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A B S T R A C T   

Early neurodevelopment is critically dependent on the structure and dynamics of spontaneous neuronal activity; 
however, the natural organization of newborn cortical networks is poorly understood. Recent adult studies 
suggest that spontaneous cortical activity exhibits discrete network states with physiological correlates. Here, we 
studied newborn cortical activity during sleep using hidden Markov modeling to determine the presence of such 
discrete neonatal cortical states (NCS) in 107 newborn infants, with 47 of them presenting with a perinatal brain 
injury. Our results show that neonatal cortical activity organizes into four discrete NCSs that are present in both 
cardinal sleep states of a newborn infant, active and quiet sleep, respectively. These NCSs exhibit state-specific 
spectral and functional network characteristics. The sleep states exhibit different NCS dynamics, with quiet sleep 
presenting higher fronto-temporal activity and a stronger brain-wide neuronal coupling. Brain injury was 
associated with prolonged lifetimes of the transient NCSs, suggesting lowered dynamics, or flexibility, in the 
cortical networks. Taken together, the findings suggest that spontaneously occurring transient network states are 
already present at birth, with significant physiological and pathological correlates; this NCS analysis framework 
can be fully automatized, and it holds promise for offering an objective, global level measure of early brain 
function for benchmarking neurodevelopmental or clinical research.   

1. Introduction 

Cortical activity exhibits constellations where far apart brain areas 
are functionally connected to support global functions. These large-scale 
networks can be characterized by their respective spatiotemporal cor-
relations in locally recorded brain activity (Hallett et al., 2020; Helwe-
gen et al., 2023; Kobeleva et al., 2022; Yrjölä et al., 2022; Zhang et al., 
2021). Such cortical activity networks are believed to support a wide 
range of higher brain functions (Gao et al., 2015; Haque et al., 2020; 
Rouhinen et al., 2020). At the same time, sleep is an archetypal vigilance 
state which emerges in the newborns at the first place and holds crucial 
information about early brain function (Bourel-Ponchel et al., 2021; 
Tham et al., 2017; Uchitel et al., 2022). Infant sleep architecture is 
dominated by interplay of two major sleep states: active sleep (AS) and 

quiet sleep (QS) which are precursors of rapid eye movement (REM) 
sleep and non-REM sleep (Bourel-Ponchel et al., 2021; Lokhandwala and 
Spencer, 2022). Recent studies have shown that already starting from 
preterm age, these sleep states (AS and QS) are associated with distinct 
functional brain networks for different intrinsic coupling modes 
(Tokariev et al., 2016b, 2019a, 2022; Yrjölä et al., 2021). Experimental 
studies also reported distinct neurodevelopmental roles of these states 
(Knoop et al., 2021): AS is thought to support formation of sensorimotor 
networks (Del Rio-Bermudez et al., 2017; Del Rio-Bermudez and 
Blumberg, 2018) whereas QS is important for memory consolidation 
(Friedrich et al., 2020). 

The cortical networks are often characterized as an average con-
nectivity over longer periods of time, i.e. as if it was static functional 
connectivity (FC) (Hallett et al., 2020). This approach is 
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methodologically convenient and straightforward, however it ignores 
the well-established rapid network dynamics at a sub-second timescale 
that are a hallmark of healthy cortical function (Hutchison et al., 2013; 
Preti et al., 2017; Shriki et al., 2013; Siebenhühner et al., 2016). Such 
rapidly alternating network reconfigurations can be seen by analyzing 
bivariate networks in short time windows, or by identifying otherwise 
independent, statistically discrete brain states (Allen et al., 2014; 
Khanna et al., 2015; Michel and Koenig, 2018; Vidaurre et al., 2016). 
Several recent studies have suggested analytic approaches to measure 
non-stationary changes in FC, typically in the timescales of seconds or 
even shorter (Hutchison et al., 2013; Preti et al., 2017). The most 
common strategy is to use short time windows where recurring brain 
states are identified in a straightforward manner with clustering algo-
rithms (Allen et al., 2014; Preti et al., 2017). The results of the sliding 
window are readily challenged by biases that may arise from the se-
lection of window length and shape, which should be optimized a priori 
to include all temporal scales of interest (Liuzzi et al., 2019; Preti et al., 
2017; Shakil et al., 2016). A data-driven approach using hidden Markov 
modelling (HMM) was recently introduced to characterize brain activity 
as a dynamic sequence of discrete brain states (Baker et al., 2014), which 
are first identified from the data using relevant timescales; subsequently, 
cortical activity characteristics like functional connectivity and/or 
spectral content can be estimated from these brain states (Baker et al., 
2014; Vidaurre et al., 2016, 2017, 2018a). While prior studies have 
shown the presence of neonatal large-scale cortical networks (Fransson 
et al., 2007; Gao et al., 2017; Molloy and Saygin, 2022; Tokariev et al., 
2019a; Uchitel et al., 2022; Yrjölä et al., 2021, 2022), the properties and 
physiological correlates of the rapid network dynamics in newborns are 
not known. 

The pathophysiological meaning of novel measures of brain function 
can be assessed from studying their effect on neurological conditions. 
Perinatal asphyxia (PA) is the globally most common perinatal incidence 
that may cause neonatal hypoxic-ischemic encephalopathy (HIE), a 
neurological condition requiring intensive care treatment and posing the 
infants at risk of neurodevelopmental consequences (Saugstad, 2011). 
Perinatal asphyxia refers to a temporary compromise in oxygenation 
and/or circulation near the time of birth, and its clinically most signif-
icant consequence is cerebral injury, associated with mild, moderate, or 
severe clinical signs of HIE; additionally, infant may have a PA exposure 
without developing clinical signs of HIE (Sarnat, 1976). Clinically, 
moderate and severe HIE have been the primary interest in developing 
treatment options while there has been considerable recent interest in 
understanding the impact of mild HIE and PA exposures on the neuro-
development (Chalak et al., 2018; Conway et al., 2018; Finder et al., 
2020; Murray et al., 2010). Neuroscientifically, this spectrum of con-
ditions gives an opportunity to study relationships between patho-
physiological exposures and their effects on brain function. Several 
effects of moderate and severe HIE are well documented in the literature 
(Dilena et al., 2021; Lacan et al., 2021; Nevalainen et al., 2017; Temko 
et al., 2015), however it is poorly understood how the cortical function, 
i.e., EEG activity, is affected by milder forms of PA exposure. 

Here, we aimed to characterize network states and their dynamics in 
the newborn cortical activity. In particular, we i) estimated the spectral, 
temporal, and FC properties of discrete cortical states in infants, and ii) 
extracted the temporal sequence, or dynamics of these cortical states. In 
search of behavioral and clinical correlates of these newly described 
network states, we studied the effects of sleep states (behaviour) and 
neonatal brain injury (clinical). For the latter, we chose to assess EEG 
recordings during birth asphyxia, which is one of the most common 
clinical adversities (Chalak et al., 2018; Murray et al., 2010), with well 
documented effects on the EEG activity (Dilena et al., 2021; McLaren 
et al., 2019). 

2. Materials and methods 

2.1. Subjects and recordings 

During daytime sleep, EEG was recorded from 60 full-term, healthy 
controls (HC) and 47 hypoxic-ischemic encephalopathy (HIE) infants. 
These EEG recordings are parts of the data used in our previous studies 
(Tokariev et al., 2019a, 2019b; Tuiskula et al., 2022). Further details of 
the HIE cohort are presented in Supplementary information (see 
Table S1). All EEG recordings were done at term-equivalent age of 42 ±
1.5 (mean ± std) weeks for both groups at the Children’s Central Hos-
pital, Helsinki University Central Hospital. The gestational age of the 
healthy infants was 41.3 ± 2 (mean ± std) weeks, whereas the gesta-
tional age of HIE infants was 40.3 ± 1.3 (mean ± std) weeks. All the 
procedures in this study were approved by the Ethics Committee of the 
Helsinki University Central, and informed written consent was received 
from a guardian. 

The multichannel EEG was recorded with NicOne EEG amplifier 
(Cardinal Healthcare/Natus, USA) and EEG caps with integrated 19 or 
28 electrodes (sintered Ag/AgCl contacts; Waveguard, ANT-Neuro, 
Germany) placed according to the international 10–10 system (Jurcak 
et al., 2007). EEG signals were collected with a sampling frequency of 
250, 256, or 500 Hz. Each recording session continued until the infant 
progressed through both sleep states: active sleep (AS), and quiet sleep 
(QS) as defined by the standard criteria (André et al., 2010; Omidvarnia 
et al., 2015; Tokariev et al., 2016b). The same 19 EEG signals (Fp1, Fp2, 
F3, F4, F7, F8, Fz, T7, T8, C3, C4, Cz, P3, P4, P7, P8, Pz, O1, and O2) 
were selected from all recordings for further analysis. 

All the EEG data was initially collected as prospective study for other 
purposes. The different numbers of electrodes were due to collation of 
EEG recordings from many different earlier studies in our lab, with some 
recordings carried out in the hospital EEG unit, and others performed in 
the research center related to the hospital; all done by the same staff and 
overall protocols. The present study is a re-use of previously collected 
datasets (Tokariev et al., 2019b, 2019a; Tuiskula et al., 2022), hence we 
consider it retrospective. 

2.2. EEG preprocessing 

All EEG data was visually inspected, and 3-min-long artifact-free EEG 
segments for each infant were retained for further analyses. The iden-
tified artifacts that were excluded belonged to the following categories: 
excessive electromyography (EMG), mechanical, and instrumental 
noise. The EEG signals were then band-pass filtered between 0.4 and 22 
Hz using a combination of seventh-order low-pass and high-pass But-
terworth filters to preserve the physiologically relevant range (Vanha-
talo et al., 2005). Filters were applied in both forward and reverse 
directions to prevent phase lags in recordings. All EEG segments were 
then downsampled to 100 Hz and re-referenced to the common-average 
montage (Fig. 1a). 

2.3. Source reconstruction 

Source reconstruction was performed as described elsewhere 
(Tokariev et al., 2019b). Briefly, the source space was composed of 8014 
dipoles orthogonal to the cortical surface. Magnetic resonance imaging 
(MRI) data from a full-term newborn infant was used to generate a 
three-shell head model, which included scalp and inner/outer skull 
surfaces. A magnetic resonance image (MRI) data was obtained using a 
Philips 3T scanner at Helsinki University Central Hospital (Finland) 
from a healthy full-term infant. Each slice had a resolution of 240×256 
pixels (pixel resolution was 1×1 mm), and the slice thickness was 0.9 
mm. From the full image stack, 176 slices covering the cranium were 
segmented manually into 5 different compartments (scalp, skull, CSF, 
brain, eyes) by a clinician using FSL software (Odabaee et al., 2014; 
Sairanen et al., 2017). The tissue conductivities were set to: 0.43 S/m for 
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the scalp, 1.79 S/m for the intracranial volume, and 0.2 S/m for the skull 
(Despotovic et al., 2013; Odabaee et al., 2014). The forward operator 
was generated using the symmetric boundary element method (Gram-
fort et al., 2010), and the inverse operator was computed with dynamic 
statistical parametric mapping approach (Dale et al., 2000) as they both 
are implemented in the Brainstorm software (Tadel et al., 2011). Finally, 
cortical sources were clustered into 58 parcels and cortical signals rep-
resenting the neural activity of each parcel were calculated as the 
weighted mean of source signals belonging to that parcel. This parcel-
lation scheme was designed specifically to analyze infant EEG data and 
is a compromise between spatial resolution and reliability of recon-
struction of cortical parcel signals from standard low-density clinical 
EEG montages. Parcels were symmetric across hemispheres, roundish in 
shape and comprised 125 ± 26 (mean ± standard deviation) sources 
each. Weighting of individual sources within the host parcels was aimed 
to prioritize contribution of the sources with high fidelity (Tokariev 
et al., 2019b). Parcels were assigned to one of the anatomical brain re-
gions, including frontal, central, occipital, and temporal, based on their 
anatomical location (Fig. 1a). 

2.4. Identification of newborn cortical states 

It is assumed that the observable data in each time series is generated 
by switching between several latent states. As shown recently (Quinn 
et al., 2018; Vidaurre et al., 2018b), HMM is a potentially useful tool for 
discovering such hidden states in the data. The fundamental assumption 
of HMM is that the probability of a state being active at the next time 
point depends solely on the current state. Each state in HMM has its own 
observational model that represents the link between that state and the 
observed data (Rabiner, 1986). In order to provide a condensed data 
representation, the HMM first assigns a state to each point (Rabiner, 
1986), and these states can be represented by several measures of the 
data, including temporal, spatial, and spectral information (Vidaurre 
et al., 2018a, 2017). Most importantly, an HMM inferred at the group 
level will support the extraction of dynamic patterns at the level of in-
dividual patients or even trials (Vidaurre et al., 2017), which has made 
HMM a widely used method in dynamic network analysis (Ahrends 
et al., 2022; Bai et al., 2021; Gascoyne et al., 2021; Higgins et al., 2021; 
Hirschmann et al., 2020; Tao et al., 2022; Zhang et al., 2021, 2022). 

In the present study, we used time series of 58 cortical parcels, which 
were reconstructed from the scalp-recorded EEG signals (see above). The 
HMM approach assumes that observations in each state are drawn from 

Fig. 1. The overall view of the analysis process. In the source reconstruction step (a), multichannel EEGs from the healthy cohort are preprocessed and transformed 
into the parcel space. Then using TDE-HMM (b), parcel activities are concatenated across neonates and sleep states for training the HMM at the group level. The HMM 
is trained in the TDE space and outputs the state time courses. Finally, state-wise spectral estimation is done by means of multitaper leading power maps and 
connectivity patterns. (L: left hemisphere, R: right hemisphere, F: frontal, C: central, T: temporal, O: occipital). 
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a probabilistic Gaussian model with zero mean and a covariance matrix 
in the time-delay embedded (TDE) space (Vidaurre et al., 2018b). The 
HMM in the TDE space (TDE-HMM) is constructed by adding time lag-
ged versions of the data to the original data, resulting for each segment 
in an extended data matrix with a size of timepoints × (parcels × lags). 
Next, a principal component analysis is applied to reduce the dimen-
sionality by only including a predefined number of principal compo-
nents (PCs), transforming the data matrix into a new one with the size of 
timepoints × PCs. In the current study, time lags varied between -5 and 5 
(in samples), corresponding to windows of 100 ms. Only 12 PCs were 
kept for further analysis, which explained 80% of the variance in the 
data. Before applying TDE-HMM, the cortical activities in HC cohort 
were concatenated across subjects and sleep states followed by a 
normalization (mean = 0, variance = 1). All the computations related to 
TDE-HMM were done using HMM-MAR toolbox (https://github. 
com/OHBA-analysis/HMM-MAR) implemented in MATLAB. 

2.5. State-wise spectral and connectivity assessments 

TDE-HMM inference outputs time courses for the brain being in one 
of the characteristic states (Fig. 1b), which could be used as a mask to 
compute the following state-specific characteristics: (i) the spectral 
profiles of activity in each cortical parcel, and (ii) the phasesynchrony 
between parcel signals using the cross-spectral density. 

The phasesynchrony between different brain regions was measured 
by means of the lagged coherency (Pascual-Marqui, 2007). This measure 
ignores the spurious connections (Palva et al., 2018; Palva and Palva, 
2012) originated from the volume conduction. Moreover, each con-
nectivity matrix, whose entities are the lagged coherence values be-
tween all possible pairs of brain regions, was corrected and the same 
subset of unreliable connections was removed in the parcel space 
(Tokariev et al., 2019b). The rationale behind this is that for standard 
clinical low-density EEG caps (in our case 19 channels), the recon-
struction of the whole-brain source activities is challenging (Tokariev 
et al., 2016a) as some cortical areas are in a ‘blind zone’ for the scalp 
sensors. The unreliable connections were defined based on the extensive 
simulations that test head model with defined number of cortical parcels 
(N = 58) and scalp EEG electrodes (N = 19). More specifically, we 
generated many cortical networks (reference data) and compared them 
to their copies after forward-inverse modelling using head model 
(reconstructed data). Pairwise connections that systematically were 
poorly reconstructed in simulations (about 32%), were rejected from 
empirical data (see Tokariev et al., 2019b for details). Thus, unreliable 
interactions were removed for further analysis. 

Cross-spectral density was estimated by means of a state-wise mul-
titaper approach (Vidaurre et al., 2018b). The spectral properties are 
estimated using several tapers (Thomson, 1982) and Fourier transform. 
The estimation by this method reduces the variance and bias in com-
parison with conventional Fourier-transform-based methods (Babadi 
and Brown, 2014). Here, discrete prolate Slepian sequences with the 
time-bandwidth product 2, the number of tapers 3, and the length of 
window 5 seconds were used as tapers of the multitaper method. These 
were chosen to enable the method to perfectly capture the 
low-frequency content (~ 0.4 Hz). 

To visualize the strongest patterns for each NCS (on the connectivity 
ring plots) we used Gaussian mixture model (GMM) with two Gaussian 
curves (see Supplementary for more details). This approach was selected 
to avoid arbitrary thresholding (Vidaurre et al., 2018b). 

2.6. Defining the number of newborn cortical states 

The robustness of HHM inference output is sensitive to the pre-
defined number of NCS. Thus, to find the solution, we repeated the 
analysis with various number of states (from 3 to 10) and compared 
results for stability. Briefly, for each number of NCS, we extracted NCS 
time courses, by HHM inference, five times on the whole dataset (60 

segments for active sleep, 60 segments for quiet sleep in the healthy 
group; in total 120 concatenated segments) and calculated the correla-
tion between the extracted NCS time courses as a measure of repro-
ducibility. The maximum correlation value was reached with four NCSs, 
and its robustness to data selection was confirmed by split-half testing 
(see Supplementary Fig. S1). 

2.7. Temporal features 

State time courses can also be used to look at the temporal dynamics 
of each NCS. Three common temporal features are fractional occupancy 
(FO), lifetime (LT), and transition probabilities (Vidaurre et al., 2018b). 
FO is a measure that shows the percentage of the total time covered by a 
specific NCS and LT is the average time during which an NCS is active. 
The transition probabilities indicate the probability of the transition 
from one NCS to another one. Together, these metrics summarize the 
brain dynamics as captured by the HMM (Baker et al., 2014). By splitting 
the HMM output per segment, we calculated these metrics for each in-
fant individually, during AS and QS. 

2.8. Complexity analysis of newborn cortical state transitions 

The state time courses can be described as a sequence of ordinal 
patterns. The relative occurrence of each of these patterns can be 
calculated by permutation entropy (PE) (Bandt and Pompe, 2002; 
Olofsen et al., 2008). PE is a measure to determine the complexity of a 
sequence. To calculate PE values, the sequence of brain states was 
reduced to its transitioning sequence (e.g., sequence 1112233341144 is 
reduced to 123414) because the between-state transitions are of interest, 
not self-state transitions. Since the length of transitioning sequences is 
different among EEG segments and to avoid the bias caused by the 
length, only the first 400 transitions were considered for each EEG 
segment. This value equals the shortest sequence length among all EEG 
segments. 

The permutation entropy can be calculated as: 

H = −
∑D!

i=1
p(πi)log(p(πi))

where p(πi) is the probability of the occurrence of ith ordinal pattern 
denoted by π and D indicates the length of ordinal patterns. 

2.9. Statistical test 

Most statistical tests in this study compare metrics of different NCSs 
with each other or compare NCS measures between clinical groups 
(sleep state or brain injury status). These tests were done using Wil-
coxon’s rank sum test. In the case of multiple comparisons, we corrected 
the p-values using the Benjamini-Hochberg method (Benjamini, 1995). 

3. Results 

As described above and in the supplementary material (see Supple-
mentary Fig. S1), four cortical activity states were found to optimize the 
key analytical targets: robustness and stability. We also tested the sig-
nificance of the HMM states using surrogates (see Supplementary 
Fig. S2). In the following, we will describe the characteristics and clin-
ical correlates of these four cortical states. 

3.1. Spectral features of the newborn cortical states 

The spectral analysis of the state time courses showed that all NCSs 
have narrow-band spectral profiles (see Supplementary Fig. S3), 
enabling us to extract spectral features of NCSs by means of the state- 
wise cross spectral estimation. The spectral features in newborn 
cortical states (NCS) over the frequency range 0.4–22 Hz were found to 
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organize into complementary pairs of states 1 vs. 2 and states 3 vs. 4, 
respectively (Fig. 2a). The relative power (compared to all combined 
other states) was high in NCS1 and low in NCS2 in the frontotemporal 
regions (p < 0.001) (Fig. 2a). NCS3 was characterized by a higher oc-
cipital and lower frontotemporal activity, while NCS4 was characterized 
by a reduced activity in most posterior areas with only higher power in a 
few frontal cortices proximal to midline (p < 0.001). The average fre-
quency spectra showed a clear 1/f-like decline in all NCSs; however, 
NCSs were mutually different with the highest power across the whole 
frequency range in NCS1, in turn NCS2 had the lowest power (Fig. 2b). A 
measure of bivariate cortico-cortical interactions, the average coher-
ence, was comparable in shape between all states, but NCS1 showed the 
highest coherence strength (Fig. 2c). A scatter plot combining coherence 
and power showed clearly discrete clustering of NCS1 and NCS2, 
whereas NCS3 and NCS4 were partly overlapping (Fig. 2d). The more 
detailed spectral topographies of the NCSs are shown in the supple-
mentary material (see Supplementary Fig. S4). 

3.2. Large-scale cortico-cortical connectivity in the newborn cortical 
states 

The large-scale cortico-cortical connectivity by phasesynchrony 
showed robustly different patterns between the NCSs (Fig. 3). The NCS1 
exhibited a significantly higher phase-coupling strength compared to 
other states throughout all cortical regions (p < 0.001), involving up to 
19–44% of connections linking specific anatomical regions. The other 
NCSs showed lower phase-coupling strength (p < 0.001) and distinct 
spatial fingerprints with the most prominent differences seen in frontal, 

fronto-occipital, and fronto-temporal connectivity. These networks 
comprised all anatomical regions but with predominant of the frontal 
cortices in all states. The connection lengths were found to be different 
between states (Fig. 4): most connections in NCS1 and NCS2 are mid- 
range (~ 4.5 cm), NCS3 is dominated by short-range connections (<
3 cm), and NCS4 presents with a somewhat bimodal distribution 
including both short-range (< 3 cm) and long-range connections (> 6 
cm). Further detailed properties of the state- and frequency-specific 
networks are shown in the Supplementary Figs. S5 and S6. 

3.3. Sleep effects on the newborn cortical states 

The NCSs consist of brief segments that together form sequences, or 
temporal dynamics which can be studied as NCS time courses; in turn, 
they may be studied for spontaneous behavior that possibly correlates to 
subjects’ behavior and/or vigilance states, such as sleep in the newborn 
infant context (André et al., 2010; Omidvarnia et al., 2015; Tokariev 
et al., 2016b). 

We first inspected the temporal state properties, fractional occu-
pancy and mean lifetime and found that quiet sleep (QS) and active sleep 
(AS) are mostly comparable within each NCS. The only differences were 
found in NCS1, where fractional occupancy was significantly higher in 
quiet sleep compared to active sleep (p < 0.001), while mean lifetime 
was also greater NCS in quiet sleep compared to active sleep (p < 0.001) 
(Fig. 5). 

Next, we wanted to analyze how the sleep states affect the temporal 
sequences of NCSs. The transition probabilities between NCSs (no self- 
transitions were considered, e.g., 1→1) were computed and compared 

Fig. 2. Spectral topographies of the identified newborn cortical states (NCSs). The power maps (a) are in relation to the average across states and across the fre-
quency range. All maps were thresholded in such a way that only 50% of the cortices with the strongest absolute value are shown. The averaged power (b) and phase- 
coupling across brain regions (c) are shown as a function of frequency. Phase-coupling versus power is shown in panel (d). Each dot represents a brain region and 
phase-coupling is calculated as the summation of the phase-lag index value between those regions with the rest of the regions. (L: left hemisphere, R: 
right hemisphere). 
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between AS and QS (Wilcoxon’s ranksum test). Transitions 3→1 and 
2↔4 was observed more during AS than QS (p < 0.001), while QS 
exhibited significantly higher number of transitions 2→3 and 4→1 (p <
0.001). Notably, there were no direct transitions between NCS1 and 
NCS2 during either sleep states (Fig. 6). Additionally, we also examined 
the longer NCS sequences by estimating complexity (permutation en-
tropy), which indicated that state transitions exhibit higher complexity 
in QS than in AS (p < 0.05) (Fig. 6). 

3.4. Effects of a neonatal brain injury on newborn cortical states 

The above findings have characterized discrete NCSs and how they 
are linked to physiological neurobehaviour, infant’s sleep. Finally, we 
studied whether the reported NCSs are affected by clinically occurring 
medical adversities, such as neonatal brain injury. To this end, we 
examined NCSs in a cohort of infants suffering from mild to moderate 
degree of hypoxic-ischemic encephalopathy (HIE) as a cause of birth 
asphyxia. It is the most common form of neonatal neurological adversity 
leading to treatment in the neonatal intensive care units with a signifi-
cant risk of neurodevelopmental compromise (Douglas-Escobar and 
Weiss, 2015; Kurinczuk et al., 2010). The healthy control (HC) group 
that was analyzed in detail above was used as a reference. 

Temporal characteristics of brain states showed multiple significant 
differences in HIE group compared to HC (Wilcoxon rank sum test): 
During active sleep, the HIE infants showed an increased fractional oc-
cupancy in NCS2 (p < 0.001) and a decrease in NCS3 (p < 0.001). During 

Fig. 3. Cortico-cortical connectivity of the identified newborn cortical states (NCS). Network strength is shown relative to the mean strength across other states (red 
is over the average and blue is below the average). The connectivity rings show the strongest connections after thresholding of the full networks with Gaussian 
mixture model approach (see Methods section and Supplementary Fig. S7). The bottom row shows the involvement index for each anatomical brain region in the 
network. For example, NCS1 is supported mainly by frontotemporal regions while NCS2 is supported by the frontal region. (L: left hemisphere, R: right hemisphere, F: 
frontal, C: central, T: temporal, O: occipital). 

Fig. 4. Connection-length differences between the identified newborn cortical 
states (NCS). The probability distribution of the Euclidean distance between the 
parcel centroids in the identified NCS shows that they are different in terms of 
the connection length. 

Fig. 5. Temporal features of the identified newborn cortical states (NCS). Distribution of segment-wise fractional occupancy (FO), and mean lifetime (LT) in quiet 
(QS) and active sleep (AS) in each NCS. The asterisks depict significant differences (p-value and z-statistic; Wilcoxon rank sum test). Median is depicted with a 
horizontal line and interquartile ranges with darker shading. 
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quiet sleep, the HIE infants showed a longer mean lifetime in all NCSs (p 
< 0.001 for all); likewise, the mean lifetime of NCS1 and NCS2 was 
longer during active sleep in the HIE infants compared to the healthy 
group (p < 0.001) (Fig. 7). There were also significant effects by HIE on 
the temporal state dynamics (Fig. 8), in particular in the complexity of 
state transitions in quiet sleep; the longer sequencies of state transitions 
patterns showed a lower permutation entropy in the HIE infants 
compared to the healthy infants (p < 0.01). Transition probabilities 
showed no clear effects from HIE, with only the transition probability 
3→4 being lower in the HIE infants during quiet sleep (p < 0.001). 

4. Discussion 

We show here that the newborn cortical activity organizes sponta-
neously into discrete newborn cortical states (NCS) that exhibit their 
respective characteristics in terms of spectral content, large-scale 
network connectivity, and temporal sequences. Moreover, we show 
that NCSs link differently to vigilance states as well as to a common 
neurological adversity, hypoxic-ischemic encephalopathy due to birth 
asphyxia. The findings are fully in line with the prior studies in adults 
showing that cortical activity can be characterized as a sequence of 
discrete network states (Baker et al., 2014; Stevner et al., 2019; 
Vidaurre et al., 2018b, 2018a, 2017). Here, we extend earlier knowledge 
by showing that discrete cortical states are robustly present already at 
birth and that they are nested within qualitatively different forms of 
neonatal cortical activity associated with distinct vigilance states 
(Vanhatalo and Kaila, 2006; Wallois et al., 2021); we also show for the 
first time that such cortical states may correlate to both physiological 
and pathophysiological conditions in the newborn brain. 

The complex and rapid global dynamics in human cortical function 
call for methods that can reliably capture such changes in a way that also 
links to neurobehavioral read-outs. It has been shown recently that 
cortical activity can be described as a sequence of microstates, i.e. 

segments with distinct scalp potential distributions (Khanna et al., 2015; 
Michel and Koenig, 2018) where cortical connections may remain 
somewhat stable (Hutchison et al., 2013; Preti et al., 2017). Recently, 
many methods have been proposed to capture these dynamics ranging 
from EEG microstates (Khanna et al., 2015; Michel and Koenig, 2018) to 
hidden Markov modeling (Quinn et al., 2018; Vidaurre et al., 2016, 
2018b). While microstate analysis only considers scalp potential fields, 
the presently used HMM-based approach identifies brain states based on 
their changes in the cortical connections. A large number of studies have 
reported cortical network dynamics in relation to cognition, pathology, 
behavior (Fosque et al., 2022; Hutchison et al., 2013; Murphy et al., 
2020; Preti et al., 2017; Sanchez-Alonso et al., 2021; Siebenhühner 
et al., 2016), and age (Coquelet et al., 2020; França et al., 2022; Ma 
et al., 2020; Wen et al., 2020). Our study extends these data by assessing 
dynamics in spontaneously occurring cortical network states in the 
neonatal brain. 

Our findings confirm prior studies on sleep-related differences in the 
static networks (Tokariev et al., 2019a, 2019b, 2016); however, we 
identified global networks that are present in both vigilance states, yet 
showing robust sleep state differences akin to the prior observations in 
the adult brain (Stevner et al., 2019). The deeper sleep, QS, was found to 
exhibit pronounced amounts of NCS1 that is characterized by fronto-
temporally prominent power and a solid brain-wide neuronal coupling. 
This is directly compatible with previous work on static networks 
reporting that QS links to a broadly increased cortical connectivity 
(Tokariev et al., 2019a) and power (Tokariev et al., 2016b). The longer 
LT in QS implies a higher stability, being in line with the observations 
from scalp-potential-based microstates (Khazaei et al., 2021). These 
observations together are compatible with an idea that the rapidly 
changing cortical dynamics related to information processing is gener-
ally decreased in the deeper sleep (see also Tononi and Massimini, 
2008). 

We also observed the effects of perinatal brain damage on the 
cortical network states. AS periods exhibit pronounced amounts of 
NCS2, which is characterized by a lower brain-wide neuronal coupling. 
That observation is entirely in line with the previous study showing HIE- 
related reduction in cortical coupling (McLaren et al., 2019). A general 
finding across sleep states in the HIE cohort was that all NCSs exhibited 
longer lifetimes, suggesting higher stability or conversely, lower flexi-
bility compared to the healthy infants. A reduced flexibility or dynamics 
has been suggested as a general property in many brain pathologies 
(Hallett et al., 2020; Kobeleva et al., 2022; Polverino et al., 2022; Van 
Schependom et al., 2019). 

This study also has some methodological limitations that should be 
considered. First, like other clustering-based approaches, HMM analysis 
does not yield a unique number of states. Fewer states may lead to a too- 
simplified interpretation of the data, whereas more states may divide 
one mental process into many steps and contain sporadic states (Borst 
and Anderson, 2015; Quinn et al., 2018). Second, HMM assumes states 
are mutually exclusive (Vidaurre et al., 2018b). The probabilistic state 
assignments can explain every time point, but only one state is consid-
ered to activate at each time point. This assumption may limit 
expressible patterns to HMM states. EEG microstate analysis, which di-
vides scalp maps into microstates, uses the same assumptions (Michel 
and Koenig, 2018). A recent microstate analysis study suggested that 
EEG microstates are spatially and temporally continuous rather than 
discrete neuronal population activations (Mishra et al., 2020). Third, the 
Markovian assumption states that the current cortical state is only 
reliant on the cortical state at the previous time point. Consequently, the 
dependence between state occurrences decays exponentially with time 
and does not reach very temporally distant data; this is known as 
temporally-distant dependency. There is an evidence that the brain ex-
hibits long-term dependencies (Sikka et al., 2020). Fourth, due to 
low-density recording montage, we had to remove about 40% of unre-
liable phase-locking connections from the analysis. Lastly, although the 
common HIE group in this study consisted of three clinical subgroups 

Fig. 6. Alteration of state transitions during AS and QS. The transition proba-
bilities of AS segments (top-left), transition probabilities of QS segments (top- 
middle), and the significant differences between the transition probabilities of 
AS and QS segments (top-right) are shown in the top panel. The significant 
transitions were identified using Wilcoxon’s ranksum test (p < 0.001 for all). 
The red arrows indicate that the transitions increased in AS, while the blue 
arrows show that the transitions increased during QS. The permutation entropy 
as a function of pattern length (bottom panel, AS: in red, QS: in blue) shows that 
the transitions in QS are more complex than AS (p < 0.05). 
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Fig. 7. Effect of asphyxia on temporal features of newborn cortical states (NCS) during AS and QS. Fractional occupancy (FO, top), and mean lifetime (LT, bottom). 
The significant differences between HC (healthy control) and HIE (hypoxic-ischemic encephalopathy) groups are reported by p-value and z-statistic (Wilcoxon’s 
ranksum test) in relevant plots. In each distribution, medians are depicted with a horizontal line and interquartile ranges with darker shading. 

Fig. 8. Effect of asphyxia on the tran-
sition between newborn cortical states 
(NCS) during AS and QS. The permuta-
tion entropy as a function of pattern 
length (top panel, HC (healthy control): 
in green, HIE (hypoxic-ischemic en-
cephalopathy): in purple) shows that 
the transitions during QS are more 
complex for the HC group for long pat-
terns (p < 0.01). The asterisks show 
significant differences between HC and 
HIE groups. The significant transitions 
(bottom panel) during QS and AS were 
identified by means of the Wilcoxon’s 
ranksum test (p < 0.001). The green 
arrow shows that the transition proba-
bility is greater in the HC group. The 
dashed arrows show non-significant 
transitions.   
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(mild, grade I, and grade II) due to their small samples, reliable statis-
tical comparison to test for the effects of HIE severity on the dynamics of 
the cortical networks was not possible. For the clinical evaluation of the 
proposed pipeline, it can be further tested for its: i) diagnostic value by 
discriminating HIE severity, and ii) prognostic value by linking NCSs 
dynamics to neurodevelopment. 

In conclusion, we show that the newborn cortical network activity 
organizes spontaneously into rapidly alternating states (NCS) with their 
respective, stable spectral and connectivity patterns. These NCSs are 
found in both cardinal sleep states, but with different dynamics, indi-
cating their likely physiological significance in supporting sleep func-
tions. A structural insult, such as perinatal brain injury, was shown to 
affect the NCS dynamics. The proposed framework can be fully autom-
atized by adding a reliable artifact removal method (Kumaravel et al., 
2022; O’Sullivan et al., 2023; Webb et al., 2021) and it holds promise for 
offering an objective, global-level measure of early brain function for 
benchmarking neurodevelopmental or clinical research. 
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