. To the best of our knowledge, J. Funkhouser was the
first to name the term theranostic in a press release. This term was used for the description
of investigation and treatment methods in a sole part. Theranostics means treatment using
imaging, diagnostic, and treatment of cancer. It helps too much to control cancer treatment.
It also helps in drug selection, drug dose, and delivery to the exact position (target) in the
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human body [15]. In addition, the contribution of such type of management to the economy
of a country cannot be ignored because it reduces the cost with precise and effective drug
processes. Since this treatment protocol is based on a target and, consequently, the least side
effects are observed. This approach is represented in this article using polymeric colloids.

As stated above, there are severe side effects of chemotherapy, which compel scientists
to explore new approaches [16]. Thus, a theranostic approach could be very helpful for not
only cancer treatment but also for gaining efficiency of persistence. The treatment of cancer
needs more advanced techniques to analyze cancers; however, nanotechnology showed
good results in the treatment of numerous cancer [17]. Nanotechnology enabled new
methods of imaging and therapy which are successfully being used in everyday clinical
practice. Inspection of nanoparticles-centered imaging and therapy is covering a large area
day by day. Nanotechnology has become an advanced tool in not only the identification
but also in the delivery of drugs. Probably, nanotechnology will participate significantly to
achieve the required task in modified drugs and management. Cancer theranostics involves
metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes quantum
dots, dendrimers, etc. in nano-formulations. Among many systems, polymer colloids
are attracting scientists because of their many useful properties [18]. Basically, a polymer
colloid is a dispersal of submicron particles of the polymer in a liquid (generally aqueous)
medium. Among many methods, emulsion polymerization is the most widely used. The
remarkable features of polymer colloids in drug development are high capacity in terms of
drug loading, biodegradability and biocompatibility, and ease of preparation [19]. If the
concentrations of micelles decrease, the micelles in the colloidal solution decompose. It is
because the formation of micelle and colloidal solution occurs at only high concentrations.
This thing can also be considered as a limitation of the micelle-forming copolymer if they
are used as a drug in cancer therapy. Some reviews are available on this subject using
classical polymers [20,21] but polymer colloids-based review for cancer diagnosis and
treatment is not found. Therefore, efforts are made to review the advances in polymer
colloids in cancer treatment. The current article describes the state-of-the-art of polymer
colloids in the theranostic management of cancer, as well as highlights the future challenges
and perspectives regarding such a type of research area.

2. Polymer Colloids

Polymer colloids are liquid-phase dispersions of polymer particles; often water. The
diameter of a particle can range from 10 to 1000 nm, and each particle typically (but not
always) comprises a large number of distinct polymer molecules. Some colloidal polymers
are easily generated from naturally occurring components or occur naturally. Typically,
emulsion polymerization is used to create functionalized polymer colloids. Monodisperse
polymer colloids with acetal, aldehyde, chloromethyl and amino functionalities are pre-
pared using a multi-step emulsion polymerization technique. The lipophilic drugs have
solubility in the oily core or polymer matrix of polymers are more readily combined than
hydrophilic molecules. The polymer colloids may be of different types such as micelles,
liposomes, emulsions, cationic carriers, and hydrogels [19]. Therefore, the uses of these
polymer colloids in cancer treatment, diagnosis, and management are discussed in the
following sub-sections.

2.1. Micelles in Cancer Treatment

At low concentrations of the ingredients, micelles are not formed; however, they
are formed if the concentration exceeds a certain threshold value. The concentration at
which the first micelle appears is known as critical micellization concentration (CMC). In
such a type of solution, micelles behave as colloidal particles because of gaining colloidal
range. The solution is termed a colloidal solution. The ingredients present are called
associated/colloidal ingredients. A polymer can also be considered a colloidal polymer if it
forms a colloidal solution by attaining a colloidal range/size at CMC. The micelle gives rise
to heterogeneity in the solution, and polymeric colloids represent a heterogeneous system.
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The use of the theranostic approach in diagnosis, drug delivery, and cancer therapy
has recently been a subject of great interest [22]. The size of the colloidal polymers is in the
range of 10–1000 nm and they cannot enter the human cell normally. This involves many
cellular interactions including antibodies, receptors, and enzymes [23,24]. Nanotechnology
can be used to make them ideal candidates for cancer treatment [25,26]. The literature
indicates the formulations of several nanoparticle theranostic agents. Different materials
such as Au, Si, C, etc. [27,28], have been used for many nanoparticle theranostic agents.
These materials gave good results when tested for early cancer detection but immuno-
genicity, toxicity, and low clearance value from the body were the main disadvantages
linked with these materials [29,30]. Some of the macromolecules used for preparing NPs
include polylactic acid (PLA), poly(β-caprolactone), poly(lactide-co-glycolide) (PLGA),
poly(alkylcyanoacrylate), and polyglycolic acid [31]. When the concentration of these NPs
is increased, they combine to make polymers and after that, they attain a colloidal range.
Moreover, synthetic polymeric biodegradable nanoparticles were also explored with the
help of computational evaluation [32,33]. Some of the biodegradable colloidal polymers
include poly(L-aspartate), poly(2-hydroxyethyl-L-aspartamide), poly(D,L-lactic acid-co-
glycolic acid), poly(ethylene glycol) (PEG), poly(ε-caprolactone), poly(N-vinyl pyrrolidone)
(PVP), poly(hydroxypropyl methacrylamide) (PHPMA), poly(N-isopropyl acrylamide)
(PNIPAM), poly(ethylene glycol), poly(methyl methacrylate), poly-(chloromethyl-styrene)
(PCMS) etc.

Pluronics consist of propylene oxide fragments and ethylene oxide which are hy-
drophobic and hydrophilic, respectively. A structure of (PEO)a-(PPO)b-(PEO)a type [34]
was obtained using the poly(ethylene oxide), PEO, and poly(propylene oxide), PPO. The
applicability of the synthesized structure was just because of their self-gathering for the for-
mation of micelles. In addition, not only emulsification but also protection of nanocarriers
is also done. In emulsification, the nature of emulsion is very important in pharmaceutical
sciences. If the water-in-oil emulsion is to be prepared, a poloxamer with short hydrophilic
tails and a long hydrophobic block (with low HLB) are taken. It stabilizes water-in-oil
emulsions according to the Bancroft rule. On the other hand, if the oil-in-water emulsion is
to be prepared, a poloxamer with longer hydrophilic tails and a shorter hydrophobic block
are taken. Hence, the POE/POP ratio determines the nature of the synthesized emulsion
as shown in (Figure 1) [35]. A polymer of lactic acid (PLA) has been approved by FDA.
This type of polymer has attracted many researchers. In paclitaxel, methoxy poly(ethylene
glycol)-poly(lactide) copolymer acted as a synthesizer of micelle-based polymer. Nowa-
days, a formulation of vitamin E-TPGS and mPEG-PLA based on micelle is being used for
paclitaxel delivery for an increment in Genexol-PM effectiveness against MDR cancer [36].
Another anti-cancer drug that has taken an important place in anti-cancer drug develop-
ment is PEGylated polymer of caprolactone (PEG-PCL). Nanoparticles based on PEG-PCL
micelle target cancerous sites. A star-shaped folate-PEG-PCL copolymer was prepared by
Cuong et al. [37] for the encapsulation of doxorubicin for the directed distribution in breast
cancer. For this purpose, folic acid was used for the modification of the PEG series. Over-
expression of the receptor of folate was also observed in both breast and ovarian cancers.
Therefore, folic acid conjugation in the carrier of the micelle (PEG-PLA) [37] played an im-
portant role in the transport of the medicine at an exact site. A polymer of lactic-co-glycolic
acid (PLGA) has also taken a place among the polymeric nanocarriers just because of its
(i) biocompatibility, (ii) biodegradability, and (iii) poor water solubility. These properties
made this polymer a bioavailable polymer. The use of PLGA in the anti-cancer formulation
has been approved by the US FDA. The toxicity level was found minimum in the drug
delivery system when PLGA was used. Commercial PLGA polymers are available in
diverse molecular masses and alignments that affect their biodegradation, which involves
too much time variation [38]. The formation of PEG-poly(amino acids) co-polymeric-based
micelles involves the polymerization of amino acids for the formation of a hydrophobic
core. ADR-conjugated PEG-P(Asp) molded micelle-based construction in the nano-size
range was confirmed in vitro anti-tumor action. In another study, the same group studied
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the influence of a PEG block on the conformation of a poly(β-benzyl-L-aspartate) segment
in organic solvent [39]. In addition, other polymeric materials such as MTX-loaded p–MTX
micelles [40] (Figure 2), and docetaxel-loaded PLGA–TPGS/Poloxamer 235 nanoparti-
cles and microparticles were also synthesized to use in cancer therapy [41] (Figure 3).
Daraba et al. [42] synthesized hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic
cross-linked poly(vinylpyrrolidone) (PNVP) polymeric nanoparticles. The authors used
these carriers to anchor cisplatin via emulsion polymerization. Furthermore, the authors
studied the drug release from these two nano-polymeric carriers and observed PNVP as a
high release of the drug than PCL carrier. Furthermore, these two studied carriers were
found to show good compatibility with the blood during hemolysis. The authors used
MCF-7 and A-375 cancer cell lines to test the anti-cancer activities of loaded drugs and no
toxicity was observed with the two studied carriers.
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The micelle-based materials acting as nanocarriers are summarized in Table 1.

Table 1. The micelle-based materials act as nanocarriers.

Class Polymeric Unit Combining Units Obtained Skeleton Refs.

Pluronics

poly(propylene oxide) propylene oxide and
ethylene oxide

(PEO)a-(PPO)b-
(PEO)a [34]

None Poloxamer and MTX p-MTX [40]

TPGS (D-α-tocopheryl
polyethylene glycol

Succinate)

Poloxamer 427 and 27 and
vitamin E TPGS

PLGA-
TPGS/Poloxamer

235
[41]

PEG

PLA Dodecanol, folic acid and
PEG-PLA Dol-PLA-PEG-FA [43]

PLA Ala-Pro-Arg-Pro-Gly and peptide-maleimide-
PEG-PLA [44]

acid-chloride of PCL PCL-COCl, PEG and TAPC mPEG-b-PCL
copolymer [45]

PCL PEG-PCL and folic acid Folate-PEG-PCL [46]

poly(ethylene
glycol)-distearoyl

phosphoethanolamine
Lipofectin and PEG-PE Lip-PEG-PE [47]

poly(ethylene
glycol)-distearoyl

phosphoethanolamine

PEG-PE, Lipofectin lipids
and paclitaxel PEG-PE/ST/LL [48]

PLGA PLGA, PEG, Dox and
nanoparticle Dox-NP [49]

2.2. Liposomes in Cancer Treatment

The importance of liposomes cannot be ignored in cancer treatment. Enzyme-responsive
liposomes have played an important role in the delivery of anti-cancer drugs [50]. First
of all, liposomes were reported as drug carriers in 1971 by Gregoriadis et al. [51]. Since
then many papers have been published in this area. Spherical vesicles-type liposomes
have both hydrophilic and hydrophobic cores [52]. This property helps the liposome in
the capsulation of hydrophilic and hydrophobic drugs [53]. In addition, other properties
such as biocompatibility, biodegradability, flexibilty, and reduced side effects have also
made these liposomes wonderful drug deliverers [53]. A PEGylated liposomal formulation
(Doxil) was used by Johnson & Johnson for the encapsulation of an anti-cancer drug [54].
In 2011, a study regarding the imbalance between the demand and supply of Doxil was
performed [55]. It was observed that the manufacturing unit was temporarily shut down
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due to some quality control issues [56]. A list of liposomal-based anti-cancer drugs is
summarized in below Table 2.

Table 2. Liposomal-based antiicancer drugs [57].

Name of Drugs Status Compony

Doxorubicin Doxil Sequus (Alza)

Daunorubicin DaunoXomeTM NeXstar (Gilead Sciences)

Edolfosine Phase I The Liposome Company

Tretinoin Phase I/II Aronex

Cisplatin Phase II Aronex

Annamycine Phase I/II Aronex

2.3. Emulsions in Cancer Treatment

The emulsion can also be applied for cancer treatment. Emulsion-based formulations
of drugs are mostly applicable for topical or transdermal uses [58]. The emulsion is a type
of colloidal solution that has an oil and aqueous phase [59]. The drug exists in the solubi-
lized form because it solubilizes both types of drug, i.e., lipophilic and hydrophilic [60].
Nowadays, nano-emulsion and microemulsions are being used in drug delivery systems.
Microemulsions loaded with gemcitabine [61] have been used against many solid tumors
and are also used in colorectal cancer treatment [62]. The most attractive point regard-
ing drug-loaded microemulsions is their high hemolysis activity (17–21%). The authors
studied %hemolysis of micro-emulsion solutions 10 µL of 1 mg/mL of GEM loaded in
micro-emulsions and 10 µL of 1 mg/mL of GEM dissolved in water. These results indicate
variable %hemolysis. Fofaria et al. [63] described nano-emulsion formulations of piplar-
tine anti-cancer agents. The authors reported a 1.5-fold increase in bioavailability of the
piplartine after encapsulation. Furthermore, the authors claimed this nano-emulsion as
a delivery method for oral intake of piplartine, which improved the oral bioavailability,
solubility, and anti-tumor efficiency.

2.4. Cationic Carriers in Cancer Treatment

Anti-cancer drugs can also be delivered through ionic polymers. The ionic forms
of anti-cancer drugs are loaded on to cationic polymers. The developed formulations
have positive surface charges with robust cellular interaction features and good cellular
acceptance. Chitosan has been used as a carrier in cancer treatment due to its anti-cancer
effects [64]. Chitosan has been shown to cause apoptosis and bladder tumor cell death via
caspase-3 activation [64]. Polymethacrylates have vinyl-base (cationic polymers) showing
the capability to form polyplexes on the polynucleotide condensation. These molecules
have a wide range of chemical structures with varied molecular weights [65]. The gene
delivery efficacy has been increased by balancing between lysine moieties and free amino
groups. This resulted in DNA complex formation with imidazole heterocycles; responsible
for endosomal escape [66]. A commercially obtainable cationic polyamine of polyethylene
imine is one of the most effective and extensively studied cationic polymers [65]. PEI was
shown to interact with serum proteins of negatively charged erythrocytes. This precipitated
in vast bunches and stick to the cell surface [67].

2.5. Hydrogels in Cancer Treatment

The hydrogels have attained a special position in anti-cancer drugs deliverable molecules
because of their low toxicities [68]. The numerous chemotherapeutic drugs have been
anchored in hydrogels and rooted near the tumors to obtain high drug amounts in tumor
tissues for an extended period. In addition, self-healing hydrogels have been extensively
utilized for tissue regeneration and engineered owing to their outstanding biocompatibility
and connections to nearby tissues. The importance and demand of self-healing hydrogels
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for in situ transport of drugs are rising [69–71]. The hydrogels are good carriers for drug
co-loading due to their protective properties and suitable injections. Kim et al. [72] reported
the loading of doxorubicin and 5-fluorouracil on a hydrogel as a carrier. The authors
reported sustainable drug delivery until 18 days later. The 5-fluorouracil anchored on
pluronic hydrogel or 5-fluorouracil-loaded diblock copolymer hydrogel was mixed with
DOX-loaded microcapsules to prepare two drug formulations. Both the formulations
showed enough variability in vitro for injection easily into tumor and gel in situ at body
temperature. Lerouge et al. [73] described hydrogel and used it for the encapsulation
and propagation of T lymphocytes. This led to released interferon-γ (IFN-γ), cytotoxic
biomarkers, and induced annexin V appearance through incubation with tumor cells.

Some polymer colloids-based anti-cancer drugs under clinical trials are summarized
in below Table 3.

Table 3. The polymer colloids-based anti-cancer drugs in clinical trials.

Drugs Grade Tumor types Refs.

Paclitaxel Accepted Lung, breast, and pancreatic [74]

Rapamycin Under clinical trial Solid [75]

Docetaxel Under clinical trial Prostrate and breast [76]

Doxorubicin Under clinical trial Hepatocellular [77]

Mitoxantrone Under clinical trial Hepatocellular [78]

Docetaxel Under clinical trial Solid [79]

Paclitaxel Under clinical trial Neoplasms [80]

DACHPt Under clinical trial Ovarian [81]
DACHPt: Dichloro(1,2-diaminocyclohexane)platinum(II).

3. Targets in Cancer Therapy, Drug Delivery, and Controlled Release

The identification of the target is the most important step to understanding the mech-
anism of action. A proper selection of ligands depends upon the site affinity, which is
supposed to hit. Such receptors have been termed the targets of the drugs/ligands. In
cancer therapy, folate, glycoprotein, transferrin, and epidermal growth factor receptors
(EGFRs) are the most widely considered receptors [82]. Transferrin transfers iron into
proliferating cells through the blood by attaching to its receptor. Once the transferrin is
adopted, the release of iron occurs to cause endocytosis in the cellular acidic medium.
The receptor of transferrin is accountable for the homeostasis of iron and cell growth
regulation [83]. Thus, the over-expression of such types of proteins in metastatic and the
resistance were shown by the cancerous cells against the drugs, as compared to the standard
cells. It is due to an increased concentration of iron; forming this receptor as a relevant
receptor in cancer treatment [40,42,54]. On the other hand, the receptor of folate is a 38 kDa
glycosyl-phosphatidylinositol conjugated glycoprotein. It is considered a tumor marker
investigated by many scientists. Such a type of receptor fixes not only folic acid but also the
conjugates of their drugs. Moreover, the fixation of nanocarriers of folate-anchored with a
high affinity was also noted [47]. This type of receptor causes a fixation by internalizing
into the cells via endocytosis [47]. In addition, folic acid is essential for nucleotide-based
synthesis, viz, adenine, guanine, cytosine, and uracil. Moreover, normal cells do not allow
the passage of folate-conjugate, but only a reduced form of folic acid is transported, i.e.,
5-methyl-tetrahydrofolate [84]. The entry of the folate conjugate into the cancer cells hap-
pens mainly via the folate receptor due to the upregulation of these receptors on cancerous
cells as compared to normal cells [85]. A wide range of tumor over-expression of receptors
of folate includes different kinds of cancers. The additional point in the property of folate
ligands is their inexpensiveness, nontoxicity, and non-immunogenicity. Moreover, they
showed a high-binding affinity, constancy in storage and movement, and are bondable
with receptors of nanocarriers epidermal growth factor [86]. The EGFRs, family members
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of receptors of tyrosine kinase, are extremely upregulated on the surface of cancerous cells.
The EGFR binds to six known endogenous ligands: EGF, transforming growth factor-α,
amphiregulin, betacellulin, heparin-binding EGF, and epiregulin [87]. EGFR activation
has occurred through one of these ligands. This activation excited signaling processes
within the cell, which were involved mostly in cancerous evolution and progression [36,44].
The over-expression of EGFR occurred mainly in breast, lung, colorectal, and brain tu-
mors [88–91]. Glycoproteins lectins are the types of proteins that can recognize and assign
precisely to the glycoproteins; expressed on the surface of cancerous cells. The expression of
glycoproteins on cancerous cells is found different from that of ordinary cells. In addition,
lectin-based targeting has also been useful in targeting colon tumors. The cancerous growth
can be prohibited by checking the construction of new vessels of blood in the cancerous
core. This results in a low or no blood supply, hindering the delivery of oxygen and other
nutrients. Thus, nanocarriers designed to attack angiogenesis can prove to be very bene-
ficial for controlling cancerous progress and related metastatic potential [59]. The tumor
targeting has the succeeding qualities: (i) no need for the nanocarriers to reach their target
site; (ii) the comfort of convenience to fix to endothelial receptors post-intravenous injec-
tion; (iii) endothelial cells are less prone to the risk of evolving conflict to treatment than
cancerous cells; and (iv) this tactic applies to all types of cancer because of the expression of
the markers on VEGF receptor of endothelial cells. The vascular endothelial growth factors
(VEGFs) encourage cancerous angiogenesis and neovascularization by their capabilities
to fix and stimulate the VEGF receptor (VEGFR) signaling cascade [9]. The most broadly
explored receptor is VEGFR-2 among the VEGF receptors. The inhibition of angiogenesis
can be conducted by directing VEGF to stop ligand binding to VEGFR-2. Another method
to conduct the same direction is the attack on VEGFR-2 to decrease VEGF binding and
trigger an endocytic pathway [92].

Micelles have abilities to exhibit sustained release, but these require specific properties.
For example, micelles must not lose stability on dilution and low chain mobility core
properties [93]; however, physically entrapped drugs in micelles have low diffusion coeffi-
cients to succeed in a continued discharge profile [10]. Pluronic-PAA (poly(acrylic acid))
micellar formulations have also been used in many oral drug delivery systems because
the specificity of polymeric configuration meets all the requirements for actual oral drug
delivery [10]. The latter is projected to improve the gathering of nanocarriers in the targeted
tissues. It instantaneously increases the selective uptake via endocytosis mediated with the
receptor. An exact target selection plays an important role in cancer diagnoses. Targeting
may be based on carbohydrate moieties, monoclonal antibodies (mAbs), peptides, and
aptamer [10]. In addition, the destabilization of the micelle mixed with PLLA/PEG was
found to be pH-dependent. In conjugation with folic acid, the mixed micelles were found
to be more effective in cancer destruction because of quicker drug release and tumor uptake
mediated with the receptor of folate [94].

In biomedical engineering, protein and other materials (based on peptides) have
gained the attention of many scientists just because of their applications in drug delivery
systems. Their biophysical and biochemical properties have made protein-based material
a better drug releaser [95]. Keeping many properties into consideration, many synthetic
drug delivery-based materials are being synthesized. These are synthesized by considering
the biocompatibility, purification, scalability, tuneability, and less toxicity features [96].
On the other hand, many natural biopolymers are under clinical trial and being studied
continuously; for example, keratin, silk, collagen, albumin, elastin, gelatin, and resilin [97].

Polymeric materials have many types; some of them are pH dependent, i.e., their
function show variations in the mechanism involving the attachment with the target; if pH
of the medium is changed. These polymers are termed pH-responsive polymers (PRPs).
The activities of the surface, chain conformation, and solubility change may be tuned by
changing pH of the solution. PRPs are of two types: (i) natural PRPs such as alginic acid,
hyaluronic acid, chitosan, heparin, and cellulose derivatives, and (ii) synthetic PRPs such as
poly(histidine) (PHIS), poly(L-glutamic acid) (PGA), and poly(aspartic acid) (PASA). These
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are biocompatible, degradable, and pH-sensitive polymers [98]. We could not find any
paper on polymer colloids as drug carriers; describing the effect of pH and temperature on
their stability; however, it is important to mention the effects of pH and temperature on the
stabilities of polymer colloids. Consequently, we selected some papers, which are discussed
in this paragraph. Ishikawa et al. [99] studied the effect of pH on the stability of aqueous
polymeric dispersions. The zeta potential was slightly influenced by altering the pH values.
The polymers were stable in a wide range of pH, however, the zeta potential was altered
with changing pH. In addtion, Jaquet et al. [100] studied the effect of pH on the stability
of poly-acrylic acid brushes on polymer colloids. The authors reported that poly-acrylic
acid chains were pH-sensitive with alterations in hydrophobicity, charging, conformation
change, and polarity. Wojciechowski et al. [101] studied the colloidal stability of styrene and
acrylic copolymers in the presence of TiO2 and CaCO3. The authors studied the stability at
pH 8.2 for CaCO3 and 7.5 for TiO2. The colloids were found to be stable. Aseyev et al. [102]
reviewed the temperature depending on the stabilities of various polymer colloids in water.
The reviewed polymer colloids were poly(vinyl methyl ether), poly(N-vinylcaprolactam),
and poly(N-isopropylacrylamide). As per the authors, the temperature stabilities varied
from one polymer to another. Later on, Korshak and Vinogradova [103] reviewed the
effect of temperature on the stabilities and chemical structure changes of the polymers.
The authors reported changes in the stabilities and slight structural alterations at different
temperatures. Recently, Hu [104] also reviewed the effect of temperature on the stabilities
of the polymers. The author emphasized the advances in polymeric phase alteration. Some
changes were observed in the polymeric phase alterations. In this way, it is clear that
polymeric colloids are susceptible to pH and temperature. Therefore, the effects of pH
and temperature on the drug loading of the polymeric colloids should be studied for
publications, patents, or clinical trials.

Targeted chemotherapy is gaining importance due to its less or no side effect. Many
papers have been published on this issue using various nanoparticles as carriers, but we
are relating them to polymer colloids. Rat,ă et al. [105] prepared carboxymethyl chitosan
nanoparticles which were functionalized with poly(N-vinylpyrrolidone-alt-itaconic anhy-
dride) anchored with 5-Fluorouracil and AS1411 aptamer. The authors studied the release
of 5-fluorouracil and observed its diffusion via the polymeric membrane. Furthermore, the
authors reported outstanding hemocompatibility with no toxicity on the MCF-7 cell line.
Cadinoiu et al. [106] used functionalized AS1411 aptamer liposomes for targeted therapy.
The authors studied in vitro release of 5-fluorouracil and reported a low growing quantity
of the released. The basal cell carcinoma TE 354.T cell lines were used for in vitro cell via-
bility, apoptotic effects, and targeting ability. The cell viability of TE 354.T cells incubated
with L4, L4-5FU-15, L4Apt, L4Apt-5FU-15, and 5-FU are shown in Figure 4. As per the
authors, the functionalized liposomes were more effective than non-functionalized lipo-
somes. Furthermore, the same group [107] reported a sustainable release of 5-fluorouracil
to the tumor site by using liposomal drug formulations with AS1411-aptamer. The in vitro
study was carried out to evaluate the penetration efficiency of 5-fluorouracil via the strat-M
membrane, and the efficiency of cytostatic activity. The optimal liposomal formulation was
found to be a crosslinked gel of sodium alginate and hyaluronic acid with AS1411-aptamer
conjugated liposomes anchored with 5-fluorouracil. This was found to have biosafety
effects, which can be utilized as a new approach of therapeutic for basal cell carcinoma. The
in vitro cell viabilities of the different formulations in SkinEthic™ RHE tissues are shown in
Figure 5. In another study, the same group [108] developed topical gel formulations using
hyaluronic acid and sodium alginate having AS1411 aptamer; functionalized polymeric
nanocapsules anchored with 5-fluorouracil for treating skin cancer. This formulation was
found to have good permeability of 5-fluorouracil and be non-irritating to the skin. The
cytotoxic study on TE 354.T cell lines indicated good cytotoxicity. As per the authors, the
developed formulation was found to have good biosafety and anti-tumor properties; an
attractive skin cancer treatment approach.
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Figure 4. The cell viabilities of TE 354.T with L4, L4-5FU-15, L4Apt, L4Apt-5FU-15 with 25, 50, 75,
and 100 µg lipids/mL doses for (a): 24 h and (b): 48 h and (c): 5-FU with 25, 50, 75, and 100 µg
drug/mL doses for 24 and 48 h [106].
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Figure 5. The in vitro cell viabilities of the different formulations in SkinEthic™ RHE tissues [107].

The stimuli-responsive drug delivery is gaining importance and polymeric nanocar-
riers are the most promising regimens for malicious cancers. This approach includes
several advantages such as improved therapeutic involvement and reduced toxicity. Zhang
et al. [109] described the use of polypeptide poly(l-histidine) as an appropriate polymer
for the drugs delivery. The authors described the state-of-the-art design and creation of
pH-sensitive nanocarriers based on this polymer. In addition, the authors highlighted the
future challenges and perspectives of this material. The same group [110] also presented a
review article on porous organic polymers highlighting the importance of these polymers
due to their flexible morphologies, ordered pore arrangements, and tunable biological
features.

Some FDA-approved nanomedicines for the treatment of cancer are summarized in
Table 4.

Table 4. FDA-approved nanomedicines for the treatment of cancer [111].

Materials Names Indication Year(s) Approved

Liposome-PEG Doxorubicin
Metastatic breast
cancer, metastatic

ovarian cancer
1995

PLGA Leuprolide acetate Prostate Cancer 2002

Albumin Nab-paclitaxel
Metastatic breast

cancer 2005

Pancreatic cancer 2013

mPEG-PLA Paclitexal Metastatic breast
cancer 2007

Liposome Lrinotecan Pancreatic cancer 2015

4. Cancer Diagnosis

The detection of cancer at an early stage is very essential to treat this ailment appropri-
ately. Hence, one of the most important approaches to managing cancers is the early-stage
diagnosis. As per Barash et al. [112], only 16% of lung cancer is diagnosed in the localized
phase; a curable stage. Not only the type of cancer but also its position as well as its size
determine the cancer diagnosis. The commonly used ways for cancer diagnoses include
positron emission tomography scan, biopsy, computed tomography, biosensors, magnetic
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resonance imaging, X-ray, fluorescent imaging, radionuclide, etc. The above modalities
have also been coupled with nanotechnology for an early-stage detection of cancers. This
part deals with a polymeric colloidal material-based cancer diagnosis, which attains a
colloidal range in the solution. Numerous nanoparticles have been employed for cancer
detection but the most widely used are polymeric colloidal materials just because of their
biodegradability and ability to carry several molecules that detect lesions. In addition,
polymeric colloidal materials with targeting moieties display a beneficial medication with
an imaging mediator to be predictable to take an outstanding theranostic stand. More-
over, polymeric colloidal materials may openly convey the imaging mediator to the lesion
and can be controlled in many ways such as oral, inhalation, or intravenous. For the
diagnosis of cancer, many identities are used, i.e., tumor necrosis factor-alpha (TNF-α),
α-fetoprotein (AFP), antigen 125 (CA125), cancer antigen 153 (CA15-3), cancer antigen
19-9 (CA19-9), epidermal growth factor receptor (EGFR), carcinoembryonic antigen (CEA),
breast cancer (BRCA), human epidermal growth factor receptor 2 (HER2), interleukins
(ILs), prostate-specific antigen (PSA), mucin 1 (MUC 1), vascular endothelial growth factor
(VEGF) and squamous cell carcinoma antigen (SCC-Ag) [113,114]. Usually these have
played an important role in the transport of imaging and molecules of therapy into the
tumor site.

For the diagnosis of cancer without any side effects, polymeric colloidal materials
should have the following qualities:

• Smaller in size
• Eco-friendly
• Low toxicity to ordinary cells
• High stability in biological conditions
• Capable of conveying the imaging agents
• Releasable for therapeutic agents easily

Gadolinium-based nanoparticles have been used for the detection of cancer in mag-
netic resonance imaging (MRI) due to better contrast. Boyes et al. [115] reviewed molecular
probes’ development of gadolinium-based nanoparticles and their importance in cancer
therapy. Likewise, Cao et al. [116] discussed the importance of gadolinium-based nanopar-
ticles in the detection of cancer. It was described that the nanoparticles may be hopeful for
better longitudinal reflexivity of ions of gadolinium. Moreover, the progress and uses with
imminent outlooks were highlighted for their development in the future. Mi et al. [117]
synthesized chelates of gadolinium to be loaded as nanocarriers such as MRI-guided
gadolinium neutron capture therapy (GdNCT) of lumps. The research group established
Ca3(PO4)2 micelles attached with anionic copolymers and combined with magnetic reso-
nance imaging contrast agent Gd-DTPA/CaP (gadolinium-diethylenetriaminepentaacetic
acid). The contrast agent showed an improved spreading of gadolinium-diethylene tri-
amine penta-acetic acid in cancers. Vuu et al. [118] prepared gadolinium-rhodamine-based
nanoparticles for the detection of cancer. For the preparation of such nanoparticles, a lipid
was used as a monomer. Moreover, according to the authors, the prepared nanoparticles
could be used in the tracking of cells in vivo.

Other works in the track of diagnosis of cancer are defined in the subsequent sub-
divisions. Mitra et al. [119] discussed the applications of colloidal particles such as micelles
for the diagnosis of cancer. The authors found that positron emission tomography [PET]
computed tomography; having nuclear imaging techniques such as dual-modality; could
be used in the detection of cancer in various models. Furthermore, it must be remembered
that all data regarding the toxicity and other clinical parameters should be studied before
smearing in problems of real life. Park et al. [120] and Janib et al. [121] found that poly-
meric colloidal particles including micelles can also be used for cancer diagnosis. Many
inventions were useful for drug carriers. Poly (ethylene glycol) and ATP aptamer were
used by Dong et al. [122] not only for the detection of breast cancer but also for the ATP
level estimation in the biotic trials. The reported limit of detection was 0.1 pM having a
0.1–1000 pM linear range. Gold-based nanoparticles and micelles attached to SPION were
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used by Sun et al. [123] for the detection of brain cancers. These nanoparticles played an
important role in computed tomography and MRI as contrast agents. The data were used
in the determination of tumor size. The authors also reported these as excellent nanopar-
ticles in MRI even after a few days. In addition, the other importance of the synthesized
nanoparticles was also confirmed in terms of the detection of early brain cancer. Guo
et al. [124] used polymeric nanostructure (PHEMA-star-PLLA-PEG) for the diagnosis of
cancer. Substances such as 1,4,7-triazacyclononane, 1,4,7-triacetic acid, and TRC105 were
grafted on the end groups for CD105 and 64Cu tagging followed by PET imaging.

In the MRI, the nanoparticles with magnetic properties have also played an impor-
tant role because they offer better contrast. In this series, Li et al. [125] prepared Fe3O4
nanoparticles coated with aqueous dispersive polyethyleneimine (PEI). After that, nanopar-
ticles were modified with PEGylated folic acid (FA) and fluorescein isothiocyanate (FI)
with the help of conjugation of PEI facilitation. For the formation of colloidally stable
nanoparticles, the acylation of the residual PEI surface amines was done. The obtained
nanoparticles were functionalized with folic acid so that Fe3O4 nanoparticles could be used
for MRI. It was also claimed that the developed nanoparticles may be very helpful in the
diagnosis of various cancers. Wang et al. [126] synthesized the optically triggered nanopar-
ticles for cancer diagnosis. The nanoparticles were synthesized using perfluorohexane
liquid and gold nanoparticles. After that, a poly (lactide-co-glycolic acid) (PLGA) polymer
was used to stabilize them. The potential of photoacoustic imaging of the synthesized
nanoparticles was also confirmed so that they can be used for cancer therapy in the future.
Huang et al. [127] discussed nanoparticles based on the polymeric substrate to detect
cancer through a simulation study. The most important thing to be noted was the diverse
acceptance of nanoparticles by diverse cells (cancer cells as well as normal ones). The
reason behind it was the interactions between nanoparticles cell-specific and nanoparticles
polymer non-specific. Cancer detection was improved by studying the consequence of the
ligand, polymer, and density. In biomedicine, the study could convey appreciated ideas
and the suggestion of nanomaterials based on functionalized substrates.

Sun et al. [123] prepared gold and micelles-loaded polymeric iron oxide nanoparticles
for the detection of brain tumors. In addition, these particles were also used as a contrast
agent in the study of stereotactically implanted GBM tumors in a mouse model. Based
on the results, it could be concluded that the synthesized polymeric nanoparticles might
be used in brain tumor treatment, as no side effect was observed during diagnosis. In
addition, the micelles with polymeric nature have been used in many cancer diagnostic
tools such as X-ray, nuclear imaging, and CT scans MRI [128]. In addition, the micelles
in conjugation with 99mTc and 111In (emitters of gamma rays) have been used for non-
invasive bio-distribution [129,130]. The addition of particles of iron oxide in micelles
and the addition of chelators for the metallic blending to the micelle with a hydrophilic
wedge are the two approaches for the preparation of MRI based on micelles [131,132].
The magnetic polymeric micelles with multi-functions and imaging differences have been
described the effective MRI scanning [133]. Nasongkla et al. [133] described the targeting
ligands in chemotherapy as useful agents. Qiao and Shi [134] and Yang et al. [135] discussed
the synthesis of nanoparticles based on iron oxide. All those nanoparticles were not only
conjugated with Arg-Gly-Asp but also modified with dendrimers for the targeted MRI
scanning for C6 glioma cells as shown below in Figure 6.
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5. Benefits of Polymeric Colloidal Material in Cancer Treatment

In the present time, nanotechnology is gaining importance in many areas of research
including cancer diagnoses and treatments. Although different types of nanoparticles
have been used to control cancer yet the nanoparticle-based polymeric colloidal materials
are taking place deep in the treatment of cancer. The reason behind it is biocompatibility,
non-toxicity, non-immunogenicity, and biodegradability. The nanoparticle-based polymeric
colloidal materials are being used in the treatment of cancer continuously. The important
features of these in the treatment of cancer are described below. The nanoparticle-based
polymeric colloidal materials should exhibit the following:

• biocompatibility, non-toxicity, non-immunogenicity, and biodegradability.
• transport essential drugs.
• release the medicines at the tumor location.
• be stable in physiological conditions.
• control the effect of EPR or receptor-facilitated interfaces.

The nanoparticles based on the polymer are outstanding transporters of essential
drugs in the treatment of cancer. Many laboratories synthesized precursors, as well as
nature-based precursors, which have been used to prepare nanoparticle-based polymeric
colloidal materials. The laboratories synthesized precursors contain polylactic-co-glycolic
acid, polylactic acid, and the polymer of ethyleneimine while chitosan, collagen, albumin,
and gelatin are the natural ones. To the best of our knowledge, the first nanoparticle-based
polymer was used by Couvreur et al. [136] for the treatment of cancer. The polymer of
alkyl cyanoacrylate was used as raw material for the preparation of the nanoparticle-based
polymeric colloidal material. After this innovation, many nanoparticle-based polymeric
colloidal materials were synthesized to cure cancer; particularly anti-cancer drug delivery.
The advantages of the nanoparticle-based polymeric colloidal materials in the treatment of
cancer are deliberated as follows.

5.1. Ecological

The recyclable nanoparticle-based polymeric colloidal materials are submicron in size.
The nanoparticles preparation is performed in two ways: (i) by allocating the achieved
polymers and (ii) by monomeric polymerization [137]. These nanoparticles are informal
to show biocompatibility, non-immunogenicity, non-toxicity, and water-solubility at low
cost. These have played an important role as an operative process for supplying drugs to a
definite tissue of organs, as a means of not only gene therapy but also DNA therapy, and in
their fitness to allot proteins and genetic factors by verbal administration [138]. Many anti-
cancer drugs such as doxorubicin, paclitaxel, 5-fluorouracil, cisplatin, 9-nitrocamptothecin,
triptorelin, dexamethasone, and xanthone, etc. are being found efficiently associated with
the polymer of glycolic acid [139]. The spheres with nanoscale have a decomposable
polymer of caprolactone showing hydrophobicity [140]. In addition, they also have a
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decomposable methoxy polymer of ethylene glycol showing hydrophilicity which is used
for the delivery of taxol.

5.2. Polymeric Micelles

An associated colloid is termed a micelle that has both hydrophilic and hydrophobic
moieties. Because of the presence of both moieties, self-assembling takes place and a
hydrophobic center with a constant hydrophilic encapsulation is molded. When these
polymeric micelles are used as drug carriers, they are not only more soluble but also able to
easily approach tumors. The self-assembling property is the main cause of the encapsulation
of the drugs which helps too much in carrying the drugs to their target. The collection of
them is conducted by diverse methods including the preparation of monomers in the main
core [141,142]. The micelles are identified as the transporters of colloid for hydrophobic
drugs [143,144]. Hence, they have decent chemotherapeutic characters [126,144]. The
smaller size of the micelles makes them penetrable in a tumor. Due to this, the release of
the drugs takes place easily. To the best of our knowledge, the use of polymeric micelles as
the drug carrier was clinically approved in South Korea [145]. Paclitaxel preparation has
received FDA approval to be used in the treatment of breast cancer [126]. The literature
survey shows some reviews written regarding the applications of micelles in the delivery
of drugs [47,146]. Valenzuela-Oses et al. [147] reported an invention related to polymeric
micelles loaded with miltefosine. The anti-cancer activity of the formulation was checked
against HeLa cell lines, which displayed hopeful outcomes. Thermal analyses indicated
the spreading of miltefosine. Miltefosine (80 µM) in combination with micelles of pluronic-
F127 polymer presented a notable reduction in hemolytic outcome in divergence to free
drugs. The micelles based on pluronic-F127 polymer loaded with miltefosine could be an
advantage in nanocarriers-based tumor therapy. Yang et al. [148] synthesized a polymer of
ethylene glycol derivatized with GA for the delivery of DOX. The formulation showed a
real synergistic effect on apoptosis and inhibition of cell proliferation. In addition, a long
time of blood circulation, low supply, and DOX release were also observed in the case of
the proposed formulation. The bio-distribution studies showed the accumulation of the
drug at the tumor site. The so-formed micelles-based prodrugs could be co-delivered to
the target to achieve the action of gambogic acid and DOX. Wang et al. [149] used ethylene
glycol and ε-caprolactone and trimethylene carbonate to improve the blood circulation of
gambogic acid followed by its accumulation at the tumor site. Volsi et al. [150] synthesized
polymer-based micelles and gold core-shell quantum dots. The authors used these for
the encapsulation of doxorubicin. As per the authors, the reported formulation had good
anti-cancer activities for breast cancer.

5.3. Miscellaneous Functions

Nanoparticle-based polymeric colloidal materials have also been mixed with other
materials for the stuffing and transportation of drugs. These include polystyrene, chitosan,
etc. Kim et al. [151] described chitosan nanoparticles being used for the controlled release
of the drugs. Deformability, constancy, and fast interest by cancerous cells were also
described. Paclitaxel was the loaded drug, which showed good activity with low uptake
by the normal cells. Park et al. [152] used cholanic acid for the derivatization of glycol
chitosan to increase the anti-cancer activity of the synthesized polymeric nanoparticles.
This derivatized material showed better tumor accumulation, satisfactory dispersal, and
time-dependent elimination in SCC7 tumors. Near-infrared fluorescence was used to
shoot images. In addition, other characteristics regarding the derivatized materials were
long-reduced time-dependent elimination, time of blood circulation, and higher tumor
accumulation with the increase in molecular weight of the polymer. The noticeable point
was a long time resting in the blood with an increase in molecular weight of the synthesized
polymeric nanoparticles based on glycol chitosan. Due to the increased concentration of
blood, an increased accumulation at the site of cancer was observed. In this way, the authors
improved not only the blood circulation period but also the cancer-targeting ability of the
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synthesized polymeric nanoparticles. Polymeric micelles were used by Gao et al. [153]
for the encapsulation of doxorubicin. Pluronic P-105 and PEG2000 diacyl phospholipids
were used as raw materials for the preparation of nanoparticle-based polymeric colloidal
materials, while the polymer of ethylene glycol and beta-benzyl-L-aspartate were used
in not only micelles formation but also as carriers of the drugs. A comparative study
between the bio-distribution of the synthesized drug and the molecularly softened one
in the tumor of the ovary was done. Better results were observed in the case of bio-
distribution in the formulation based on encapsulation. Lammers et al. [154] used N-(2-
hydroxypropyl)-methacrylamide polymer and radionuclide (131I) for cancer treatment.
In addition, gemcitabine and doxorubicin were also loaded to improve the efficiency of
therapy. In the experiment, a selective assembly and lengthy period of the movement were
indicated by the radioactive transferor of the polymer. The satisfying effects on tumors
were increased by the synergistic effect.

The most important advantages of nanoparticle-based polymeric colloidal materials
are their smaller size, biocompatible nature, biodegradable nature, low poisonousness to
normal cells, extraordinary constancy in biological circumstances, capability to convey
the imaging mediators, and precise discharge of medicines. In addition, the ease of their
synthesis with decent control over the size and spreading may be considered as another
advantage. Additionally, the nanoparticle-based polymeric colloidal materials with en-
capsulated drugs are safe from an environmental point of view. During the write-up of
this article, it was realized that there is no side effect associated with nanoparticles of
the polymeric colloids. However, the imperfect pointing capabilities and the problem of
therapeutic termination may be measured as the chief disadvantages. An imbalance in
disruption may happen automatically via nanoparticle-based polymeric colloidal materials.
Rarely, nanoparticle-based polymeric colloidal materials also affect the function of the
heart [155].

6. Future Perspectives

During the write-up of this article, it was realized that polymeric colloidal materials
are important in cancer diagnosis and treatment due to the controlled release of the drugs,
stability to labile molecules, and ease of surface modification for targeted drug delivery.
The biological applications increased many time over when these materials are in nano
size [156]; however, it is important to mention here that the research on polymer colloids
have been going on for about three decades but still, these materials are not explored
fully due to certain limitations such as the desired tenability in size (especially in nano
size), and the stability in the blood. Sometimes, the drug diffusion or early release of the
loading drugs may be a problem with these materials. Sometimes, the polymer colloids,
especially the liposomes, are destroyed through the phagocytosis phenomenon. This can be
delayed or avoided by using SteaithTM liposomes. The lack of specific targeting technology
is one of the most serious hurdles to the success of the polymer colloids’ role in cancer
treatment. Therefore, it is urgently required to prepare magnetic polymer colloids to control
the drug release via magnetic effect. Such polymer colloids may be prepared by anchoring
some magnetic nanoparticles of the various metal ions. A better quality understanding
of the physiological restrictions; controlling the fate and distribution of these carriers; has
permitted for more rational design and the expansion of advanced generation systems. We
found only a small number of papers on this topic as the research is in progress. In this
respect, there is a big demand to work for cancer diagnosis and treatment using colloidal
polymeric materials.

7. Conclusions

Despite the great efforts of the researchers, the chemotherapy strategy of cancer
treatment is not completely safe and human-friendly. Many approaches, such as small
molecule inhibitors, nanomedicines, etc., have been developed but still chemotherapy
needs more research and attention. Polymer colloids are a very important class of materials
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due to their unique features. They have a wide range of applications and may be used
to anchor anti-cancer drugs for safe chemotherapy. The polymer colloids are important
to drug carriers as they can protect drugs from biodegradation in the blood stream. In
addition, the polymer colloids deliver an ultra-dispersed form of the drugs without using
annoying solvents and allow fast drug dissolution. Consequently, it is supposed that
polymer colloidal can increase the efficiency of the actions of anti-cancer drugs. In this
article, the utility of these materials (micelles, liposomes, emulsions, cationic carriers, and
hydrogels) is discussed in cancer diagnosis and treatment. Some polymer colloids-based
anti-cancer drugs are under clinical trial. Hopefully, improved drugs that comply with
the requirements will soon receive approval in clinical practice. Most of these materials
have been used to anchor the drugs for release at the targeted points. Still, there is a need
to make magnetic polymer colloids more useful; especially by derivatization to anchor
anti-cancer drugs. This may lead to a good working of polymer colloids in a varied range
of pHs and temperatures. Briefly, it is concluded that polymer colloids have a wide range
of scope in cancer diagnosis and treatment. We hope that in the future these materials will
provide a wider range of choice in cancer diagnoses and treatments.
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