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A B S T R A C T   

Purpose: Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer un-
precedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, 
as well as standardized procedures. Especially those topics with a huge body of data may benefit from data 
science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS- 
assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the 
literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and 
define a workflow. 
Methods: Recognized scholars with expertise on myokines were invited to provide a list of the most important 
myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were 
built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert- 
led discussion has been then integrated with an DS-led approach to provide further perspectives. 
Results: Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 
molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS 
tools were described as present in the cargo of extracellular vesicles. 
Conclusions: Including both supervised and unsupervised learning methods, as well as encompassing algorithms 
focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical 
topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting 
original scenarios are worth exploring as in silico recommendations to be integrated with experts’ ideas for 
optimizing molecular studies.   

1. Introduction 

We all are immersed into the data-explosion era, associated with the 
ever-expanding computing power and data access. Within this glut of 
information, societies and people are obviously exposed to multiple 

threats and opportunities. Overall, this overwhelming amount of infor-
mation has been leading scholars to novel great challenges. Within this 
framework, biology has been overdosed by data, pushing researchers to 
develop novel analytics. Although the very beginnings of bioinformatics 
occurred many decades ago even before DNA sequencing methods, the 
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computer-assisted analyses in biological fields, the international col-
laborations, and the birth of dedicated journals stabilized bioinformatics 
to modern science in the 1980s; then, through the genomics era, the 
high-throughput bioinformatics, and the collaborative computing, the 
bioinformatician as specialized professional has emerged massively in 
life sciences [1]. 

The possibilities offered by bioinformatics are not limited to the 
analyses of experimental data. Moving beyond classical procedures of 
the integrative review (i.e., a review approach that combines diverse 
methodologies, sources, analyses, and presentation of results [2]), 
bioinformatic-assisted approaches allow to advance the understanding 
of the topics under a systems biology approach [3]. Therefore, 
bioinformatic-assisted reviews may enable us to extract validated and 
meaningful information for a given biological phenomenon, as well as to 
analyze potential mechanisms of action [4]. It should be specified that 
bioinformatic-assisted review should not be confused with either 
technology-assisted review (otherwise called computer-assisted review) 
or artificial intelligence (AI)-assisted peer review, which use AI methods 
such as predictive coding or continuous active learning to perform faster 
review processes than human teams. To this end, machine learning 
approaches can support peer review by increasing efficiency in the 
quality control and peer review process [5]. 

Back to biology, unlocking the secrets of health and diseases, as well 
as unveiling the bases of biology itself and depicting novel insights 
through advanced computing techniques, are the core aims of compu-
tational biology. This field is currently facing the fact that biological 
data are diverse from other big data, since they are inherently driven by 
evolutionary complex processes; in addition, datasets are nowadays so 
massive that the extraction of patterns that give clues to biological 
processes is anything but simple [6]. These arguments fall into AI, that 
John McCarthy defined as “the science and engineering of making intelligent 
machines, especially intelligent computer programs. It is related to the similar 
task of using computers to understand human intelligence, but AI does not 
have to confine itself to methods that are biologically observable”; in this 
reductionist view, intelligence is considered as “the computational part of 
the ability to achieve goals in the world” [7]. AI takes advantage of data 
science (DS) procedures for creating systems that think and/or act like 
humans. AI encompasses the sub-field of machine learning, whose deep 
learning is a further sub-field - constituted by multiple hidden layers into 
the “neural” network - that does not necessarily require a labeled 
dataset. 

Machine learning currently represents a powerful tool for several 
sub-fields of biology; the availability of good cyberinfrastructure and 
good training dataset is critical for utilizing machine learning at a full 
power in innovative ways and applied to different biological processes, 
while algorithmic development continues to evolve [8]. Since the in-
terest in the study of biological interactions permeates system biology, 
there is the need of specialized repositories and advanced integration 
and visualization techniques; nevertheless, the utilization of such 
existing repositories makes the retrieval, combination, and manipula-
tion of interaction evidence particularly difficult for inexperienced users 
[9]. The number and types of molecular interactions within repositories 
are rapidly growing and molecular networks are emerging as tools for 
understanding a variety of biochemical, statistical, and functional in-
teractions; however, suitability of these networks for investigating a 
specific disease or pathway of interest still remains an open question 
[10]. 

All in all, bioinformatics (i.e., the discipline that applies information 
and statistical sciences for gathering and analyzing large sets of bio-
logical data) and computational biology (i.e., the discipline that aims to 
a better understanding of biological systems by taking advantage of 
data-based methods for biological simulations and modeling) offer 
scholars unprecedented (and often free) opportunities for 1) massively 
fastening literature research, 2) suggesting targets of investigation with 
a data-driven approach, 3) unveiling original insights, and 4) predicting 
possible scenarios. However, these amazing possibilities still need an 

epistemological criticism, as well as standardized procedures of inves-
tigation and modeling of novel study designs. The above-mentioned 
bioinformatic-assisted review is an example of how to walk these paths. 

Virtually all research topics may benefit from DS-assisted methods, 
but especially those with a huge - otherwise said overwhelming - body of 
data. In this vein, since the early 2000s, skeletal muscle has received a 
growing interest both in physiology and pathology as the largest 
secretory system, with an ever-expanding body of evidence on muscle 
secretome which accounts for the cross-talk across systems and organs 
[11–15]. Myology is currently an appealing field of research attracting 
basic, translational, and clinical researchers [16], aware that the 
complexity of the muscle physiology and pathophysiology should be 
addressed using multidisciplinary approaches [17]. Hundreds of myo-
kines - defined as peptides or proteins secreted or released from skeletal 
muscle cells exerting auto-, para-, or endocrine functions - have been 
described in the literature [13,18], so that bioinformatic approaches are 
needed for the analysis of a multicomponent communication network 
between skeletal muscle and other organs [19,20]. Computational 
analysis of muscle proteomics [20] and molecular approaches to depict 
muscle cell-specific secretome and trafficking [21] deepen the knowl-
edge of myokines; establishing the molecular transducers of muscle 
adaptations [22] extend the knowledge to the inter-organ communica-
tion of muscle system; however, such studies requires a lot of time and 
large efforts. Therefore, computational predictions can be integrated 
with theoretical predictions prior to molecular and bioinformatic studies 
to fasten and deepen skeletal muscle research. Indeed, skeletal muscle 
secretome (otherwise called myokinome) represents an intriguing topic 
for applying DS tools and thereby defining a workflow possibly trans-
latable into a plethora of other topics of interest, possibly as how aging 
or exercise or diseases affect the myokinome and vice versa. Thus, the 
emerging field of complex analysis might give new resounding and 
disruptive contributions to define and to evaluate this complex scenario. 
Our idea applied to the “myokinome” world is to present a possible 
combined expert-driven and data-driven approach for enlarging the use 
of bioinformatic tools by non-bioinformaticians in medicine and 
physiology. 

1.1. Purposes 

Within this background, this study used a DS-assisted and expert- 
supervised prediction and network analysis as a novel integrated pro-
cedure for fastening, deepening, and leading research on specific topics. 
In particular, this study looked at the world of myokines aiming to 1) 
criticize the possible role of AI tools for biomedical reviews and original 
studies, 2) provide novel targets of investigations, 3) show emerging 
insights through a network approach, and 4) provide unexpected targets 
of investigations by means of DS tools for biomedical review and 
network analysis as emerging powerful and integrated approaches. 

2. Methods 

2.1. Design of the study 

The schematic workflow is presented in Fig. 1. Three recognized 
scholars with expertise on myokines were asked to provide a list (arbi-
trarily 10-to-50 items) of those myokines considered fundamental and/ 
or the most interesting for human physiology. The three lists received 
were filtered in order to include only those proteins associated with a 
gene in humans; this inclusion criterion, as well as approved gene 
symbols, were checked into HUGO Gene Nomenclature Committee 
(HGNC, https://www.genenames.org/ [23]). The diverse backgrounds 
of the scholars resulted in remarkably different lists, although some 
commonalities were present, since almost all scholars agree on the 
importance of some of them. Moreover, this outcome allowed to proceed 
with the study flow. From the merged list, 4 out of 52 unique items were 
discarded as no associated gene exists - namely acetyl-L-carnitine, 
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β-aminoisobutyric acid (BAIBA), nitric oxide (NO), and prostaglandin 
E2; - and 1 was discarded as labeled as not found in humans (amyrel), 
leaving a total of 47 myokines suggested. 

Among the plethora of online bioinformatic tools, authors selected:  

● GeneRecommender (GeneRecommender Platform - TheProphetAI - 
A.I. for Target Discovery, 2021; https://www.generecommender. 
com), due to the cooperative approach of the team linked to 
advanced AI approaches for recommending genes of interest;  

● STRING (https://string-db.org), for the appreciated use in data 
analysis and visualization for protein-protein interactions [9,10,24]  

● GeneMANIA (https://genemania.org) for the possibility of having 
gene recommendation, function prediction, and network visualiza-
tion within the same tool [25]  

● HumanNet (https://www.inetbio.org/humannet/) for the possibility 
of analyzing both gene and protein interaction networks within the 
same tool [26] 

2.2. Experts’ recommendations 

The three experts’ research topics encompasses molecular and 
cellular biology of striated muscles, myogenesis, muscle physiology and 
pathophysiology, cytokines and myokines, cancer cachexia, extracel-
lular vesicles, and physical exercise. From the list of 47 myokines 
(hereafter Model 1), a sub-group of 19 consisted of items recommended 
by at least two out of three experts (hereafter Model 2), while a further 
sub-group of 5 consisted of items reported by all the 3 experts (hereafter 
Model 3). For a detailed description of experts’ recommendations, see 
Table 1. The sets used as queries for DS tools are listed in Supple-
mentary Table 1. 

2.3. Procedures: data science tools 

The platform GeneRecommender was used both with the current 
stable (I) and with the newly developed (II) algorithm. In this first 
analysis no disease was included as filter. The platform STRING was 
used with the multiple protein tool, either with or without text mining 
among the active interaction sources. The platform GeneMANIA was 
used with the online tool, rather than with the associated Cytoscape app. 
The platform HumanNet V.3 was used both with the protein - protein 

interaction (PI), functional (FN), and functional extended by co-citation 
(XC) network. The analysis was set choosing the network-based disease 
gene prediction options. Probability or likelihood of recommendations 
was evaluated by existing knowledge to depict the putative myokines. 

2.4. In-depth box: features of data science tools 

In this section the four platforms (GeneRecommender, STRING, 
GeneMania, and HumanNet) will be presented. The main goal is to 
provide the reader with all the most crucial elements to understand the 
peculiarities of each platform, their differences, and some elements 
about the algorithms that power them. Every platform will be presented 
in a separate paragraph. 

The first platform here considered is the GeneRecommender, a deep 
learning-based platform that has been developed by TheProphetAI. It is 
designed to recommend some genes that could be related to given 
research. It works receiving, as input, a set of genes and/or a pathology. 
The algorithm behind the platform is a Deep Learning Neural Network, a 
subfield of AI, to predict the correlations between the output and the 
input gene set. The system is trained to propose new “correlations” that 
may not have an explicit reference within the literature. It is important 
to highlight that the training process of this algorithm, which charac-
terizes all machine learning systems, has been performed on all publicly 
available literature in PubMed by applying advanced Natural Language 
Processing (NLP) methods to extract knowledge from papers. The team 
behind GeneRecommender, over the last two years, developed two 
versions of the core algorithms with increasing accuracy. The first 
version was released in July 2021, and the second in March 2022. 
Furthermore, even if the functioning of the system has not been released 
fully by the developers yet, the company provided shreds of evidence of 
the performance on established knowledge [27]. GeneRecommender, 
differently from other systems, uses Deep Learning techniques not only 
to extract knowledge but also to directly predict the proposed 
enrichment. 

The second platform considered is STRING, a widely used protein- 
protein interaction investigation tool that gathers known and pre-
dicted data. The interactions that STRING present can be divided into 
two categories — direct (physical) and indirect (functional). As stated by 
the authors they stem from computational prediction, knowledge 
transfer among organisms, and interactions aggregated from other da-
tabases. In order to gather all these data STRING collects and assigns a 
score to pieces of evidence coming from different sources. Reporting 
from their paper [24]: (i) automated text mining of the scientific liter-
ature, (ii) databases of interaction experiments and annotated com-
plexes/pathways, (iii) computational interaction predictions from co- 
expression and from conserved genomic context, and (iv) systematic 
transfers of interaction evidence from one organism to another. All these 
data are then aggregated and a pre-computed combined score is saved in 
their system. The combined score represents the level of confidence that 
STRING has about the mindfulness of a given association from a bio-
logical point of view. 

GeneMANIA is a tool that screens for several gene relationships by 
looking at functional association input. These include protein and ge-
netic interactions, pathways, co-expressions, co-localization as well as 
protein domain similarity. The user enters a list of genes and, optionally, 
selects from a list of data sets that he/she wishes to query. GeneMANIA 
then adds other genes that are functionally similar to the initial query 
genes and creates a functional interaction network of relationships all 
among the genes. The GeneMANIA algorithm is based on both an al-
gorithm from ridge regression and a technique that computes composite 
functional association networks. Those two parts are fused within the 
GeneMANIA platform to create a unique system of analysis. Given the 
weights for each network, genes interact as much as possible with each 
other while interacting as little as possible with genes not on the list. A 
label propagation algorithm is the next step - it rates all non-query genes 
based on how often paths that start at them end up in one of the query 

Fig. 1. Flow diagram of the study. Comparison of the AI recommendation was 
conducted in order to detect communalities; image created in Biorender.com 
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Table 1 
The whole list of myokines of interest, created merging the lists provided independently by the three experts. Expertise of A lies on molecular and cellular biology of 
striated muscles, myogenesis and muscle pathologies. Expertise of B lies on muscle pathophysiology, myokines, and cancer. Expertise of C lies on extracellular vesicles, 
muscle signaling and physical exercise-induced cytokines.  

Myokine Gene Expert Event / pathology Effect Reference 

Angiogenin ANG A Pancreatic beta-cell/ diabetes 
Angiogenesis/cell growth and migration 

Protection  

Positive effect 

[119] 
[120] 

ANGPL4 ANGPL4 B Exercise / Fasting Up [121] 
Apelin APLN A,B Exercise 

Cardiac failure 
Aging 

Up 
Positive 
Down 

[122] 
[123] 
[124] 

BDNF BDNF A,B,C Diabetes 
Nordic Walking training / Exercise 

Down 
Positive effects on the brain 

[97] 
[99] 

Cathepsin B CTSB A,C Exercise / running Upregulate BDNF / fitness and hippocampal memory 
function 

[104] 

Ciliary neurotrophic 
factor 

CNTF A Neurodegeneration Weight loss (particularly fat 
mass) 

Protection 
Positive effect 

[125] 

CXCL1 CXCL1 A Antiproliferative and proapoptotic effects/ 
pancreatic cancer 

Up [47] 

Decorin DCN A, B Exercise / Physical functioning Up / Positive correlation [126] 
FGF2 FGF2 A Self-renewal of cancer stem cells / angiogenesis / 

poor prognosis in cancer 
Up [127] 

[128] 
FGF21 FGF21 A,B,C Sarcopenia/ 

Diabetes  

Exercise / mitochondria 

Up 
Down/Up?  

Positive and Negative effects / modulate cellular function 
and senescence 

[129] 
[130,131]  

[100] 

Follistatin FST A, C Expressed in brown adipose tissue (BAT) and 
skeletal muscle 

Promotes brown adipocytes-like functions in both white 
adipose tissue (WAT) and BAT 

[105] 

Fractalkine CX3CL1 A,B Diabetes Up [132] 
FSTL1 FSTL1 A Promotes growth and metastasis/ poor survival Up [133] 
GBA GBA A Risk of Parkinson’s disease Accumulation in brain (to be confirmed) [134] 
GDF11 GDF11 B Aplastic anemia Up [135] 
GDF15 GDF15 B Fatigue syndrome Positive correlation [136] 
HSP60 HSPD1 C Exercise Upregulation of PGC1α isoform α1 [101] 
IGF-1 IGF1 A,B,C Exercise/Diabetes More effective control on glycemia [97] 
IL-10 IL10 A,C Exercise/ Exercise induced bronchoconstriction Up [96] 
IL-13 IL13 A Repeated bouts of exercise Up [137] 
IL-15 IL15 A,C Exercise/Muscle anabolism Upregulated [93,94] 
IL-1ra IL1R1 A Exercise Anti-inflammatory environment [138] 
IL-3 IL3 A Aerobic exercise in elderly Lower in plasma [139] 
IL-4 IL4 A Exercise Increase insulin sensitivity [140] 
IL-6 IL6 A,C Exercise Positive effects [91,102] 
IL-7 IL7 A Resistance training in overweight women Down [141] 
IL-8 CXCL8 A,C Exercise / Bronchoconstriction Up [96] 
Insulin-like 6 INSL6 A Muscle injury Stimulate myogenic regeneration [142] 
Irisin FNDC5 A,B,C Exercise  

Diabetes 
Exercise in COPD* 
Cancer 

Up/ increases cell proliferation 
Up 
Up 
Mostly reduced in serum, upregulated in cancer tissue 

[98]   

[97]  
[143]  
[144] 

Leukemia inhibitory 
factor 

LIF A,C Dystrophy/acute training Role in normal muscle biology [92] 

Meteorin-like METRNL A,C Induced in muscle after exercise and in adipose 
tissue upon cold exposure 

Improves glucose tolerance and stimulate beige fat 
thermogenesis and anti-inflammatory cytokines 

[106] 

Musclin (osteocrin) OSTN A,B,C Diabetes 
Burn injury 
Fast-glycolytic phenotype 

Up 
Up 
Enhances physical endurance by promoting mitochondrial 
biogenesis 

[145] 
[146] 
[147] 

Myonectin (CTRP5) 
** 

C1QTNF5 A,B Diabetes Marker, positive correlation [148] 

Myostatin (GDF8) MSTN A,C Burn injury 
Developing and adult skeletal muscle 
Endurance and resistance exercise 

Up 
Negative regulator  

Down 

[149] 
[150]  

[151] 
NGF (nerve growth 

factor) 
NGF A Reduced in vitro and in vivo nociception R100W mutation in NGF [152] 

Neurotrophin-4 NTF4 A Neuromuscular connections and performance Positive effect [153] 
Oncostatin M OSM A Induction of chronic inflammation, vascular 

injury and fibrosis 
Up [113] 

Osteoprotegerin TNFRSF11B A Endothelial dysfunction in metabolic disorders 
Marathon (72 h after) 

Positive association   

Up 

[154,155]   

[156] 
RANTES CCL5 B Cardiac mortality Down [157] 
S100A8 S100A8 A Exercise Inflammatory response [158,159] 

(continued on next page) 
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nodes and how long and heavily weighted those paths are before they 
do. 

Finally, HumanNet is a large-scale, human gene functional interac-
tion network incorporating diverse expressions, protein interactions, 
genetic interactions, sequences, literature, and comparative genomics 
data. The network includes both data collected directly from human 
genes, as well as that from orthologous genes of yeast, worm, and fly. In 
total, 21 large-scale genomics and proteomics data sets from the four 
species were integrated, spanning 476,399 scored functional couplings 
between 16,243 (87%) of validated human protein encoding genes. 
Given a set of known related genes, additional genes can be predicted by 
their weighted associations in the network, with more strongly con-
nected genes being prioritized more highly. This is achieved using 
standard label propagation algorithms, like naive Bayes GBA, or more 
advanced algorithms related to Google’s PageRank, like iterative 
ranking and gaussian smoothing. Example applications include the 
identification of target genes in diseases studies: knowing a few genes 
implicated in a disease, the network offers a strong tool for prioritizing 
additional likely candidate genes. HumanNet allows to select among 
three reference networks: PI (protein-protein interaction network), FN 
(functional gene network), and XC (FN extended by co-citation). 

2.5. Procedures: data analysis 

The outcomes of DS tools included arbitrarily the top 5 recommen-
dations for each tool, selecting Homo Sapiens as the target species/or-
ganism. Such outcomes were qualitatively and quantitatively compared. 
For this comparison, each tool was considered as a unique system (i.e., if 
GeneRecommender I and II suggested the same molecule, this was 
considered only once; if HumanNet PI, FN, and XC suggested the same 
molecule, this was considered only once; if STRING TM and NoTM 
suggested the same molecule, this was considered only once). Firstly, the 
presence of commonalities across the outcomes was checked. Then, all 
the suggestions were checked for their possible interpretations as myo-
kines. Particularly, the outputs were described using The Human Protein 
Atlas (http://www.proteinatlas.org), which enables us to look at the 
human secretome, including those proteins retained intracellularly [28]. 
Tissue specificity, extracellular location, molecular function, and disease 
involvement were collected, eventually integrating missing data with 
UniProt (https://www.uniprot.org/), which constitutes an ever- 
updating resource of protein sequence and functional information [29]. 

Given that extracellular vesicles (EVs) successfully deliver myokines 
from muscle cells to other organs [30,31], even though skeletal muscle- 
released EVs may only account to a subtle extent on circulating EVs 
[32,33], the established and candidate myokines as recommended by DS 
tools were searched on Vesiclepedia (http://www.microvesicles.org). 
This tool is a compendium of molecular data identified in different 
classes of EVs and still represents a continuous community annotation 
project, where EVs researchers are actively engaged with direct data 

sharing [34]. For this analysis, only Organism=Homo Sapiens and 
Identified molecule=protein were considered, and biological samples 
were annotated. 

Network of associations were built as follows:  

• in STRING the setting consisted of experiments, databases, and co- 
expression, with medium confidence of 0.400 and no more than 5 
interactors, full network, including, false discovery rate (FDR) < 5%; 
the Markov clustering (MCL) algorithm was used [35] and protein - 
protein interactions (PPI) enrichment p-value, average node degree, 
and local clustering coefficient were calculated;  

• in GeneMANIA, the setting consisted of physical interactions, co- 
expression and genetic interactions, with no more than 5 resulting 
genes, molecular function- based gene ontology (GO) weighting and 
FDR < 5% for mapping functions. 

The secondary DS-based analysis after the discussions among experts 
was carried out as follows:  

• in GeneRecommender the input genes were analyzed through both 
DeepProphet 1 and DeepProphet 2 algorithm, eventually selecting 
the diseases as discussed into the experts’ in-depths;  

• in HumanNet the same input genes were analyzed through the XC 
network-based disease gene prediction. 

3. Results 

The reports of the experts presented as expected communalities but 
were also rather heterogeneous both in quantity of items and topics. To 
provide info for translational perspectives, the possible disease 
involvement of each molecule was reported. As shown in Supplemen-
tary table 2, the most represented disease was cancer; concerning mo-
lecular functions, the signaling of cytokines and growth factors were the 
most represented. Greater heterogeneity was found in tissue specificity. 

The list of the top five recommendations in shown in Table 2. The 
resulting recommendations were prioritized by the tools basing on their 
scoring algorithms and can be interpreted as the main nodes into a 
virtual interactome. For what concerns commonalities across the tools’ 
recommendations:  

• Model 1 ranked CCL2 and IL1B as first, with 2 recommendations 
each, both from GeneRecommender (IL1B from version I and II, 
CCL2 only from version II) and HumanNet (XC);  

• Model 2 ranked IL10RA (STRING TM and NoTM, GeneMANIA), 
IL6ST (HumanNet PI, STRING NoTM), SORT1 (HumanNet PI, 
STRING TM), and TFGB1 (HumanNet FN and XC, Gen-
eRecommender II) as first, with 2 recommendations each;  

• Model 3 ranked IGF1R (Human Net PI and FN, GeneMANIA, STRING 
TM and NoTM) and NTF4 (Human Net PI and FN, GeneMANIA, 

Table 1 (continued ) 

Myokine Gene Expert Event / pathology Effect Reference 

S100A9 S100A9 A Exercise Inflammatory response [158,159] 
S100B S100B A Exercise Brain damage and blood-brain barrier disruption [160] 
SDF-1 CXCL12 B Age / osteoporosis / sarcopenia / cachexia Down [161,162] 
SPARC SPARC A,B Exercise 

Cancer 
Up 
Less risk of death 

[163] 
[164] 

TNF-α TNF A Inflammation and cancer progression Up [165] 
[166] 

VEGF VEGFA C Exercise Pro-angiogenic [167] 
Visfatin NAMPT A Cardio-metabolic diseases Positive association [168,169] 

Note: Acetyl-L carnitine, BAIBA, NO, and PTGE2 were reported but discarded from further analyses, since they are not protein products associated with a gene; amyrel 
was suggested but discarded, since not found in humans. *Chronic obstructive pulmonary disease; ** one expert considered CTRP5, while the other CTRP15, as 
myonectin; there is a mismatch in literature on this topic; actually, the myokine myonectin should be considered as C1QTNF15, or CTRP15, codified by Erythroferrone 
(ERFE) gene; however, a large body of research focused on CTRP5, and looking at myonectin in GeneCards, the highest relevance score was achieved by CTRP5, ahead 
of ERFE, and the first one was therefore considered in our research 
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STRING NoTM) as first, with 3 recommendations each, and IGFBP4 
(Human Net PI, STRING TM and NoTM), IGFBP5 (GeneMANIA and 
STRING TM), and NTF3 (GeneMANIA and STRING NoTM) as second, 
with 2 recommendations each 

Among the 62 unique outcomes from DS tools’ recommendations, as 
shown in Fig. 2:  

• 8 molecules had already been suggested by the experts (it needs 
reminding that Model 2 and 3 included 19 and 5 myokines, respec-
tively, leaving the possibility that the recommendations would result 
in myokines included in the whole list of 47 myokines as in Model 1)  

• 11 molecules had already been described as bona-fide myokines in 
literature  

• 11 molecules were putative myokines (considering the molecule 
type, gene expression and/or localization in muscle tissue, similar-
ities of function with other myokines, presence in the bloodstream, 
mechanism of action)  

• 32 molecules were still unlikely to be demonstrated as myokines 

This clustering was used to quantify the number of recommendations 
that are certainly or possibly myokines, out of the top 5 indicated by 
each AI tool. 

Most of the myokines and the putative myokines recommended by 
the DS tools were described as present in EVs cargo, as shown in Table 3. 

Table 2 
The comprehensive list of the top five recommendation by each tools; the recommendations are ordered by the highest to the lowest score, as attributed by each tool  

Input selection model Gene 
Recommender 

HumanNet V3 Gene 
Mania 

STRING 

I* II** PI◦ FN◦◦ XC◦◦◦ TM^ NoTM^^ 

Reported by at least 1 expert (n=47) INS 
IL1B 
IL1A 
TGFB1 
LEP 

TGFB1 
INS 
IL1B 
CCL2 
IL1A 

A2M 
CCR1 
SORT1 
IL6ST 
IL2RG 

CCL20 
INHBA 
CCL3 
CXCL9 
GRB2 

IL1B 
CCL2 
CXCL5 
CCL20 
CCL3 

NTF3 
IL21 
IL9 
IL20 
IL19 

TNFRSF1A 
IL10RA 
IL2RB 
NGFR 
IGFBP5 

IL10RA 
KDR 
TNFRSF1A 
TNFRSF1B 
HSPE1 

Reported by at least 2 experts (n=19) INS 
LEP 
TNF 
ADIPOQ 
VEGFA 

INS 
ADIPOQ 
TNF 
LEP 
TGFB1 

AM2 
IL6ST 
SGTA 
SORT1 
COL14A1 

INHBA 
GRB2 
PRKACA 
TGFB1 
SOS1 

CD14 
TGFB1 
CCL3 
CXCL1 
IL1B 

CSF3 
OSM 
IGF2 
KLB 
IL10RA 

IL10RA 
IL2RB 
NGFR 
SORT1 
IGFBP5 

IL6R 
IL6ST 
IL10RA 
IGF1R 
CXCR2 

Reported by all the 3 experts (n=5) INS 
LEP 
GH1 
IL6 
MSTN 

INS 
MSTN 
FOXO1 
LEP 
IGF2 

IGFBP3 
NTF4 
IGFBP4 
IGF1R 
KLB 

TNF 
IGF1R 
NTF4 
NTRK2 
SOS1 

FGF2 
PGC 
AGRP 
UCP1 
SIRT1 

NTF4 
IGF1R 
IGFBP6 
NTF3 
IGFBP5 

IGF1R 
NGFR 
IGFBP5 
IGFBP4 
SORT1 

IGF1R 
INSR 
NTF3 
NTF4 
IGFBP4 

*previous algorithm; ** current algorithm; ◦protein-protein interaction network; ◦◦functional gene network; ◦◦◦ functional gene network extended by co-citation; ^ 
including text mining in research filters; ^^ not including text mining in research filters 

Fig. 2. Outcomes of AI tools; in the upper part of the image, x(+y?) refers to the number of certain (+ possible) myokines/genes out of the top 5 recommendations 
indicated by the tools; image created in Biorender.com 
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In addition to the findings in pathological samples, HSPE1, IGFBP3, 
IGFBP6, CCL20 and IGF2 were reported in urine and both HSPE1 and 
TFGB1 in plasma. While several results demonstrated the presence of 
CCL, CXCL, and IGFBP families, as well as HSPE1, in a plethora of tis-
sues, interleukins are yet to be fully explored as transferred by EVs. 

Network analysis of the recommendations, whose results are shown 
in Fig. 3, was performed both on STRING and GeneMANIA. The MCL 
algorithm implemented into STRING resulted in 6, 3, and 2 clusters for 
Model 1, 2, and 3, respectively; Model 1 was built with 75 edges, model 
2 with 28, and model 3 with 14; nodes were all shown. GeneMANIA 
algorithm in all the three models resulted in a highly disconnected node, 
namely OSTN; the most important functions mapped, among the others, 
were related to cytokines and muscle regenerative pathways in Model 1 
and Model 2, while Model 3 was functionally related to growth 
signaling. 

4. Discussion 

Currently, the big data problem is facing biomedical sciences with 
ever-expanding, extremely large volumes of both raw data and scientific 
articles. Therefore, DS has been pervading almost all aspects of the 
scientific world, in order to assist scholars in analyzing large datasets 
and retrieving the core info from literature. As for the latest topic, for 
example, scholars can be helped by distinguishing between relevant and 
irrelevant literature on subtle differences identified through text mining 
tools [36], as well as performing bioinformatic assisted reviews [4]. 

It can be claimed the need for integrating human and artificial in-
telligence [37] for advancing biomedical research. Here, coping with a 
scientific topic currently representing a fertile area of research [13] and 
starting from experts’ recommendations, we identified established and 
potential myokines linked to the input myokines, using a supervised DS 
approach. 

4.1. Comment on the usage 

As expected, the chosen DS tools provided diverse recommendations, 
due to the diverse characteristics of research algorithms. All the tools 
exhibited good usability, although the selection of research filters re-
quires specific knowledge. The field of bioinformatic tools is greatly 
fertile, and during the writing of this work novel advancements have 
been made. 

Table 3 
Report of AI recommended and putative myokines if stuffed into EVs  

Myokines Vesicle type Sample 

CCL2 Exosomes Bone marrow mesenchymal 
stromal cells, leukemia cells, T cells 

CCL20 EVs/ exosomes/ microvesicles Brain cancer cells, breast cancer 
cells, colorectal cancer cells, kidney 
cancer cells, leukemia cells, 
melanoma cells, mesenchymal stem 
cells, ovarian cancer cells, normal 
urine 

CCL3 Exosomes Serum -tuberculosis patient 
CSF3 Exosomes Mesenchymal stem cells 
CXCL1 EVs/ exosomes Brain cancer cells, breast cancer 

cells, colorectal cancer cells, 
leukemia cells, lung cancer cells, 
melanoma cells, ovarian cancer 
cells 

CXCL5 EVs/ exosomes Brain cancer cells, breast cancer 
cells, colorectal cancer cells, kidney 
cancer cells, leukemia cells, lung 
cancer cells, melanoma cells, 
ovarian cancer cells, prostate 
cancer cells, retinal pigment 
epithelial cells 

CXCL9 N.A. N.A. 
IGF2 EVs/ exosomes/ membrane 

vesicles 
Brain cancer cells, breast cancer 
cells, colorectal cancer cells, 
leukemia cells, lung cancer cells, 
melanoma cells, ovarian cancer 
cells, prostate cancer cells, normal 
urine 

IL1B N.A. N.A. 
IL6R N.A. N.A. 
NTF3 Exosomes Placental mesenchymal stem cells 
TGFB1 EVs/ exosomes/ microvesicles/ 

microparticles 
Brain cancer cells, breast cancer 
cells, colorectal cancer cells, 
embryonic kidney cells, 
glioblastoma cells, kidney cancer 
cells, leukemia cells, mesenchymal 
stem cells, ovarian cancer cells, 
normal plasma, blood of patients 
undergoing external 
counterpulsation therapy, platelets 
of normal donors, retinal pigment 
epithelial cells, serum by brain 
tumors, umbilical cord 
mesenchymal stem cells  

Putative myokines 
HSPE1 EVs/ exosomes/ microvesicles/ 

ectosomes/ microparticles/ 
membrane vesicles/ membrane 
blebs/ nanovesicles/ apoptotic 
bodies 

Astrocytoma cells, B cells, breast 
cancer cells, chronic lymphocytic 
leukemia cells, colorectal cancer 
cells, dendritic cells, endothelial 
cells, epithelial cells, glioblastoma 
cells, kidney cancer cells, leukemia 
cells, lung cancer cells, melanoma 
cells, neonatal myoblast cells, 
ovarian cancer cells, placenta, 
plasma, platelets, prostate cancer 
cells, retinal pigment epithelial 
cells, squamous carcinoma cells, T 
cells, umbilical cord mesenchymal 
stem cells, normal urine 

IGFBP3 EVs/ exosomes/ membrane 
vesicles/ microvesicles 

Brain cancer cells, breast cancer 
cells, normal breast milk, colorectal 
cancer cells, kidney cancer cells, 
leukemia cells, lung cancer cells, 
melanoma cells, mesenchymal stem 
cells, ovarian cancer cells, prostate 
cancer cells, serum by tuberculosis 
patients, normal urine 

IGFBP4 EVS/ exosomes Brain cancer cells, breast cancer 
cells, colorectal cancer cells, kidney 
cancer cells, leukemia cells, lung 
cancer cells, melanoma cells, 
mesenchymal stem cells, ovarian  

Table 3 (continued ) 

Myokines Vesicle type Sample 

cancer cells, prostate cancer cells, 
serum by tuberculosis patients 

IGFBP5 EVs/ microvesicles Brain cancer cells, breast cancer 
cells, colorectal cancer cells, kidney 
cancer cells, leukemia cells, lung 
cancer cells, melanoma cells, 
ovarian cancer cells, umbilical cord 
mesenchymal stem cells 

IGFBP6 EVs/ exosomes/ membrane 
vesicles 

Aqueous humor, brain cancer cells, 
breast cancer cells, colorectal 
cancer cells, kidney cancer cells, 
leukemia cells, lung cancer cells, 
melanoma cells, mesenchymal stem 
cells, ovarian cancer cells, prostate 
cancer cells, serum by tuberculosis 
patients, normal urine 

IL19 Exosomes Bovine milk, breast milk, 
mesenchymal stem cells 

IL20 N.A. N.A. 
IL21 N.A. N.A. 
IL9 Exosomes Serum by tuberculosis patients 
KDR N.A. N.A. 
KLB N.A. N.A. 

Note: EVs= Extracellular vesicles; only Organism=Homo Sapiens and Identified 
molecule=protein were considered 
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Fig. 3. Graphical results of network analysis conducted on STRING and GeneMANIA on both Model 1 (A), Model 2 (B), and Model 3 (C). The lists used as queries can 
be retrieved from Supplementary Table 1. 
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In order to spread the usage and the effectiveness of DS tools in 
biomedical research, a possible approach may be a first user-friendly 
interface with basic features, followed eventually by an advanced 
interface for users capable of selecting special features. An appreciated 
characteristic of DS tools is both the analytical integration and the link 
with other DS tools. 

Comprehensive state-of-the-art suggestions of DS tools, as well as 
standardized procedures for integrating them into the biomedical 
workflow are needed. Similarly, methods for comparing results and 
guidelines for selecting the features would be helpful. Finally, graphic 
tools for organizing the outcomes and disseminating the insights would 
be greatly appreciated by researchers. 

4.2. Experts’ discussion 

Experts were required to select an original topic, integrating their 
knowledge with the DS tools’ recommendations, thus providing original 
insights. This efforts serve as examples of how to use prioritizations of 
molecules of interest from DS tools’ algorithms (in this case the top 5 
recommendations) for creating novel biological interpretations and 
hypotheses to be furtherly investigated. As a result, the following boxes 
represent the in-depths of experts, based on reported inputs and outputs, 
on a topic of their expertise and interest. Each expert-led discussion has 
been consequently integrated with an DS-led approach to provide 
additional perspectives. 

4.3. In-depth box 1: The role of myokines in PDAC - a focus on FGF21 
and IL6 

Some of the reported myokines exert different roles in several cancer 
types, including pancreatic ductal adenocarcinoma (PDAC) [38]. PDAC 
is the most common and aggressive type of pancreatic cancer with a 5- 
year relative survival rate lower than 10%, mostly contributed by late 
diagnosis and limited efficacy of current systematic treatments [39]. 

The role of physical activity in reducing the risk of PDAC is well- 
established [40–42]. The release of myokines in response to muscle 
contraction might, at least in part, explain the anti-tumor effect [43]. 
Among hundreds of myokines, only few have been clearly correlated 
with anti-proliferative effects in PDAC, in particular irisin. It was shown: 
1) to reduce pancreatic cancer cell growth via AMPK/mTOR signaling 
and affect the invasion and migration of pancreatic cancer cells through 
inhibition of epithelial-mesenchymal transition [44]; 2) to positively 
regulate ferroptosis (a particular form of regulated cell death) in Panc1 
(a human pancreatic cancer cell line), thus increasing ROS-mediated 
processes and autophagy [45]; 3) to improve doxorubicin-induced cell 
apoptosis in pancreatic cancer cells (MIA PaCa-2 and BxPC-3) by 
inhibiting the PI3K/AKT/NF-kB pathway [46]. 

Interestingly, a recent study found three other myokines with anti- 
tumor effects in PDAC [47]. The authors discovered an increase in 
protein and mRNA levels of IL10, CXCL1 and CCL4 in exercise- 
conditioned serum derived from advanced PDAC patients after 12- 
week of resistance training using whole-body electro-myostimulation. 
The administration of recombinant human IL10, CXCL1 and CCL4, 
particularly in combination, exhibited strong anti-proliferative and anti- 
migration effects in Panc1 cells, which was associated with increased 
mRNA levels of CASP3/7 and DNA fragmentation. Of note, the same 
effects could not be observed when non-malignant pancreatic cells were 
exposed to the recombinant proteins. However, these results are 
observed in the 2D model and thus it would be interesting to investigate 
these beneficial functions also with a different approach, such as the 
patient-derived organoids (3D model) that is able to recapitulate all 
stages of the disease and the genomic and transcriptomic landscape of 
PDAC [48,49]. 

Moreover, the main component of the tumor microenvironment 
(TME), the cancer-associated fibroblasts (CAFs), deserves attention. 
Indeed, CAFs play crucial and opposing functions in defining the biology 

and the aggressive phenotypes of PDAC [50–53]. Recently, an important 
role of fibroblast growth factor 21 (FGF21) was identified in pancreatic 
tumorigenesis. Both in mice and humans, normal acinar cells show high 
levels of FGF21. Loss of acinar differentiation and ductal metaplasia is a 
key event during tumorigenesis of the pancreas in mice and it is driven 
by the oncogenic activation of Kras [54]. Accordingly, activation of Kras 
in pancreatic exocrine cells reduces the expression of FGF21 and treat-
ment of mice with recombinant human FGF21 (rhFGF21) reduces 
pancreatic tissue inflammation and delays neoplastic progression [55]. 
Interestingly, the beneficial results were obtained also in the presence of 
a high-fat diet (which strongly increases the risk to develop PDAC) [55]. 

High circulating levels of IL6 are associated with cachexia [56] that 
consists of progressive and debilitating loss of body mass with muscle 
depletion and a worse prognosis [57] in PDAC. Cachexia affects about 
90% of patients with PDAC [58] and was recently found in the early 
phase of PDAC [59]. It is worth recalling that the prototypical myokine 
IL6 has shown a strong proinflammatory function when released by 
immune cells but IL6 exerts anti-inflammatory action when released by 
the muscle [43]. Beyond the discovered crosstalk regarding IL6 in pro-
moting cancer proliferation and immune suppression in TME of PDAC 
[50], new tumor-tissue crosstalk mediated by IL6 and soluble IL6 re-
ceptor (sIL6R) trans-signaling was identified: IL6 released by tumor cells 
triggers a positive loop of IL6 release between fat (the major source of 
IL6) and skeletal muscle (the major source of circulating sIL6R that 
accumulates in the fat), thereby promoting cachexia and cancer pro-
gression [60]. 

4.4. In-depth box 2: Myogenesis, regeneration and brain function - a focus 
on S100B 

S100B is an EF-hand type calcium-binding protein with intracellular 
and extracellular activities [61]. It is expressed by several cell types of 
nervous and non-nervous origin, with astrocytes expressing the highest 
amount of the protein. At muscle level, S100B is expressed by satellite 
cells and their progeny (i.e., the myoblasts and the myotubes obtained 
by their fusion) and myofibers [62,63]. In myoblasts, intracellular 
S100B regulates myogenic differentiation, with high levels inhibiting it 
via NF-kB-dependent inhibition of MyoD expression, and S100B regu-
lates cell proliferation, and the transition from proliferation to quies-
cence and vice versa [64,65]. Behaving as a damage-associated 
molecular pattern (DAMP), S100B is released from muscles early upon 
acute injury and is required for a rapid and complete regenerative 
process, favoring the expansion of muscle precursor cells, attracting 
macrophages and promoting their polarization into the M2 phenotype, 
and modulating the collagen deposition, by interacting with receptor for 
advanced glycation end-products (RAGE) or fibroblast growth factor 
receptor 1 (FGFR1) [66,67]. In the central nervous system, low con-
centrations of S100B exert neurotrophic effects, induce neurite 
outgrowth and promote neuron survival [68]. S100B modulates 
neuronal synaptic plasticity, learning and memory [69], and promotes 
neurogenesis in the hippocampus [70]. Since S100B serum levels in-
crease after intense physical activities [71], S100B might concur to the 
cognitive improvement associated with physical exercise. 

Interestingly, S100B has been reported to interact with basic fibro-
blast growth factor (bFGF/FGF2) thus enhancing FGFR1 signaling and 
blocking the S100B canonical receptor, RAGE to stimulate proliferation 
and inhibit differentiation in high-density myoblasts [66,72]. A similar 
engagement of FGF2 was observed in low-density myoblasts in the 
presence of relatively high doses of S100B so that the proliferation of 
satellite cell-derived myoblasts subsequent to muscle injury is mainly 
dependent on the bFGF-mediated activation of FGFR1 by S100B [66]. 
Structural models of S100B-FGF2 complex were generated, and the 
critical residues on S100B-FGF2 interface were mapped by NMR spec-
troscopy and site directed mutagenesis [73]. 

Among the novel potential myokines emerged by AI-based recom-
mendations is CCL2, which appears also in the network of S100B 
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interacting proteins (Fig. 3). Interestingly, i) a positive correlation was 
found between S100B and CCL2 expressions in human proneural and 
neural glioma subtypes, and ii) S100B has been reported as an important 
inducer of CCL2 in gliomas promoting the recruitment of tumor- 
associated macrophages and tumor growth in vivo [74]. In accor-
dance, blockade of S100B with a specific antibody caused a reduction of 
the levels of CCR2 and CCL2 in injured muscles suggesting a role for 
S100B in macrophage migration towards damage sites [67]. Of note, the 
mobilization of monocytes/macrophages from blood to acute damaged 
muscles and the muscle regeneration process were similarly impaired in 
Ccl2-/- and anti-S100B-treated mice [67,75]. 

4.5. In-depth box 3: tumor-to-muscle and muscle-to-tumor cross talks 

Over the last years, it has been becoming clear that tumor and muscle 
crosstalk to each other in both directions. Tumors have been recognized 
as able to release factors enwrapped or not in EVs that are able to cause 
muscle wasting, during cancer cachexia. Some examples of tumor- 
derived factors that travel in the bloodstream by means of vesicles are 
Hsp70 and 90 [76] as well as certain miRNAs as miR-21 [77]. 

On the other way around, muscles have been recognized as secretory 
tissues able to release factors known as myokines that may or not 
communicate with tumors. Some examples are irisin [78], SPARC [79] 
and FGF21 [80]. Most myokines travel through the body protected by 
the bilayers of vesicles but it is still largely unknown how they target the 
tumors and/or metastases [31]. Notably, the release of vesicles and 
muscle contractions are both under the control of calcium-based 
signaling such to explain why most of myokines-enriched vesicles are 
inducible by physical exercise. It would be interesting to apply the tools 
described herein to analyze separately the myokinome in healthy and 
diseased conditions and see if and how it can respond to exercise, by 
expanding the knowledge on myokines reports [12]. These studies shall 
be complemented by analyses on the expression of the ligand (myokine) 
and its receptor (when it has been identified) both in muscles and tu-
mors, in the so-called ligand-receptor prediction studies, for which the 
contribution of bioinformaticians will be crucial as well. 

Regardless the tumor type, the expression (and the release in the 
blood) of some myokines are aberrantly affected during muscle wasting 
during cancer [12]. Myostatin is a myokine generally less released 
during exercise and more released by muscles under disease conditions, 
including cancer cachexia [81–83]. Myostatin is a negative regulator of 
muscle size [84] and its role on tumor growth shall be analyzed more in 
depth, because of conflicting reports in this regard [85,86]. 

Another example is musclin or osteocrin that resulted through mul-
tiple analyses herein shown apart from all the other myokines analyzed 
for reasons that surely deserve further investigations. Musclin is a 
myokine that we found reduced in the muscle and blood of mouse 
bearing various cancer types (sarcoma, lung carcinoma and C26 colon 
adenocarcinoma) even before the muscles were reduced in size (i.e., 
cachexia has started) [87]. Musclin drop in muscle and plasma at this 
early time makes it a suitable early biomarker of cancer cachexia at least 
in rodent models. Notably, physical exercise is sufficient to increase 
musclin in plasma and muscles [88] and in mice with cancer cachexia 
aerobic exercise but not anaerobic one is able to restore normal 
expression and plasma levels of musclin even in cancer-bearing mice 
[87]. Overall, this study supports the notion that the beneficial effects of 
exercise can still work even at molecular levels in those animals being 
affected by tumors. 

The receptor of musclin is Npr3 or natriuretric peptide receptor 3 and 
its expression is also decreased in muscles under cachexia but not in a 
way that increasing locally musclin by means of muscle electroporation 
of plasmids may not obviate myofiber shrinkage induced by C26 growth. 
It would be interesting (i) to test if the same occurs also in the blood and 
muscles of cancer patients exhibiting or not cachexia; (ii) to understand 
how musclin interacts or not with other myokines of biological interest 
responsive to exercise (as myostatin, SPARC, SDF1/CXCL12 or apelin), 

(iii) to learn whether musclin is released through vesicles or not, and (iv) 
if we can manipulate musclin expression and release through miRNA or 
drugs or nutraceuticals. This last issue (iv) is crucial to solve because not 
all cancer patients are still in the conditions to complete periodic exer-
cise sessions that may give them advantages for preserving their health, 
so for them an exercise-independent way to increase musclin would be 
helpful. 

4.6. In-depth box 4: the role of myokines on skeletal muscle in response to 
physical exercise 

Myokines have a physiological role on the skeletal muscle in 
response to physical exercise. Between the class of interleukins (ILs), 
muscle contractions mediated by physical exercise provoke IL-6, IL-8, IL- 
10, and IL-15 release to modulate systemic inflammation and lead 
chemotactic responses for muscle regeneration [89,90]. The circulating 
IL-6 protein expression after a single bout of exercise stimulates the 
glucose metabolism improving the expression of the insulin-regulated 
glucose transporter 4 (GLUT4) in soleus and plantaris muscles [91]. 
Between the IL-6 family members, leukemia inhibitory factor reveals to 
have significant muscle regeneration properties for the exercise injuries 
and for the dystrophic pathologies [92]. 

A significant anabolic effect of skeletal muscle has been established 
for IL-15 that induces myosin heavy chain hypertrophy in differentiated 
primary human skeletal myogenic culture, conversely to IGF-I that 
stimulates the myogenic precursor cells [93]. Besides, in vivo, a single 
bout of eccentric and concentric muscle contractions results in a sig-
nificant increase of IL-15 mRNA level in the vastus lateralis muscle [94] 
and in the circulation to induce pro-oxidative mediators [95]. In addi-
tion, other circulating myokines/interleukins such as IL-8 and IL-10 are 
improved during exercise performance in humans, with regard to male 
marathon runners presenting exercise-induced bronchoconstriction to 
increase oxygen delivery to the muscles [96]. Considering the results of 
the gene recommendations, specific studies may be tailored to investi-
gate the response in IL-1B, IL-9, IL-19, IL-20, IL-21 triggered by physical 
exercise, since these dynamics are currently unknown. 

Contracting skeletal muscles also induces the systemic release of 
specific myokines that control the neuromuscular performance [97] like 
irisin that promotes hippocampal neurogenesis, mitochondrial biogen-
esis, and glucose homeostasis [98,99], BDNF for supporting CNS plas-
ticity [99], and IGF-1 [93,97]. Exercise-induced adaptive changes 
include also FGF21 that is an insulin-regulated myokine. FGF21 physi-
ologically regulates glucose-lipid metabolism and pathologically in-
duces mitochondrial dysfunction with a bioenergetically detrimental 
effect on growing muscles [100]. Otherwise, beneficial mitochondrial 
action is mediated by Hsp60, whose mRNA expression is improved after 
a single acute bout of endurance exercise. Hsp60 protein expression is 
fiber I-type specific in the mice posterior group of hindlimb muscles 
(gastrocnemius, soleus, and plantaris) after endurance training of 6 
weeks. This finding is in correlation with higher mitochondrial copy 
number and expression of the dominant regulator of oxidative meta-
bolism, PGC1α [101,102]. This physical exercise-mediated improved 
mitochondrial function is also associated with the L isoform of BAIBA 
that works as a neuroprotector factor against oxidative stress activating 
the AMPK and PI3K/Akt pathways [103]. 

Myokine cognitive benefits have also been proved for Cathepsin B in 
adult male mice. Specifically, running elevates Cathepsin B in the 
plasma and the gastrocnemius muscle in order to cross the blood brain 
barrier and to enhance brain functions such as hippocampus-dependent 
memory and adult neurogenesis [104]. 

To regulate energy homeostasis, follistatin has been proposed as a 
regulator of both classical brown adipocyte precursors and an inducer of 
p38 MAPK/ERK signaling pathway to promote brown adipose expansion 
and activity [105]. Otherwise, meteorin accelerates energy expenditure 
through fat thermogenesis [106]. 

Among the list of novel and putative myokines, the complex 
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signaling regulated by IGF binding protein family is worth exploring. 
Also IGF2 deserves a special attention, as several polymorphisms of this 
gene are associated with muscle strength, and IGF2 is involved in 
exercise-induced muscle damage [107]. 

4.7. Data science tool secondary recommendations 

All in all, the in-depth box number 1 on muscle-pancreas cross-talk 
which account for pancreatic cancer and cachexia is based on 5 myo-
kines present in the experts’ recommendation, 1 DS -recommended 
myokine (sIL6R) and 1 additional myokine (CCL4). Using the related 7 
genes as input, in addition with “carcinoma, pancreatic ductal” (MeSH 
Unique ID: D021441) and “cachexia” (MeSH Unique ID: D002100) as 
diseases, GeneRecommender’s DeepProphet 1 (former Genes Disease 
V.1) algorithm reported TNF as main gene of interest, followed by in-
sulin, CRP and interleukins, while GeneRecommender’s DeepProphet 2 
algorithm pointed out, in addition to TNF, the possible involvement of 
CRP, CXCL8, and adipokines. The HumanNet-XC algorithm confirmed 
the main association with TNF, followed by IL1B and IL1A. Indeed, TNF- 
α has been reported as a key player on the molecular pathways of cancer 
cachexia, with both catabolic induction and anabolic inhibition [108], 
since decades ago [109]. Interestingly, TNF was included into the first 
experts’ recommendation list. 

The in-depth box number 2 is based on two myokines present in the 
experts’ recommendations (S100B and FGF2), 1 DS-recommended 
myokine (CCL2) and 2 additional proteins (FGFR1 and RAGE). Using 
the related 5 genes as input (RAGE is an alias standing for AGER), in 
addition with “inflammation” (MeSH Unique ID: D007249), Gen-
eRecommender’s DeepProphet 1 algorithm reported IL6 as main gene of 
interest, followed by and TNF, while GeneRecommender’s DeepProphet 
2 algorithm pointed out VEGFA as main gene of interest, followed by 
CXCL8 and still by TNF. The HumanNet-XC reported HMGB-1, followed 
by GFAP and HGF as key interacting genes. Indeed, S100B and HMGB1 
were both included in an extended frailty biomarker panel [110]. 
Moreover, considering the discussion on brain pathophysiological evi-
dence linked to S100B as in the in-depth box, it is worth noting how 
VEGF and S100B are linked into the pathological evidence of major 
depressive disorders, both as potential predictors of treatment response 
[111]. 

The in-depth box number 3 points out the molecular cross-talk in 
cancer that involves muscle secretome. Using the gene related to the 18 
myokines listed in Table 5 in addition with "Carcinoma" (MeSH Unique 
ID: D002277) GeneRecommender’s DeepProphet 1 algorithm reported 
IL6 as the main gene of interest, followed by TNF and IFNγ; similarly, 
GeneRecommender’s DeepProphet 2 algorithm pointed out IL6 and TNF 
as the first two recommendations, followed by IGFBP2 and VEGFA. 
These results highlight the primary role of inflammatory mediators such 
as IL6 and TNF in the molecular network of cancer initiation and pro-
gression [112]. 

The in-depth number 4 points out the importance of cytokines 
signaling in response to physical exercise. Using the genes related to the 
9 interleukins as input, in addition to the tissue filtering for skeletal 
muscle, GeneRecommender’s DeepProphet 1 algorithm reported GLI2, 
while GeneRecommender’s DeepProphet 2 algorithm reported OSMR, 
as the main gene of interest. OSM was already reported in the first ex-
perts’ list as related to chronic inflammation [113]; its receptor is highly 
expressed on several cells of nervous system [114]; therefore, the in-
flammatory acute and chronic response induced by physical exercise 
and mediated by the myokine OSM may play an important role in 
neuroprotection; indeed, this pathway has been already highlighted in 
high glucose conditions [115]. 

5. Limitations 

Firstly, the use of four DS tools may have limited the possibility to 
obtain additional information by using alternative tools. However, those 

tools were chosen for their interesting features, and some of them 
included other tools as datasources. 

The retrieved interactions used for suggesting putative myokines of 
interest include the interactions of myokines with their receptors, and 
the latter cannot be interpreted as putative myokines; this must be 
considered whne interpreting the recommendations. However, the in-
clusion of such interactions in the tools’ algorithms cannot be currently 
avoided, and it is even useful because it allows to include any in-
teractions of proteins with other molecules in the algorithms, thus 
providing more comprehensive outcomes. 

Integrating healthy status with diseases such as diabetes and cancer 
may represent a bias in the selection of existent myokines and in the 
suggestions on the putative ones, as myokines in diseases may will play 
no role in healthy status. However, the current model did not focus on 
physiological vs pathophysiological myokines difference. Further 
models may provide ever updating references on myokines for health vs 
pathologies by recruiting specialized experts and setting DS methods as 
designed. 

Another possible bias relies on the existing contradictory data for 
some myokines, thereby possibly biasing the selection; AI tools, as long 
as existing references report gene and protein interaction and co- 
citations and text mining support the presence of debated myokines, 
may produce biased outcomes. However, existing and developing fea-
tures can allow users to filter data by including or not text-mining, 
selecting species, and focusing on tissues of interest. Therefore, the 
possibility of filtering by tissue-specific molecules, analytical proced-
ures, exposure, and years of reference is going to refine the models. 

Debate also exists on the role of EVs in muscle signaling: recent in-
sights demonstrate, at least in animal models, that EVs released by 
skeletal muscle reach the circulation only to a subtle extent and rather 
accumulate within the muscle microenvironment [32,33]. Moreover, 
Vesiclepedia does not yet include human samples of skeletal muscle 
tissue in the database. However, the fact that existing or putative 
myokines have been found in EVs, although not directly from human 
skeletal muscle, suggest that those myokines may act, at least into 
muscle microenvironment, through EVs-related signaling. 

6. Perspectives 

For this study, the field of myokines was considered as a prototype 
for conducting integrated (experts and bioinformatic-assisted) recom-
mendations for emerging insights. It is worth mentioning an online tool 
focused on skeletal muscle that integrates gene expression data of 
myofibers with biological pathways to create interaction networks to 
identify non-coding RNAs involved in muscle-specific functions [116]. 
Therefore, MyoData (https://myodata.bio.unipd.it/) was used with the 
5 input genes recommended by all the three experts (bdnf, fgf21, igf1, 
fndc5, ostn), along with the first recommendations of Gen-
eRecommender II (ins), HumanNet XC (fgf2), and GeneMANIA (ntf4). 
Results are shown in Fig. 4 and highlight the role of miR322-5p, 
miR301a-3p, and miR27b-3p. Similar tools with several cells/tissues 
of interest can be really instrumental for scholars. 

To complement Supplementary table 1, the AI recommendations 
for myokines and putative myokines have been detailed in Table 4. This 
table can serve as an additional basis for designing specific studies 
investigating the role of skeletal muscle secretome on several diseases. 

Including both supervised and unsupervised learning methods, as 
well as encompassing algorithms focused on both protein interaction 
and gene, represent a comprehensive approach to take advantage of 
current DS tools for improving biomedical research. Several clustering 
methods are worth implementing to decipher systems of interest. 
Additional filters may account for selecting a timeframe and biological 
tissues of interest. The usefulness of text mining in AI-assisted reviewing 
procedures needs specific investigations. Further studies would compare 
in silico, in vitro and ex-vivo analyses to optimize the algorithms. 
Validation of predictive myokines may be conducted on existing single- 
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cell references, accounting for fiber type heterogeneity [117], and on 
maps of dynamic response to muscle exercise [22]. A framework for 
designing further studies using in silico recommendations for optimizing 
molecular studies is finally depicted in Fig. 5. The inclusion of data on 
EVs released by human skeletal muscle within the continuous commu-
nity annotation project of Vesiclepedia will allow to refine the knowl-
edge of myokines-based signaling. 

7. Conclusions 

The first suggestions and subsequent interpretations of results by a 
set of experts account for a proper definition of insights, to be furtherly 
assisted by DS predictions. All in all, bioinformatics and computational 
biology can be implemented into a network physiology framework to 
nurture myokine research. Computational analysis of muscle proteomics 
and molecular approaches to represent muscle cell-specific secretome 
and trafficking still continue to extend the world of myokines. Intriguing 
new approaches that rely on the isolation and profiling of extracellular 
fluid from muscle tissue may even enlarge the list of myokines [118]. 
This ever-growing list should be fine-tuned by differentiating in terms of 
health status and response to different exposures and interventions. To 
this extent, DS-assisted methods for reviewing existing evidence, rec-
ommending targets of interest, and predicting original scenarios are 
worth exploring enough that novel groundbreaking insights are likely to 
emerge from this paradigm. 
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ommendations and top AI outcomes to model a molecular network of proteins 
and RNAs associations. 

Table 4 
List of myokines of interest recommended by AI tools and evaluated by experts  

Myokine Pathology/event Effect Reference 

β-Klotho Diabetes Therapeutic [170] 
CCL2 DMD  

Resistance training 

Induced in muscle and blood, 
reduced in blood with age; 
variants are linked to strength 

[171]  

[172] 
CCL3 ALS Induced in CSF and blood [173] 
CCL20 Hypercholesterolemia Induced in vascular smooth 

cells and plasma 
[174] 

CSF-3 ALS 
DMD 
Muscle wasting 

Treatment; 
treatment; 
induced in blood 

[175] 
[176] 
[177] 

CXCL5 Aging 
COPD 
Obesity 

Induced in human blastocyst 
Induced in blood 
Induced in blood 

[178] 
[179] 
[180] 

HSP10 Tumor, pregnancy Induced in blood [181] 
IGF2 ALS Protective for motor neurons [182] 
IGFBP3 Swimming training; 

Exercise during 
hypoxia; 
tennis playing 

Altered in blood; 
Reduced in blood; 
Induced in blood 

[183] 
[97] 
[99] 

IGFBP4 Aging Increased in blood [184] 
IGFBP5 Aging; 

Atherosclerosis, aging 
Reduced in blood; 
Induced in endothelial tissue 

[184] 
[185] 

IL1β COPD; 
exercise 

Induced in airway epithelium; 
Induced in muscle 

[186] 
[187] 

IL9 Dermatomyositis Induced in blood and muscle [188] 
IL19 COPD Induced in blood [189] 
IL20 Pancreatic cancer Associated with poor survival [190] 
IL21 Myositis Induced in blood and muscle [191] 
sIL6r Exercise; 

COPD 
Induced in blood; 
Induced in sputum 

[192] 
[193] 

TGFβ Cachexia; 
Obesity 

Induced in adipose tissue; 
Induced in adipose tissue 

[194] 
[195]  

Fig. 5. Flow diagram of scholars&AI-assisted recommendations prior to mo-
lecular studies (black arrows and box), to be possible conducted rather than the 
common design (red arrow); image created in Biorender.com 
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