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Abstract

Economic literature has so far produced very limited (country-level only) evidence on the mag-
nitude of skilled biased technical change (SBTC) and not investigated at all the extent to which,
coupled with labor market imperfections, it can be associated to an inefficient use of labor. We
present a novel approach to estimating SBTC from the production side (that is, independently from
observed wages), thereby allowing for the presence of, and the evaluation of, labor market inefficiency.
Using WIOD (World Input-Output Database) data (38 countries, 30 sectors), this approach allows
us to provide the first country-sector evidence on SBTC over the 1995-2005 decade and to quantify
the extent of economic inefficiency, arising from labor market imperfection, in terms of discrepancy
between marginal rate of technical substitution (i.e. relative productivity) and relative wage of skilled
and unskilled workers. On average, we find the productivity of skilled workers to grow by around
11.5% more than that of the unskilled, mostly driven by SBTC (13.7%), rather than factor accumu-
lation (-2.1%). Economic inefficiency decreases by 10.5% on average and labor market rigidities are
more binding in sectors that are more exposed to technological change. Substantial heterogeneity
emerges. While displaying the third highest SBTC figure (29%), USA features a relative decrease in
the productivity of skilled workers.
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1 Introduction

The economic implications of technological progress are far from unequivocal assessment. An issue

that still deserves attention, notably at the policy level (e.g., OECD, 2018),1 is the extent to

which technological advancement in recent decades happened in a “skill biased” form. When technical

change comes with increasing marginal productivity (MP - we hereinafter use MP as an abbreviation

for marginal product/productivity) of skilled workers, relative to unskilled workers (i.e., “skill biased

technical change” - SBTC),2 its asymmetric effects on the relative demand of skilled and unskilled labor

are likely to transmit to relative wages (i.e., skill, or wage, premium) and, finally, to economic efficiency.3

In fact, by increasing the MP of skilled labor relative to the MP of unskilled labor, SBTC requires

adjustment in terms of either the wage ratio or the relative use of skilled and unskilled labor (i.e., the

labor ratio), or both. As long as labor market frictions/imperfections affect the skilled and unskilled

labor markets asymmetrically and prevent the adjustment from happening, technological progress can

be detrimental to economic efficiency, and crucially affect wage distribution. This can dampen, even

substantially, the output gains associated with technological progress and it might partially explain the

missing burst in productivity and output corresponding to “waves” of technological progress, such as the

“computer era” in the 70s and the 80s (Solow, 1987), and the advent of artificial intelligence in the last

decade (Brynjolfsson, 1993; Brynjolfsson et al., 2019, 2021).

Indeed, apart from a few contributions (i.e., Caselli and Coleman, 2006; Caselli, 2016) showing SBTC

to be larger in higher-income countries than in lower-income countries (with the US being the leader, in

both the 1990s and 2000s), the empirical evidence on SBTC is scant. In particular, there is no evidence

at all on the magnitude of the SBTC at a country-sector level and, as a consequence, there is lack of

consensus about the skill biased nature of the above “waves” of technological progress. While several

studies (Bound and Johnson, 1992; Katz and Murphy, 1992; Levy and Murname, 1992; Juhn et al., 1992)

established a wide consensus that US wage ratios had been growing sharply in the 1980s and that the

leading factor of growth was the increase in the relative demand for skill (Lemieux, 2008), “the apparent

stability of aggregate wage inequality over the 1990s presents a potentially important puzzle for the SBTC

hypothesis, since there were continuing advances in computer-related technology throughout the decade

that were arguably as skill biased as the innovations in the early 1980s” (Card and Di Nardo, 2002, p.

748). Moreover, the idea that technological change was the major determinant of the wage inequality

pattern in the US since 1970 (see Zeira, 1998 and Acemoglu, 2002) clashes with the evidence that

1OECD (2018) documents a 7% overall increase in measured decoupling between labor productivity and real wages,
which is equally attributed to increasing wage inequality and labor accumulation.

2An alternative explanation in terms of routine biased technical change (RBTC) was proposed in Autor et al., 2003 and
investigated in Goos and Manning, 2007, Goos et al., 2014 and others.

3In perfectly competitive markets, firms choose the amount of each input to deploy by equalizing its marginal revenue
product to its price (i.e., “economic efficiency” condition). In relative terms, this entails that the marginal rate of
technical substitution (MRTS) between any two inputs (the ratio between the two marginal revenue products) equals the
corresponding price ratio. When technological progress implies a uniform “shift” of the production function, the MP of
all inputs is affected in the same proportion (“Hicks-neutral” technological progress). In this case, the economic efficiency
condition is unaffected and no adjustment in the relative demand of inputs occurs. Differently, when technological progress
determines a change in the “curvature” of the production function, the MP of inputs is affected in different proportions
(i.e., “factor biased” technical change), and the MRTS changes at given input levels. In this case, the relative demand of
inputs is crucially affected, and with it, the input price ratio, as long as the change in relative demand is not compensated
by a proportional change in input relative supply.
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industrialized economies such as France, Germany, Italy and Japan did not experience any significant

growth in wage inequality, despite their exposure to similar technology shocks as the US.

In this paper, we argue that such a puzzle exists because available SBTC studies do not address SBTC

from the “production side” but, instead, from the “wage side”. Indeed, SBTC estimation would require

estimating the MP of skilled and unskilled labor from the production function, computing the MRTS

as MP ratio and, finally, isolating the MRTS variation not associated to changing the used amount of

the two types of labor, as well as of capital. However, estimating a country by sector by year specific

production function using country by sector by year data is a daunting task, as the number of production

function parameters to be estimated equals the number of observations. Put it simply, this is the reason

why available SBTC literature follows an “indirect approach”, in which SBTC is residually obtained

“from” observed skill premia (hence, “wage-based” approach), once the relative skill supply of workers

is accounted for, under the hypothesis of perfectly competitive labor markets.4

In providing with the only available evidence on SBTC at the country level, Caselli (2016) points

out how important is “for this methodology that relative wages are informative about relative marginal

productivities”. For example, “if social and political pressures for containing wage dispersion are much

more severe in rich than in poor countries [...] this type of measurement error will bias the results against

a finding of skill bias” (Caselli, 2016, section 2.1). Hence, by retrieving SBTC from the economic efficiency

condition arising under the hypothesis of perfectly competitive labor market, available SBTC studies tend

to conflate “true” SBTC and labor market inefficiencies associated with the action of frictions preventing

relative wages from adjusting to the variation in the relative supply and demand of skills (Freeman and

Katz, 1995), and vice-versa. The recent literature on misallocation has largely documented the presence

of deviations from the efficiency condition (Restuccia and Rogerson 2008, 2013; Hsieh and Klenow, 2009;

Bartelsman, et al., 2013; Calligaris et al., 2018) driven by the action of rigidities in the capital and labor

markets. Labor market frictions can arise at different levels. Among others, Card (1992) and Freeman

(1993) focus on unionization, while Di Nardo et al. (1996) and Lee (1999) highlight the role of minimum

wage.

While such a mis-measurement is to some extent inescapable (Caselli, 2016) in a standard parametric

context,5 it actually hampers the scope for drawing well targeted policy conclusions as long as it rules

out the chance to study the extent to which labor market imperfections can eventually prevent skill

premia and/or firms’ hired quantities of skilled and unskilled workers from freely adjusting to a mutant

technological environment, thereby driving even large deviations from the economic efficiency condition.

To overcome these limitations, we take advantage of recent developments in nonparametric estimation

(see Li and Racine, 2007 and Henderson and Parmeter, 2015 for textbook treatments) to estimate the

MP of inputs from aggregate international data including country, sector and time effects. This allows

4With perfectly competitive labor markets, the MRTS between skilled and unskilled labor equals the corresponding
wage ratio. Hence, the change in the MRTS can be inferred from the observed change in the skill premium. Since the
change in MRTS only depends on SBTC, and the change in the labor ratio (i.e., ratio of deployed quantity of skilled
labor to deployed quantity of unskilled labor), the SBTC can be “residually” retrieved from the (observable) change in
the discrepancy between the wage ratio and the labor ratio, once the skilled and unskilled labor aggregates are properly
constructed and the skill premium is estimated (see Caselli, 2016, on these two key steps).

5See Dorazelski and Jaumandreu (2018) for a semi-parametric multi-step approach at the firm level.
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us to estimate the MRTS between any two inputs (skilled and unskilled labor in the application) directly

from the production function and isolate a SBTC component, net of factor accumulation (FA) effects,

through counterfactual analysis. As a result, we are able to quantify the wedge between MRTS and wage

ratio and to understand whether its eventual increase is determined by SBTC coupled with stagnating

wage ratios, a circumstance that can arguably be attributed to the presence of frictions affecting the

skilled and unskilled labor markets asymmetrically.

Using country-sector information drawn from the WIOD database (40 countries at the 2-digit sectoral

level), we find that the MRTS between skilled and unskilled labor has been growing at a yearly rate of

1.15% on average, over the 1995-2005 decade. Overall, most of this change is driven by SBTC, for which

we report an average yearly contribution of 1.37%, and much less by FA, for which we estimate a slightly

negative contribution (-0.21%) to the MRTS variation. Average values mask substantial heterogeneity

across countries and sectors, with the FA effect sometimes dominating the SBTC component. Notably,

this is the case in the US, for which we estimate the second last MRTS growth in the decade (-19.5%)

associated with a conspicuously negative FA contribution (around -49%) and a positive SBTC (+29%),

the third highest figure. In a similar situation of negative MRTS variation we find developed countries

like Korea, Japan and, to a lesser extent, Germany and Great Britain. On the opposite side, it is possible

to identify a group of less developed countries, whose relatively high MRTS increase is mainly driven

by the FA component. Notably, this is the case of India, the third country in terms of MRTS growth,

featuring an even negative SBTC.

We then consider the change in the discrepancy between the MRTS and the wage ratio of high to

low skilled labor. For this measure of economic (in)efficiency, we document an overall 10.5% decrease.

Although with considerable cross-country and cross-sector variability, we find the skill premium to grow

less than the MRTS in the majority of countries (notably, Korea, the US, Japan Germany are among

the few countries in which the skill premium has grown more than the MRTS) and sectors.

We report econometric analysis suggesting that economic efficiency can be bigger in presence of labor

market institutions that reduce wage differentials.

We finally use counterfactual analysis to show that full adjustment of wages to MP would have

increased within-country wage inequality by 10 points in terms of the Gini index, mostly through further

decreases in low wages.

A policy message emerges insofar the analysis shows that skilled workers are not fully reaping the

benefits of technological progress, compared to unskilled workers.

The exposition is organized as follows. Section 2 gives a simplified presentation of SBTC, while

Section 3 discusses the indirect approach. Section 4 presents our direct approach. Section 5 reports the

SBTC analysis. Section 6 carries out the economic efficiency analysis and presents counterfactual analysis

on wage adjustment. Section 7 concludes. Finally, Appendix A explains the empirical methodology in

more details, Appendix B discusses endogeneity, Appendix C presents the overall distributions featuring

our estimated MPs.
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2 Definition of terms: SBTC and economic inefficiency

Let us begin with a general production function (in logarithmic form) of country c, at time t (for brief

notation, we omit the industry index, considering that everything is also specific to a given sector)

ycj,t = mcj,t(xcj,t) + zcj,t. (1)

Here, country c’s log-output in sector j, at time t, ycj,t, depends on the contemporaneous log-values of

capital kcj,t, skilled labor scj,t and unskilled labor ucj,t, through production technology mcj,t(·), as well

as on zcj,t, which captures Total Factor Productivity (TFP) and idiosyncratic productivity shocks.

According to (1), cross-country differences in the production technology are captured by mcj,t, with

zcj,t accounting for cross-country and cross-sector output differences not explained by different input

choices (kcj,t, scj,t, ucj,t) and/or production technology. Given the amount of inputs, country c’s actual

technology at time t can make it more productive than a generic country f at time t (i.e., mcj,t > mfj,t)

or more productive than itself at t− 1 (i.e., mcj,t > mcj,t−1).

In this framework, the MRTS can be defined as

MRTSs,u
cj,t =

ms
cj,t(xcj,t)

mu
cj,t(xcj,t)

(2)

with ms
cj,t and mu

cj,t denoting the MP of skilled and unskilled labor, respectively.

Hence, MRTS varies because of both technology (i.e., SBTC) and amount of factors (i.e., factor

accumulation). To disentangle these two components (see Section 4.2), let us use

∆Bs,u
cj,tT =

󰀓
MRTSs,u

cj,T −MRTSs,u
cj,t

󰀔 󰀏󰀏󰀏 (kcj,T = kcj,t, scj,T = scj,t, ucj,T = ucj,t). (3)

to refer to the MRTS variation driven by the adopted technology (at given input levels) and

∆Fs,u
cj,tT =

󰀓
MRTSs,u

cj,T −MRTSs,u
cj,t

󰀔 󰀏󰀏󰀏 (mcj,T = mcj,t). (4)

to denote the MRTS variation driven by factor accumulation (and not by technology). The first compo-

nent (∆Bs,u
cj,tT ) identifies the SBTC occurred from t to T in country c - sector j. Here we use the notation

t to signify the initial period (in our application this will be 1995) and T to signify the final period (in

our application this will be 2005). An alternative would be to use 0 and 1 or t0 and t1.

When both the skilled and unskilled labor markets are perfectly competitive, standard profit max-

imization yields the efficiency condition according to which the MRTS between skilled and unskilled

labor (i.e., MRTSs,u
cj,t =

∂Ycj,t/∂Scj,t

∂Ycj,t/∂Ucj,t
) equals the wage ratio (i.e., Ws,u

cj,t =
W s

cj,t

Wu
cj,t

). Any deviation from

this condition can be attributed to labor market imperfections affecting skilled and unskilled workers
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asymmetrically (see Caselli, 1999). Thus, a relative measure of economic inefficiency is given by the ratio

τ s,ucj,t =
MRTSs,u

cj,t

Ws,u
cj,t

. (5)

with τ s,ucj,t = 1 denoting the absence of imperfections.

To see the relationship between SBTC and economic inefficiency, note that SBTC affects MRTS (i.e.,

the ∆Bs,u
cj,tT term in (3)). To the extent that the MRTS variation induced by SBTC is not compensated

by changes in relative wages and/or quantity of inputs (i.e., the ∆Fs,u
cj,tT term in (4)), SBTC can be

associated to a less efficient use of labor.

2.1 Some Motivation

Although we abstract from any type of functional/parametric specification in subsequent analysis, let us

illustrate the intuition behind the identification of SBTC in a Cobb-Douglas setting, with a nested CES

specification for S and U

Ycj,t = Zcj,t(Kcj,t)
α
󰀅
(As

cj,tScj,t)
σ + (Au

cj,tUcj,t)
σ
󰀆 1−α

σ , (6)

Here Y denotes output in level and K, S and U refer to capital, skilled labor and unskilled labor in

levels, respectively. 0 < α < 1 and 0 < σ ≤ 1, with the elasticity of substitution (EoS) between S and U

given by EoS = 1/(1− σ).

SBTC encompasses any form of technical change directly affecting the MRTS between skilled and

unskilled labor, at given input levels. The MRTS, defined as the ratio of corresponding MPs (i.e.,

∂Ycj,t/∂Scj,t

∂Ycj,t/∂Ucj,t
), can be expressed as

MRTSs,u
cj,t ≡

∂Ycj,t/∂Scj,t

∂Ycj,t/∂Ucj,t
=

󰀣
As

cj,t

Au
cj,t

󰀤σ 󰀕
Scj,t

Ucj,t

󰀖σ−1

(7)

with

∂Ycj,t

∂Scj,t
= Φcj,t(A

s
cj,t)

σ(Scj,t)
σ−1 and

∂Ycj,t

∂Ucj,t
= Φcj,t(A

u
cj,t)

σ(Ucj,t)
σ−1 (8)

and Φcj,t = (1− α)Zcj,t(Kcj,t)
α
󰀅
(As

cj,tScj,t)
σ + (Au

cj,tUcj,t)
σ
󰀆 1−α−σ

σ .

Equation (7) highlights how MRTS varies according to changes in the labor ratio
󰀓

Scj,t

Ucj,t

󰀔
, the EoS,

and the ratio
As

cj,t

Au
cj,t

, usually referred to as “relative efficiency”. Given the first two, MRTS can only

change because of relative efficiency: this is how SBTC is usually understood. Hence, the SBTC from t

to T can be defined as the change in relative efficiency occurred during the period and expressed as

∆Bcj,tT = Bcj,T −Bcj,t (9)
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with

Bcj,T ≡
As

cj,T

Au
cj,T

=
󰀓
MRTSs,u

cj,T

󰀔 1
σ

󰀕
Scj,T

Ucj,T

󰀖 1−σ
σ

and Bcj,t ≡
As

cj,t

Au
cj,t

=
󰀃
MRTSs,u

cj,t

󰀄 1
σ

󰀕
Scj,t

Ucj,t

󰀖 1−σ
σ

.

(10)

In this parametric framework, SBTC can be measured only provided that reliable MRTS, labor ratio and

EoS figures are available. As regards to MRTS, one would like to obtain it through estimating the MPs

directly from (8). However, in an aggregate country-sector-year setting, this would entail estimating

a model oversaturated with parameters unless various homogeneity restrictions were imposed (such as

common technology across sectors or across countries). For such reason, the literature on SBTC has

mainly followed the idea that the MRTS in Equation (10) can be inferred from relative wages, under the

assumption that labor markets are perfectly competitive (Acemoglu and Autor, 2011). It is useful to

illustrate the basics of this “indirect” (wage-based) approach before going into the details of our “direct”

(production-based) approach working with Equation (3).

3 “Indirect” (wage-based) approach: intuition and shortcom-

ings

The wage-based approach builds on the parametric specification in (10) under the hypothesis of perfectly

competitive labor markets. Hence, we have

W s
cj,t

Wu
cj,t

=

󰀣
As

cj,t

Au
cj,t

󰀤σ 󰀕
Scj,t

Ucj,t

󰀖σ−1

≡ MRTSs,u
cj,t, (11)

where W s and Wu are used to refer to the wage of skilled and unskilled labor, respectively. If the relative

supply of skilled and unskilled labor is exogenous, relative wages fully describe the actual evolution of

SBTC. Thus, the SBTC in (9) can be obtained residually from the change in the efficiency ratio from

t to T , with the efficiency ratio obtained by using the wage ratio to replace for the MRTS in Equation

(10):

Bcj,t ≡
As

cj,t

Au
cj,t

=

󰀣
W s

cj,t

Wu
cj,t

󰀤 1
σ 󰀕

Scj,t

Ucj,t

󰀖 1−σ
σ

. (12)

This intuition, carefully described in Caselli (2016), has been used in several studies at the firm

or industry level (Katz and Murphy, 1992; Krusell et al., 2000; Card and Lemieux, 2001; Caselli and

Coleman, 2006; Henderson, 2009; Violante, 2016 and Rossi, 2019).6 While estimating SBTC in this

fashion requires data on relative supply of skills, skill premium and EoS,7 such an indirect approach

6Some authors (Koeniger and Leonardi, 2007; Alesina et al., 2018, among others) highlight how adopting a new tech-
nology can be relatively more or less convenient, depending on the pressure exerted by labor market institutions on wages.
If this is the case, technology adoption is not independent of relative wages (Karabarbounis and Neiman, 2014). In other
words, SBTC can be affected by the wage ratio. This emphasizes the importance of estimating SBTC directly from the
production function, as suggested by our approach.

7This makes the approach both attractive and difficult to implement (see Caselli, 2016). In particular, it is worth
stressing how SBTC measures obtained through the indirect approach are highly dependent on the choice concerning EoS
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suffers from identification issues that we hereby discuss in brief.

“Biased” biased technical change. By relying on the assumption that the whole deviation from the

efficiency condition is due to technical change, the approach in (12) and (9) attributes to SBTC the effect

of any type of eventual frictions affecting the market of skilled and unskilled labor differently (see also the

discussion in Card and Di Nardo, 2002 and Caselli, 2016). To see this using Equation (11), consider how

an increase in
As

cj,t

Au
cj,t

results into an increasing relative demand of skilled labor (in order to compensate

the increase in MRST), which in turn pushes towards an increasing wage gap in the aggregate.

In a perfectly competitive labor market, these two effects generate a new economically efficient situa-

tion in which SBTC is associated with both a higher
W s

cj,t

Wu
cj,t

and a higher
Scj,t

Ucj,t
. The presence of asymmetric

imperfections affecting skilled labor differently from unskilled labor can prevent such an adjustment from

taking place, thereby opening a “wedge” between MRTS and relative wages. This economically inefficient

situation can be visualized using parameter τ s,ucj,t > 1 to subsume such wedge. With frictions resulting into

an inefficiently low realized wage ratio
W s

cj,t

Wu
cj,t

, compared to the perfectly competitive one – i.e., τ s,ucj,t

W s
cj,t

Wu
cj,t

,

we have:

MRTSs,u
cj,t =

󰀣
As

cj,t

Au
cj,t

󰀤σ 󰀕
Scj,t

Ucj,t

󰀖σ−1

= τ s,ucj,t

W s
cj,t

Wu
cj,t

. (13)

Equation (13) yields the following expression for the “true” relative efficiency term

B∗
cj,t = τ s,ucj,t

󰀣
W s

cj,t

Wu
cj,t

󰀤 1
σ 󰀕

Scj,t

Ucj,t

󰀖 1−σ
σ

󰁿 󰁾󰁽 󰂀
Bcj,t

(14)

where Bcj,t is the (biased) relative efficiency term in (12), computed without taking labor market ineffi-

ciency into account.

Hence, the true SBTC can be written as

∆B∗
cj,tT = (τ s,ucj,T )

1
σ Bcj,T − (τ s,ucj,t)

1
σ Bcj,t (15)

Equation (15), which nests (9) as a special case with τ s,ucj,T = τ s,ucj,t = 1, highlights how the indirect

approach conflates “true” SBTC and labor market vicissitudes in the presence of asymmetric distortions

between skilled and unskilled labor markets. In particular, SBTC is understated whenever τ s,ucj,t > 1, that

is in presence of distortions compressing the wage of skilled labor relative to unskilled labor (the opposite

case is discussed in Caselli and Coleman, 2006). While the understatement grows with the asymmetry8

(that is, if τ s,ucj,T > τ s,ucj,t), the usual assumption in the indirect approach is the absence of asymmetric labor

parameter. In principle, the EoS can be obtained, as suggested by Equation (11), by regressing relative wages on labor
ratios, usually at the country level including controls (Katz and Murphy, 1992; Acemoglu and Autor, 2011).

8A time-invariant asymmetry τs,uc = τs,ucj,T = τs,ucj,t does not eliminate the understatement, as we have

∆B∗
cj,tT = (τs,uc )

1
σ

󰁫
Bcj,T −Bcj,t

󰁬
= (τs,uc )

1
σ ∆Bcj,tT .

8



market frictions (i.e., τ s,ucj,T = τ s,ucj,t = 1), which eventually boils down to assuming perfect competition in

both the skilled and unskilled labor markets.

An ad hoc specification. In the indirect approach, SBTC is identified only under very specific

assumptions about how S and U enter the production function (i.e., the CES hypothesis). To see this,

consider the alternative specification

Ycj,t = Zcj,t(Kcj,t)
α
󰀅
(As

cj,tScj,t)
σ(Au

cj,tUcj,t)
1−σ

󰀆1−α
. (16)

The derivatives with respect to S and U are given by, respectively:

∂Ycj,t

∂Scj,t
= σ(1− α)

Ycj,t

Scj,t
and

∂Ycj,t

∂Ucj,t
= (1− σ)(1− α)

Ycj,t

Ucj,t
(17)

with the MRTS between skilled and unskilled labor amounting to

∂Ycj,t/∂Scj,t

∂Ycj,t/∂Ucj,t
=

σ

1− σ

Ucj,t

Scj,t
. (18)

In this case, the relative efficiency term
As

cj,T

Au
cj,T

disappears from the MRTS, and as does SBTC, as long as

the EoS parameter is fixed across countries, sectors and time (see discussion in next paragraph).

σ-dependence. From Equation (12), SBTC is identified up to the scale based on σ, which encapsulates

the EoS between skilled and unskilled labor. If σ does not vary across countries, sectors or time, such

a scale effect can be easily removed by either using an estimated value from the empirical literature

(e.g., Autor et al., 2008 suggest values ranging from 1 to 2; Caselli, 2016 assumes a value of 1.5, entailing

σ = 1/3) or expressing the SBTC in relative terms with respect to a benchmark (e.g. the US as in Caselli,

2016). However, the empirical literature has largely documented how the EoS can differ across industries

(Krusell et al., 2000; Blankenau and Cassou, 2011), countries and time (Henderson, 2009). Moreover,

the specification described in the previous paragraph shows how a country-sector-time invariant EoS can

easily make SBTC unidentifiable (see Equation (18)).

More realistically, σ can be thought of as a technological parameter itself varying across countries,

sectors and time in response to the paths of technological change characterizing different countries and

sectors (i.e., σcj,t). This assumption yields different effects in the functional specifications (6) and (16).

In the former, σcj,t remains a scale parameter conflating the magnitude of SBTC but its (country-sector-

time) heterogeneity makes its removal from these figures problematic (neither using exogenous values, as

long as country-sector-time specific figures are not available, nor switching to relative measures). In the

latter, heterogeneity in σ affects the MP of S and U in different proportions and, as such, enters SBTC

directly – i.e., Bcj,t ≡
σcj,t

1−σcj,t
=

󰀓
W s

cj,t

Wu
cj,t

󰀔󰀓
Scj,t

Ucj,t

󰀔
. In this case, SBTC is easily identified but the EoS is

the driver of SBTC, as the efficiency ratio cancels out.

9



“Mechanical” prediction. Equation (12) “mechanically” determines the direction of the bias asso-

ciated with technical change. In particular, in the presence of growing wage premia, SBTC can only

arise if changes in relative wages and changes in labor ratios are not inversely related (i.e., if labor ratios

also grow). By contrast, with decreasing wage ratios, technical change is skill biased only if the labor

ratio grows in such a way that the growth in
󰀓

Scj,t

Ucj,t

󰀔1−σ

more than compensates the decrease in
󰀓

W s
cj,t

Wu
cj,t

󰀔
,

entailing an inverse relationship between changes in relative wages and changes in labor ratios. Other-

wise, technological progress is biased in favor of unskilled labor. Moreover, the higher the EoS (σ), the

higher is the required increase in the labor ratios. As Card and Di Nardo (2002) emphasize, this is a

fuzzy implication in all those cases in which the wage premium fails to grow at the pace of technology

adoption (as in the US in the 1990s).

As shown in Figure 1, the wage ratio decreased in many countries over the 1995-2005 decade, some-

times considerably (Italy, Sweden, Brazil). In those cases, the indirect approach would likely predict

technological progress to be biased in favor of unskilled labor, to the extent that the increase in the

labor ratio is relatively low and the EoS is relatively high. This raises questions about whether indirect

SBTC figures are indeed capturing the true essence of SBTC notwithstanding the presence of (potentially

asymmetric between skilled and unskilled) labor market imperfections.9

4 A “direct” (production-based) approach

As said, instead of relying on the wage ratio to proxy for MRTS in Equation (10), one might want to

estimate MRTS directly. While this is the most intuitive way to deal with SBTC, this approach has not

been followed so far because of the econometric issues associated with estimating the MP of each input in

a given country-sector-year. In a standard parametric setup this approach is problematic as the number

of parameters to estimate would easily exceed the number of observations. To overcome this limitation,

we suggest a nonparametric approach.

Identification relies on i) estimating the MRTS between skilled and unskilled labor; ii) using the

estimated MRTS to obtain the SBTC in (3) through counterfactual analysis.

4.1 Estimating MRTS

The first step in the analysis is the estimation of the MRTS between skilled and unskilled labor from

(1) allowing for cross-country, cross-sector and cross-time variation. For this, we treat the production

function in (1) as an unknown smooth function varying across the three dimensions (Battisti et al.,

2018) and use local-linear least-squares (LLLS), which performs weighted least-squares around a given

point, with weights determined by a kernel function and a bandwidth vector (more weight is given

9Baqaee and Farhi (2020) recently developed a general theory of aggregation from the firm level in inefficient economies.
Using a nonparametric decomposition of the changes in aggregate TFP into pure (exogenous) changes in technology and
(endogenous) changes in allocative efficiency, they find that improvement in allocative efficiency, through reallocation of
market share to high-markup firms over time, would account for about half the aggregate TFP growth over the period
1997-2015.
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to observations in the neighborhood). LLLS allow smoothing over continuous (k, s and u), ordered

(time) and unordered (country-sector) covariates simultaneously. The ability to smooth over discrete

cells affords us the ability to estimate time and country-sector specific MPs.

Specifically, we write mcj,t(·) in Equation (1) as

ycj,t = m(xcj,t, dcj , dt), (19)

where, aside from the continuous variables kcj,t, scj,t and ucj,t, we use two discrete variables: a country-

sector effect dcj (which is constant over time) and a time effect dt. While the latter is ordered by nature,

the former has no natural ordering. In a parametric setting, allowing for country-sector-year effects

would introduce a large and infeasible number of unobserved effects; moreover, even accounting for

country-sector-year effects would not allow for heterogeneity of marginal products of production unless

there were also interactions that were included in the model, quickly eliminating degrees of freedom. By

smoothing across both time and sector, we can lessen the impact of common parametric strategies (such

as time and country-sector intercept shifts) by leveraging “nearby” cells for local information.10 The

ability to smooth discrete cells allows local averaging of nearby cells to provide more “observations” to

measure the production function at a point. As the sample size increases, this necessarily allows the

neighborhood size to be reduced.

To make the notation a bit more manageable, let us drop the sector by country denomination and

define our continuous variables as xt = (xcj,t) = kcj,t, scj,t, ucj,t and our discrete variables as d = (dcj , dt).

We estimate the model by kernel smoothing a local-linear approximation of (1) via a first-order Taylor

expansion around a given point x (note that the expansion is only for the three continuous covariates k,

s, and u) according to

yt = m(xt,d) + εt

≈ m(x,d) + (xt − x)β(x,d) + εt (20)

where m(xt,d) = mcj,t(xcj,t, dcj , dt) and (xt − x)′ is a 3 × 1 vector. The vector β(x,d) is defined as

the partial derivative vector of m(xt,d) with respect to x and is an estimate of the three MPs:
∂mcj,t

∂kcj,t
,

∂mcj,t

∂scj,t
, and

∂mcj,t

∂ucj,t
(which we denote as mk(·), ms(·) and mu(·), respectively).11

Appendix A contains more details on both the estimation and bandwidth selection method.

The generalized kernel regression approach is particularly appealing to our purposes because of its

10This comes at the expense of introducing bias into the estimators (Li and Racine, 2007) but has the potential to lower
variance and has been shown to lead to substantial finite sample gains (Li and Racine, 2004). Li and Racine (2004) focus
on the iid setting, whereas our setting here is more aptly characterized by data dependence over time. Robinson (1983)
(for strongly dependent data), Li and Racine (2007, chapter 18), (for a martingale difference process), and Li et al. (2009)
(for weakly dependent mixed discrete and continuous data), demonstrate that the main large sample properties of the
regression estimator in the iid setting carry over to the dependent data case. In our back of the envelope investigation, we
deploy several alternative data checks to determine if various forms of time series dependence may have undue influence
on our results. These robustness checks are available upon request.

11In the CES parametric setup described above, Equation (20) would read, using index i to refer to the generic cj, t
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ability to estimate m(x,d) and β(x,d) including country-sector and year effects. As discussed earlier,

this would be difficult in a standard parametric setup, as the number of parameters to be estimated could

easily surpass the number of observations (country c at time t in sector j). By smoothing over continuous,

ordered and unordered covariates simultaneously, our approach allows us to identify a country-sector-

year specific relationship between output and inputs, thereby differing from conventional estimates that

restricts the estimated relationship to have a common form across countries (input coefficients are sector

specific but not country specific).

As Li and Racine (2004) and Li et al. (2009) show, the addition of discrete regressors does not

affect the convergence rate of the conditional mean, as it is only dependent on the number of continuous

regressors. This is quite important, as the curse of dimensionality is one of the primary criticisms against

the use of nonparametric methods in empirical studies. In our application, with two of the five variables

being discrete, our sample size should be adequate to learn about the underlying production technologies.

Hence, our nonparametric approach allows us to estimate country-sector-time specific partial deriva-

tives for each input (see Appendix A for details) avoiding explicit assumptions on the functional form of

technology (e.g. Cobb-Douglas). We only require that log-TFP enters additively, ending up in zcj,t.

Following Equation (2), the MRTS can be obtained as the ratio of the estimated partial derivative

with respect to S to the estimated partial derivative with respect to U:

󰁦MRTS
s,u

cj,t =
󰁥ms

cj,t(xcj,t)

󰁥mu
cj,t(xcj,t)

. (21)

It is worth noting how the estimated MRTS in (21) is virtually net of any form of Hicks-neutral

technical change, as the log-additive term zcj,t vanishes when the partial derivative is estimated, while

eventual log-multiplicative components are swept away when computing the ratio of the estimated MP.

The rate of change of MRTS can be defined as:

∆ ln 󰁦MRTS
s,u

cj,tT = ln

󰀣
󰁦MRTS

s,u

cj,T

󰁦MRTS
s,u

cj,t

󰀤
= ln

󰀣
󰁥ms

cj,T (xcj,T )

󰁥mu
cj,T (xcj,T )

󰀤
− ln

󰀣
󰁥ms

cj,t(xcj,t)

󰁥mu
cj,t(xcj,t)

󰀤
. (22)

Note that MRTS changes can depend on either changes in technology, through SBTC, or changes in

the amount of inputs used (see Equation 8 for a standard parametric specification). The latter change

should be isolated otherwise it may be a driving force in affecting results (see for instance Buera et al,

2021). Thus, we hereby proceed with disentangling the two effects through counterfactual analysis.

observation, as:

yi ≈ mi(xi) + (ki − k) [lnα+ ln yi − ln ki]󰁿 󰁾󰁽 󰂀
βk
i

+(si − s)
󰁫
ln(Φi) + ln((As

i )
σSσ−1

i )
󰁬

󰁿 󰁾󰁽 󰂀
βs
i

+

+(ui − u)
󰁫
ln(Φi) + ln((Au

i )
σUσ−1

i )
󰁬

󰁿 󰁾󰁽 󰂀
βu
i

+ εi

where (8) has been used and mi(xi) is defined by Equation (6).
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4.2 Dissecting MRTS growth: SBTC and FA

To isolate the SBTC component from the MRTS change, as suggested by Equation (3), a counterfactual

analysis is necessary, in which we measure the change in output (associated with technological progress)

that the country would have experienced without changing the amount of inputs used. Indeed, for each

input (say skilled labor) we are able to compute counterfactual partial derivatives 󰁨ms
cj,T (xcj,t) measuring

the additional output (associated to the marginal unit of S) that country c would have produced at time

t using time T ’s technology, given the quantity of inputs used.

These counterfactual values can be used to decompose the MRTS variation in (22) into the following

two components:

∆ ln 󰁦MRTS
s,u

cj,tT = ∆ ln 󰁨Bs,u
cj,tT +∆ ln 󰁨Fs,u

cj,tT . (23)

The first term, defined as

∆ ln 󰁨Bs,u
cj,tT = ln 󰁩MRTS

s,u

cj,T − ln 󰁦MRTS
s,u

cj,t = ln

󰀣
󰁨ms

cj,T (xcj,t)

󰁨mu
cj,T (xcj,t)

󰀤
− ln

󰀣
󰁥ms

cj,t(xcj,t)

󰁥mu
cj,t(xcj,t)

󰀤
, (24)

identifies SBTC insofar it encompasses the technical change not affecting the marginal revenue product

of skilled and unskilled labor in the same proportion.

The second term, defined as

∆ ln 󰁨Fs,u
cj,tT = ln 󰁦MRTS

s,u

cj,T − ln 󰁩MRTS
s,u

cj,T = ln

󰀣
󰁥ms

cj,T (xcj,T )

󰁥mu
cj,T (xcj,T )

󰀤
− ln

󰀣
󰁨ms

cj,T (xcj,t)

󰁨mu
cj,T (xcj,t)

󰀤
, (25)

is a FA component measuring the MRTS variation related to the change in the quantity of inputs (factor

accumulation), at a given level of technology.

4.3 Measuring economic inefficiency

This approach nicely fits into an economic efficiency analysis. As highlighted in Section 2, under standard

profit maximization, the MRTS equals the wage ratio:

MRTSs,u
cj,t = Ws,u

cj,t =
W s

cj,t

Wu
cj,t

. (26)

Thus, with the estimated MRTS in our hands, the presence of market imperfections affecting skilled

and unskilled labor asymmetrically can be evaluated by computing the relative measure of economic

inefficiency in equation (5), which also approximates the term τ s,ucj,t in Equation (13):

ln 󰁥τ s,ucj,t = ln

󰀣
󰁦MRTS

s,u

cj,t

Ws,u
cj,t

󰀤
. (27)

The efficiency condition implies τ s,ucj,t = 1. When τ s,ucj,t > 1, the MP of skilled labor, relative to unskilled
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labor, is too high, compared to the actual wage ratio. The opposite is true for τ s,ucj,t < 1.

Since we estimate the MRTS in Equation (21) at different points in time, we are able to relate the

variation in 󰁥τ s,uc to SBTC as follows:

∆ ln 󰁥τ s,ucj,tT = ln 󰁥τ s,ucj,T − ln 󰁥τ s,ucj,t = ∆ ln 󰁨Bs,u
cj,tT +∆ ln 󰁨Fs,u

cj,tT󰁿 󰁾󰁽 󰂀
ln

󰀕 󰁦MRTS
s,u
cj,T

󰁦MRTS
s,u
cj,t

󰀖
=∆ ln 󰁦MRTS

s,u

cj,tT

−∆ lnWs,u
cj,tT (28)

where ∆ lnWs,u
cj,tT = ln

󰀓Ws,u
cj,T

Ws,u
cj,t

󰀔
. Equation (28) provides information concerning the eventual decoupling

between relative productivities and relative wages: positive values imply that the MP of skilled labor

has grown relatively more than wages, compared to unskilled labor. Moreover, we are able to determine

the extent to which such decoupling is driven by SBTC, rather than by the amount of inputs used.

Notably, the extent of economic inefficiency grows with the distance of τ s,uc from zero, no matter

whether values are positive or negative. Thus, it is convenient to express the variation of 󰁥τ s,uc using

absolute values to operationalize the formulation in Equation (28) in terms of “increasing” or “decreasing”

economic inefficiency as follows:

󰁥Θs,u
cj,tT =

󰀏󰀏󰀏ln 󰁥τ s,ucj,T

󰀏󰀏󰀏−
󰀏󰀏ln 󰁥τ s,ucj,t

󰀏󰀏 . (29)

󰁥Θs,u
cj,tT measures the change in economic efficiency in relative terms. Positive values point to increasing

economic inefficiency, a widening discrepancy between relative wages and MRTS. This circumstance can

be driven by a change in relative wages, the adoption of skill biased technologies (i.e., SBTC), a change

in the skilled to unskilled labor actually used (i.e., factor accumulation).12 The absence of changes in

economic efficiency (i.e., 󰁥Θs,u
cj,tT = 0) does not rule out SBTC.

To sum up, the basic idea of the direct approach described in this Section consists of estimating the

MPs of inputs (i.e., the partial derivatives) directly from the production function and using them to

obtain the decomposition in Equation (23). This entails three advantages over the indirect approach

described in Section 3. First, estimation only requires information on hired quantities of labor (i.e.,

equilibrium employment by skill types); wages are not needed. Second, given that SBTC is obtained

independently of the observed wage gap, our estimates are not affected by the presence of labor market

imperfections. Indeed, the evolution of the discrepancy between relative wages and MRTS (referred to as

economic inefficiency) can be studied ex post. Third, our approach does not require an estimate of σ and

is not affected by the scale issues highlighted in Section 3. In particular, the nonparametric estimation

ensures that the technological progress affecting S and U in different proportions is fully captured by the

SBTC component in (23) (i.e., ∆ ln 󰁨Bs,u
cj,tT ), with no σ-dependance troubling the estimates and with the

EoS flowing into the estimated SBTC as long as it represents a technological parameter whose country-

12Although rare, positive values of 󰁥τs,ucj,T sometimes turn into negative values, and vice-versa. Since the economic

inefficiency is violated in both cases, absolute values are needed. This issue is, to some extent, similar to the β-convergence
problem in the presence of leap frogging effects.
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sector-time heterogeneity can be interpreted in terms of differential effect of technological progress on

the MP of S and U .

5 SBTC analysis

5.1 Data

In this section we estimate the MRTS and bring the decomposition in Equation (23) to data, basing the

analysis on the Socio-Economics Accounts section of WIOD (World Input Output Database; Timmer et

al., 2015; Erumbam et al., 2012). This database contains detailed data on annual basis for 40 countries

and 35 (ISIC Rev. 3) sectors, from 1995 to 2009 (release February 2012). Values are expresssed at 1995

constant prices. Specifically, we use:

• Value added (in current value) as the output measure Y ;

• Real fixed capital stock as K;

• High, medium and low-skilled labor, expressed in terms of employment by category, obtained

by multiplying the total employment in the country by the share of hours worked in the single

category.13;

• Hourly wages for high, medium and low-skilled labor. Hourly wages are computed as the ratio of

share in labor compensation times total labor compensation to share in hours worked times total

hours worked.

To reconcile this three categories with our two-categories specification encompassing only S and U , we

include medium-skilled labor in U , in the benchmark specification, and in S, in the robustness section.

Current price variables are converted into real terms using the price level of gross value added and then

transformed them into PPP using absolute 1995 PPPs variable XR. 14 We undertake benchmark analysis

over the averages of two periods, 1995-1996 and 2005-2006; this allows us to remain somehow removed

with the effect of the economic crisis. After cleaning for missing, zero and negative value added values,

we are left with a final sample of 975 observations at both the beginning and the end of the period,

covering 38 countries and 25 sectors.

Tables 1 and 2 report the (by country and by sector, respectively) descriptive statistics at the begin-

ning and the end of the period, highlighting an average 3.7% increase in value added, associated with

a 4.5% increase in capital. The stock of skilled labor displays a huge increase (11.5%), while unskilled

labor decreases by -0.6%.

13WIOD provides skill shares at the industry level. For EU countries, for instance, these come from the Labor Force
Survey.

14Absolute 1995 PPPs are computed as exchange rate from Penn World Tables 9.1 (Feenstra et al., 2015) times relative
PPP at 1995.
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5.2 Benchmark estimation

As a first step we estimate the β(x, d) vector (i.e., the MPs) in Equation (20) as described in Section

4.1. The estimated distribution is discussed in Appendix C.

The MRTS between skilled and unskilled labor at the beginning and the end of the period under

consideration is then obtained, for each country-sector, as the ratio in (21). These values are summarized

in Table 3, together with standard errors, with the overall distribution and confidence intervals plotted in

Figure 2. The third row of the table reports the counterfactual value of MRTS computed with technology

of 2005 and input stocks of 1995.

The estimated MRTS changes are detailed in Table 4, by country, and Table 5, by sector (unweighed

averages reported).15 Overall, we report a positive change in MRTS (around 11.5% on average), which,

given our ten-year time span, maps into a roughly 1.1% yearly increase in the MP of skilled labor, relative

to unskilled workers. Within this average figure, we observe substantial heterogeneity.

To understand the extent the change in terms of economic efficiency can be traced back to SBTC,

we bring the counterfactual decomposition presented in Section 4 to data by computing Equation (23).

Results are detailed by country in Table 4, and by sector in Table 5.

The driving force of the MRTS variation is SBTC, which is 13.7% on average, that is around 1.37% on

a yearly basis. Although with a certain degree of heterogeneity across sectors and countries, the average

role of FA is negative and relatively small (around 2% on average). In addition, we observe substantial

heterogeneity across countries and sectors. The FA effect sometimes dominates the SBTC component.

Notably, this is the case in the US, for which we estimate a -19.5% decease in the MRTS associated

with a huge negative FA contribution (-48.6%) and a positive SBTC (29%). We detect positive SBTC

terms for all sectors, ranging from the lowest in retail trade to the highest in basic and fabricated metals

(out of real estate that has too few observations). The FA contribution is negative in several industries

and countries. According to our framework, this suggests that keeping the technology in use constant,

the evolution of the (S,U) input mix is such that the overall contribution to the MRTS growth rate is

negative; this might be interpreted in terms of decreasing MPs, as long as the relative use of S has been

growing over the 1995-2005 decade (see Figure 1). By contrast, decreasing MRTS can always be traced

back to a strongly negative FA effect.

An interesting dimension (see Figure 3) is that it is possible to identify a group of (mainly less

developed) countries in which we observe a relatively high increase in the MRTS mainly driven by the FA

dimension. In particular, this is the case of India, the third country in terms of MRTS growth, featuring

an even negative SBTC. On the opposite side, we find countries like Korea, USA, Japan, Germany, in

which the MRTS is even negative, mainly due to FA. In particular, while displaying the third highest

SBTC figure (29%), USA features the second last decrease in MRTS (-19.5%). These examples might

reveal an attitude to accumulate skilled labor, relative to unskilled labor, thereby decreasing the relative

productivity of the former, when technical change is skill biased; and vice-versa.

15In unreported analysis we verified that figures are pretty similar when the country (sector) averages are weighted using
the sectoral (country) shares within the country (sector).
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5.3 Broad validation

The unavailability of comparable SBTC figures in the literature prevents us from carrying out a bench-

marking analysis. This notwithstanding, it is important to get a sense of meaningfulness of our SBTC

figures. To this aim, we present a broad validation exercise in which we ask to what extent our estimated

SBTC correlates with country-sector measures of IT exposure.

We use the WIOD information on output to generate a Balassa-type index of sectoral specialization.

We then use EUKLEMS16 information on IT capital to compute world average and US-specific sectoral

shares of ICT capital. These shares are interacted interacted with the index of sectoral specialization

to obtain country-sector measures of IT exposure that we expect to be positively correlated with our

estimated SBTC.

The regression output of SBTC against these two country-sector variables is reported in the first and

second row of Table 6. In the third row we replace the IT capital variable with the sectoral robot stock

at the world level (i.e., global value of installed robots in a given sector). In row four we replace the

Balassa index with a Herfindal index of output concentration. All results point to a strong and positive

correlation, as expected.

5.4 Robustness checks

In this section, we report several checks aimed at evaluating the robustness of our results. Table 7 reports

these findings. For ease of comparison, we also report our benchmark results.

In our benchmark analysis, we use two-years beginning and end of period averages in order to smooth

over yearly anomalies. As a first check (row 1), we replicate our estimates using 1995 and 2005 as the

first and last year, without averaging. In row 2, we use three year averages centered in 1996 and 2006.

In row 3, we report the estimates obtained using a least-squares cross-validation (LSCV) procedure

to select the bandwidths as opposed to our rule-of-thumb approach. Data-driven selection of bandwidths

is viewed as more agnostic towards the level of smoothing but is also susceptible to optimal bandwidths

which are empirically small, leading to noisy estimates which are potentially seen as unpalatable in ap-

plied work (Loader, 1999). Here our LSCV bandwidths produce similar conclusions to our benchmark

rule-of-thumb bandwidths, which is reassuring that our results are not being driven entirely by smoothing

parameter selection. Although the number of observations slightly changes across the different specifi-

cations (in particular, it shrinks by about 6-7% in the “Not averaged 1995-2005” case) because of time

changing country-sector coverage, the results are very close to our benchmark figures.

As a further robustness check (row 4), we consider our measures when we restrict technology to be

identical across countries within sectors.17 Here this should set SBTC equal across countries within a

sector (assuming similar levels of capital and labor). While this may not be a palatable assumption, it

is a useful middle ground between our proposed nonparametric approach and the common parametric

16The EUKLEMS database (http://www.euklems.net/) provides country-sector information on capital (K), labour (L),
energy (E), materials (M) and service (S) inputs for EU countries.

17We thank an anonymous referee for this suggestion.
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approach that assumes this by default. Moreover, if one believes that countries should be exposed to

similar production technologies this may be seen as a useful prediction. In this case our estimate of

SBTC is larger than in our benchmark results, which aligns with intuition.

5.5 Potential limits of the direct approach

“High-Medium vs Low” skilled labor. While the WIOD database provides detailed information

on three classes of labor skills (high, medium and low), we use a “High vs Medium-Low” classification in

our benchmark analysis. Certainly it would be preferable to distinguish each of these three classes. We

do not do this for two specific reasons. First, nonparametric kernel smoothing methods have increased

finite sample bias as the number of continuous covariates is increased (the curse of dimensionality) and

we already have a capital stock variable and the two broad classes of labor market skills. Second, our

decomposition of MRTS and SBTC would require further modification with three labor classes. While

these circumstances might be perceived as intrinsic limits of our nonparametric approach, our belief is

that the essence of our focus is maintained with two labor market skill classes while also assisting in the

interpretation of the analysis. However, the results might differ depending on the classification adopted.

To address this issue, Table 7 (row 5) reports the results obtained classifying labor into the two categories

of “High-Medium” and “Low”. Overall, the sign of the differences accords with expectations. Indeed,

the higher magnitude of the estimated MRTS and SBTC effects is expected and the insights with this

different arrangement of labor market skills are broadly consistent with an increase, instead of a decrease,

in relative wages associated with a higher SBTC and a substantially lower FA effect. Consequently, the

estimated change in economic efficiency is higher.

Accounting for Endogeneity. In principle, estimation of (1) might suffer from potential endogeneity

of mcj,t(·) with respect to aggregate Hicks-neutral total factor productivity zcj,t (i.e., TFP), to the extent

this is observed and plays a role in firms’ choices about technology and amount of inputs.18

This “transmission bias” might distort our MRTS and SBTC estimates. However, it is worth noting

that this is the case only provided that the transmission mechanism changes over time; otherwise, given

that the analysis is entirely carried out in growth changes, it cancels out. Moreover, it is worth noting

how, while a country-sector reaction to an aggregate productivity shock entails reallocating S and U

across sectors and/or countries, cross-industry and (even more) cross-country mobility is usually low and

tends to decline with sectoral aggregation (see, among others, Kambourov and Manovskii, 2008; Foster

18The endogeneity (or simultaneity) issue has been highlighted by the literature on firm-level production function es-
timation. The source of endogeneity consists is the fact that information on the firm’s TFP, although unknown to the
econometrician, is known to the firm when it decides on the amount of inputs. This biases the production function pa-
rameters obtained through OLS estimates because of the potential correlation between the regressors and the error term.
A common assumption in the literature addressing the simultaneity bias is about productivity of firm i, operating in
country c - sector s, to evolve according to a Markov process - i.e., Zics,t = E[Zics,t|Zics,t−1] + ξics,t. In principle, the
correlation of such an idiosyncratic shock with mcj,t(·) and the vector of inputs should disappear at the country-sector
level. However, also aggregate TFP might play a role in firm i’s input and technology choice. This could be the case when
the productivity “surprise” ξics,t consists of a idiosyncratic component (ηics,t) and a country-sector component (µcs,t), so
that Zics,t = E[Zics,t|Zics,t−1] + µcs,t + ηics,t󰁿 󰁾󰁽 󰂀

ξics,t

. In this case, mcj,t(·) estimates would be biased by correlation with µcs,t.
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Mc Gregor and Poschl, 2009; Neffke et al., 2017; Park et al., 2019).

This notwithstanding, to address the potential endogeneity bias we hereby carry out an analysis in

which we assume that time t’s inputs are affected by observed TFP in period t− 1.19 Assuming that the

TFP shock follows a first order Markov process zcj,t = hcj,t (zcj,t−1) + εcj,t, we borrow from the insights

of the nonparametric instrumental variable estimator of Su and Ullah (2008) to estimate a production

function of the type ycj,t = mcj,t(xcj,t) + hcj,t(zcj,t−1) + εcj,t by including recursively the estimated

residuals obtained by estimating the same production function for the previous time period to proxy for

hcj,t(zcj,t−1). While the estimation procedure is detailed in Appendix B, the output of such exercise,

centered in years 1996 and 2006, is reported in row 6 of Table 7. SBTC grows substantially, up to 3.8%.

The magnitude of the FA component points to a slightly larger negative contribution to the overall

MRTS change (pointing for the presence of steeper relative decreasing marginal returns), which grows

slightly less than in the benchmark analysis. Thus, it appears that even in the presence of endogeneity

our main benchmark conclusions hold.

Skill quality change over time. It is worth noting how skill quality might be a confounding factor in

MRTS estimation. However, according to extant literature, there seems to be little room for this. Indeed,

Caselli (2005) finds no relevant role for quality of education in a development accounting framework and

Rossi (2019) shows that technological change explains the variation of skilled labor efficiency much better

than the change in human capital quality. For the US labor market, Carneiro and Lee (2011) report a

not negligible decrease in the average quality of college graduates (around 6%) between 1960 and 2000

but substantially lower rates (around 1%) in the last decade of the last century.

The role of unemployment in relative labor supply determination. Unemployment could imply

a bias in our SBTC estimates to the extent it affects the relative use of skilled and unskilled workers over

time. OECD (2020) data on unemployment by education, for population between 25 and 64, show that

changes from 1995 to 2005 are respectively 0.7, 0.8 and 0.25% for people with education levels below upper

secondary, upper secondary and tertiary attainment. We cannot precisely attribute these unemployed to

each sector (a share of them may be hired from different sectors) so that recomputing the labor ratios

is not straightforward. For the sake of discussion, if we consider an homogeneous change to the labor

supplies due to this unemployment (that means adding these percentage changes proportionally to each

sector) a raw computation according to (9) shows that a negative additional change in skill workers ratio

of 0.5% would imply an additional yearly difference of 0.025% in the estimated SBTC. This means that

this channel would not dramatically change our results.

19We wish to thank David Rivers for insightful discussions on this point.
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6 Economic inefficiency analysis

Having quantified the country-sector MRTS, as well as the contribution of SBTC to the MRTS evolution,

independently of relative wages, we are able to study the country-sector discrepancy between (estimated)

MRTS and (observed) relative wages. The 2005 level of such difference, as measured through the index

ln 󰁥τ s,ucj,T in Equation (27), is reported in Tables 4 and 5. The dominance of negative values suggests that

the wage ratio is usually larger than the MRTS. In the presence of decreasing MPs, this would call, at

given wage levels, for an increase in the relative use of unskilled labor.20

The third panel of Figures 4 and 5 contrasts the country and sector averages of the MRTS change to

the corresponding change in the wage ratio (as suggested by Equation (27)), plotted against the bisector

line.21 The skill premium grows less than the MRTS in most countries and sectors. It grows more, on

average, in only a few countries such as the US, Germany, Korea, Ireland and Japan. Countries such as

Romania, Malta, and Indonesia show extremely high MRTS growth, in sectors such as “Retail trade”,

“Hotels & restaurants”, “Leather & footwear” and “Air transport”. We observe decreasing MRTS in only

a few sectors. This is the case of “Machinery”, among manufacturing sectors, and “Business Services”,

“Utilities”, among non-manufacturing sectors.

The first two panels in Figures 4 and 5 show that the estimated SBTC is positive and larger than the

change in the wage ratio (above the bisector line) in all countries but India and in the vast majority of

sectors. By contrast, the average FA component is negative in many countries and sectors, often growing

less, or decreasing more, than the wage premium. We detect substantial heterogeneity across sectors and

countries, with FA taking the lead in several cases as the driver of MRTS changes.

To provide an assessment of the country-sector evolution of the deviation from economic efficiency in

the use of skilled labor, relative to unskilled labor, we compute the measure 󰁥Θs,u
cj,tT defined in Equation

(29). As mentioned, positive (negative) values refer to increasing (decreasing) discrepancy between

relative wages and MRTS, and thus to increasing (decreasing) economic inefficiency in the relative use

of skilled and unskilled labor. Under the hypothesis of perfectly competitive labor markets, or in the

presence of distortions affecting the skilled and unskilled labor markets symmetrically, MRTS and wage

ratio would coincide in levels and growth rates. However, this is not the case in our estimates.

The values reported in Tables 4 and 5 indicate an average 10.5% decrease in economic inefficiency, with

considerable cross-country and cross-industry differences. The highest gains in efficiency are estimated

for Malta, Romani and, notably, for Italy, followed by Cyprus, Estonia and Brazil. Inefficiency is instead

found to grow substantially in India (45%). Interestingly, economic efficiency grows also in countries such

Spain and Luxembourg and, to a lesser extent, Germany, Netherlands and Australia. At the sectoral level,

20Although investigating whether MP are increasing or decreasing is beyond the scope of this paper, Appendix C shows
that, unlike capital, for which the decreasing MP hypothesis is broadly verified, increasing (either skilled or unskilled) labor
is not associated with lower MP (neither in levels nor in growth rates).

21Appendix C highlights how wages and MPs do not match in the vast majority of cases. The country-sector wage level
is often higher than the corresponding MP; this is even more true in the skilled labor market, with a slight tendency to
balancing across the period. Moreover, the overall increase in MP in the skilled labor market (.041 on average) is associated
with shrinking (PPP) real wages (−.31 on average) and growing used quantity (.53 on average). Interestingly, while the
wages of unskilled workers’ shrink at a similar rate, a slight overall decrease in their MP is detected (−.01 an average),
associated with a slight growth in U (.02).
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increases are reported only in the two non-manufacturing industries “Business Services” (around 10%)

and “Utilities” (+0.4%). The largest inefficiency reductions are in the “Basic and fabricated metals”

(around -25%) and “Agriculture” (-20%). Notably, efficiency improvements are higher in non-OECD

countries and in manufacturing sectors.

The above evidence confirms the idea that SBTC estimates obtained through the indirect approach,

under the hypothesis of perfectly competitive labor markets, are a composition of pure SBTC and

economic inefficiency (discrepancy between MRTS and skill premium).

6.1 Inefficiency markers.

Previous analysis reveals increasing economic inefficiency in the use of skilled labor, relative to unskilled

labor, in the 95-05 decade. While we find SBTC to be primarily responsible for the MRTS increase,

the existence, and widening, of the gap between MRTS and relative wages arguably depends on sluggish

adjustment in wages eventually related to differences (between the skilled and unskilled workers) in terms

of bargaining power and institutional settings (i.e., minimum wage).

To give this dimension an order of magnitude, we carry out a simple econometric analysis to uncover

potential correlation between change in economic inefficiency and labor market characteristics capturing

the easiness of adjustment of wages.

To capture potential asymmetries in the attitude of skilled workers’ wages to adjust to their MP,

relative to unskilled workers, we use data from Visser (2019). In particular, we rely on the 1995-2005

averages of:

• Minimum Wage Setting : a variable reflecting “the (increasing) degree of government intervention

and discretion in setting the minimum wage, or - reversely - the degree to which the government

is bound in its decisions by unions and employers, and/or a fixed or pre-determined rule” (Visser,

2019). The variable is coded from 0 (i.e., No statutory minimum wage) to 9 (minimum wage set

by government).

• Union Density : a variable measuring union membership as the proportion of wage and salary

earners in total employment that are members of a trade union. This variable measures better

than the raw number of union members the weight of the union since other population groups like

retired people are often the biggest part of members.

Indeed, Di Nardo et al. (1996), Acemoglu et al., (2001) and Autor et al. (2016) find wage ratio

compression effects associated with the action of trade unions and labor market institutions. In particular,

Card et al. (2020) estimate that trade unions reduce wage inequality by 10%. As we have reported

decreasing wage premia and increasing MRTS, we expect both variables to positively correlated with our

measure of change in economic inefficiency, 󰁥Θs,u
cj,tT .

We also ask whether economic inefficiency at the country-sector level is affected by its initial values

by regressing 󰁥Θs,u
cj,tT against the absolute value of ln 󰁥τ s,ucj,1995 (as the extent of economic inefficiency does
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not depend on its sign). Under a standard convergence interpretation, the discrepancy between MRTS

and relative wages is expected to decrease in country-sectors characterized by higher initial values; visual

inspection (see Figure 6) points to such a pattern.

We estimate the following equation as a cross-section (1995-2005 averages):

󰁥Θs,u
c,j = α+ β1| ln 󰁥τ s,ucj,1995|+ β2IT Exposurej ∗ Institutionsc + 󰂃c,j , (30)

where IT Exposure stands for the US exposure to SBTC in sector j, as proxied by US IT employ-

ment change in sector j, computed on EUKLEMS (2019) data. Institutions refers to our measures of

institutional bound Minimum Wage Setting and Union Density.

The logic behind this interaction is that we should expect that institutions should have a positive

impact on this wedge (by compressing the wage ratios), that should be growing in sector-level more

exposed to skill-biased technological change.

Table 8 summarizes the regression output. Given that the dependent variable is a generated regressor,

we use boostrapped standard errors with 1000 replications. A first result is the strong evidence of

convergence in economic inefficiency. According to Figure 6, economic inefficiency seems to decrease

more in more inefficient country-sectors and slightly grow in less inefficient ones. This is confirmed by

the econometric analysis and persists in all the specifications adopted.22

Turning to labor market characteristics, while we lose parts of the observations due to missing union

data, the interacted variables seems to exert, as expected (Machin, 1997, Koeniger et al., 2007, Checchi

and Garcia-Penalosa, 2008), a strongly significant positive effect suggesting the presence of labor market

institutions to be more binding, in terms of wage and/or labor quantity adjustment, in sectors that are

more exposed to technological advancement. Alternative controls, such as adjusted coverage of collective

bargaining and extra-coverage (i.e., difference between density and coverage), yield similar results. Even

if these are just correlations we may interpret this as an ex post validation of our gap measure between

wages and productivities ratios. This strong positive correlation with binding institutions seems to go

in the direction of a wage compressing role of the latter.

6.2 The wage inequality effect of restoring economic efficiency through wage

adjustment

In this Section we carry out a counterfactual experiment in which we imagine wages to fully adjust

to MPs, so as to re-establish economic efficiency. The measure in Equation (28) informs us about the

change in the wage ratio that would have allowed the achievement of economic efficiency via relative

wages. How would the wage distribution change under full adjustment of wages to MP? While, as seen,

both the real wage and the amount of unskilled labor shrank on average, in the case of skilled labor,

22Given we are using a sample of countries and sectors allowing a larger degree of heterogeneity, with respect for instance
simple OECD, potential issues of benchmarking bias as in Ciccone and Papaioannou (2016) should make us consider as
our results are more conservative than possible alternatives, because in this case they found a downward bias.
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we report declining real wages and increasing amounts used. This suggests the presence of asymmetric

distortions in the labor market, which potentially result in less wage inequality with respect to a fully

competitive market.

As we know the wages of high and low skilled workers’ in 1995 and 2005, as well as the quantity of S

and U in each country-sector, we can derive an overall wage distribution ΩW
t = F

󰀃
W s

cj,t, θ
s
cj,t;W

u
cj,t, θ

u
cj,t

󰀄
,

with t = 1995, 2005 and the θs denoting the share of skilled and unskilled labor in the given country-

sector.

On this basis, we can compute the actual measures of wage inequality, by using sectoral wages

weighted by relative PPPs to take into account differences among sectors and countries, and contrast them

with a counterfactual situation in which wages are assumed to vary in the same proportion of MP in each

country-sector, in both the skilled and the unskilled labor market, that is, in ∆ ln󰁩W s
cj,tT = ∆ lnms

cj,tT

and ∆ ln󰁩Wu
cj,tT = ∆ lnmu

cj,tT . Here the amount of S and U is fixed, while wages completely follow

marginal products.

Figure 7 displays the resulting actual (solid line) and counterfactual (dashed line) 2005 kernel densi-

ties. Unsurprisingly, more differences are in the left tail, entailing that lower wages would have been even

lower if they followed MP. This is consistent with the remark by Caselli (2016) concerning the potential

underestimation of SBTC through the indirect approach when labor market institutions are relatively

more egalitarian, as in the case of more developed countries, compared to emerging ones.

To synthesize the effect on wage inequality, we can use concentration measures such as the Gini index,

the Atkinson or the decile and interquartile range. These are reported in Table 9. Computations use

labor stocks as weights. In this way, each sector represents its relative percentage in the economy. Being

expressed in PPPs, wages are comparable across countries.

The true Gini index computed on 2005 data amounts to 0.78. This fits quite well with the findings by

Bourguignon and Morrisson (2002) and Milanovic (2012), who report world values around 0.70. While,

consistently with Milanovic (2012), we report a declining wage concentration over the 95-05 decade,

all measures point to increasing concentration under the counterfactual hypothesis that wages evolve

proportionally to MP in both the skilled and unskilled labor market. The Gini index grows to 0.86,

which is 10% points more than in 1995 (if we take the average of within country inequality, the implied

change is bigger than 20%).

7 Conclusions

Despite widespread interest in the productivity consequences of the IT revolution, economic literature has

so far produced very limited evidence on the magnitude of SBTC. Indeed, apart from the country-level

contribution by Caselli (2016), reporting a relatively high SBTC for high-income countries, compared to

low-income ones, no evidence at all has been made available at the country-sector level. Moreover, extant

country-level estimates are inferred from the (observed) wage gap between skilled and unskilled workers
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(wage-based approach). However, as known, SBTC requires adjustment in terms of the skill premium

and/or the relative use of skilled and unskilled labor (i.e., the labor ratio). As long as labor market

frictions/ imperfections affect the skilled and unskilled labor markets asymmetrically, thereby, preventing

adjustments: i) the wage structure is no longer informative of the ongoing technological progress and

cannot be used to infer SBTC; technological progress can be, somehow paradoxically, associated with a

less efficient use of labor.

In this paper, we ask to what extent has the recent wave of technological progress come in a “skill

biased” form, and consequent to this, with asymmetric effects on the relative demand of skills and relative

wages (i.e., skill premium). By doing it we try to relax two implicit assumptions behind the traditional

estimation that are (i) a functional form for the aggregated production function (typically CES), and

(ii) the assumption that relative wages capture marginal products.

These issues cannot be addressed using the indirect, wage-based, approach, which assumes the eco-

nomic efficiency condition (equality between MRTS and relative wage) to be satisfied. Such an approach

attributes the full deviation from the efficiency condition to technological progress, under the hypoth-

esis that both the skilled and unskilled labor markets feature perfect competition, thereby neglecting

the action of labor market frictions/distortions. To overcome this limitation, we presented an alter-

native approach that allows us to: i) obtain country-sector SBTC estimates that are net of the effect

of FA; ii) disentangle the SBTC and FA contribution to the estimated change in MRTS; iii) quantify

the discrepancy between the wage ratio (of skilled to unskilled workers) and the MRTS (i.e., economic

inefficiency).

Estimation relies on nonparametric methods allowing for country-sector-year specific estimates of

the MRTS between skilled and unskilled labor directly from country-sector-year data, which would be a

daunting task with standard parametric techniques. This methodology allows us to depart from extant

literature in retrieving SBTC directly from the production function, which in turn enables us to avoid

conflating “true” SBTC and labor market distortions.

Based on WIOD data, our empirical analysis reveals that the MRTS between skilled and unskilled

labor has been growing by 11.5% on average over the decade 1995-2005. By decomposing (through

counterfactual analysis) the MRTS variation into a SBTC component and a FA component, we discover

that most of the MRTS change is associated with SBTC, whose average effect on MRTS we quantify to

be 13.7%. This value complements with the -2.2% that we find for FA to obtain the total change in the

productivity ratio.

Interestingly, our average values disguise substantial heterogeneity across countries and sectors, with

the FA effect sometimes dominating the SBTC component. Notably, this is the case in the US, for which

we estimate a -20% decrease in MRTS associated with a conspicuously negative FA contribution (-49 %)

and a positive SBTC (+29 %).

We also report a 10.5% overall decrease in economic inefificiency (i.e., discrepancy between MRTS

and wage premium), although with substantial heterogeneity across sectors and countries. Interestingly,
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economic efficiency grows in all sectors but utilities and most OECD and non-OECD countries, with

notable exceptions such as Germany, Netherlands, Australia, Canada. This suggests that SBTC can

induce, in some cases, a less efficient use of labor (with respect to an ideal, economically efficient,

situation in which the MRTS between skilled and unskilled workers equals the wage ratio) as long as it

does not come with sufficiently higher skill premia and subsequent adjustment in the adopted quantity

of skilled and unskilled labor.

Econometric analysis suggests that labor market institutions are more binding, in terms of wage

and/or labor quantity adjustment, in sectors that are more exposed to technological advancement.

We finally used counterfactual analysis to show that full adjustment of wages to MPs would bring

about an increase in wage inequality (0.81 against 0.76 in terms of the Gini index) mostly through further

decreases in low wages.

In terms of policy implications, our work highlights the importance of wage adjustment when tech-

nological progress is skill biased, as the wave of technological progress occurred in the 1995-2005 decade.

Indeed, by changing the relative productivity of skilled and unskilled workers, SBTC requires substantial

adjustment in terms of both wage premia and quantity of skilled labor used, relative to unskilled labor.

This questions the changing role of labor market institutions in the face of SBTC.
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Table 1: Descriptive statistics by country (logarithmic values)

Y K S U S/U gr.
COUNTRY Code 1995 2005 1995 2005 1995 2005 1995 2005 95-05 #obs
Australia AUS 8.74 8.98 9.41 10.01 2.90 3.30 5.38 5.38 41% 27
Austria AUT 8.38 8.60 9.11 9.27 2.07 2.70 4.60 4.54 69% 25
Belgium BEL 8.46 8.59 9.22 9.46 2.11 2.25 4.41 4.32 26% 23
Bulgaria BGR 5.84 6.08 6.59 6.99 1.17 1.42 4.45 4.31 41% 29
Brazil BRA 9.61 9.85 10.35 10.85 4.70 5.13 7.31 7.49 28% 28
Canada CAN 8.98 9.27 9.51 9.73 3.43 3.81 5.58 5.62 34% 26
Cyprus CYP 4.86 5.06 5.50 5.60 0.62 0.47 1.90 1.92 -19% 24
Czech Republic CZE 7.31 7.40 8.34 8.67 2.40 2.46 5.10 4.90 26% 29
Germany DEU 10.49 10.55 11.09 11.19 4.90 4.92 6.54 6.34 22% 27
Denmark DNK 7.81 7.90 8.39 8.66 2.17 2.47 4.02 3.84 49% 26
Spain ESP 9.28 9.55 9.96 10.41 3.99 4.72 5.74 5.82 67% 26
Estonia EST 4.55 5.34 5.28 6.29 1.68 1.60 2.79 2.67 10% 28
Finland FIN 7.53 7.83 8.22 8.38 2.50 2.67 3.76 3.77 16% 25
France FRA 9.83 10.09 10.37 10.55 4.24 4.52 6.03 5.84 48% 27
United Kingdom GBR 9.71 9.86 10.02 10.26 4.44 4.61 6.24 5.93 49% 24
Greece GRC 7.48 7.80 7.98 8.35 2.28 2.62 4.54 4.54 35% 23
Hungary HUN 6.76 7.01 8.02 8.25 2.37 2.60 4.72 4.66 28% 29
Indonesia IDN 9.17 9.44 9.94 10.37 3.45 4.45 6.87 7.37 46% 20
India IND 9.43 10.06 10.33 11.07 5.83 6.57 8.37 8.58 50% 27
Ireland IRL 6.81 7.20 7.29 7.86 1.63 2.43 3.49 3.56 76% 21
Italy ITA 10.04 10.10 10.87 11.14 3.47 3.98 6.66 6.65 54% 24
Japan JPN 11.15 11.07 11.83 12.08 5.67 5.71 7.55 7.25 31% 22
Korea, Republic of KOR 9.45 9.80 10.26 10.60 5.23 5.68 6.50 6.25 70% 28
Lithuania LTU 6.24 6.95 6.94 7.79 1.92 2.00 3.26 3.27 10% 29
Luxembourg LUX 5.45 5.91 6.09 6.65 -0.45 0.02 1.49 1.77 23% 20
Latvia LVA 4.10 4.89 4.90 5.62 1.03 1.14 2.55 2.77 1% 30
Mexico MEX 8.91 9.24 9.57 9.73 4.74 5.00 6.71 6.97 -1% 28
Malta MLT 4.35 4.50 5.04 5.35 -1.65 -1.29 1.46 1.46 29% 24
Netherlands NLD 8.66 8.85 9.17 9.35 2.72 3.21 4.83 4.67 63% 24
Poland POL 8.09 8.57 8.78 9.28 3.47 3.91 5.95 5.78 57% 29
Portugal PRT 7.62 7.87 8.36 8.81 1.47 1.85 4.68 4.69 37% 23
Romania ROU 7.01 7.19 7.67 8.06 2.19 2.54 5.50 5.45 39% 28
Russia RUS 9.47 9.75 10.30 10.42 4.65 4.72 7.44 7.28 24% 25
Slovak Republic SVK 6.35 6.72 7.04 7.62 1.59 1.65 4.15 4.00 23% 28
Slovenia SVN 6.06 6.30 6.85 7.45 0.96 1.15 3.24 3.03 40% 29
Sweden SWE 8.13 8.39 8.65 8.99 2.18 2.63 4.56 4.40 62% 24
Turkey TUR 8.87 9.48 9.55 10.08 3.07 3.78 6.15 6.33 49% 25
United States USA 11.48 11.72 11.93 12.14 6.15 6.21 7.75 7.62 21% 21
Avg/Tot 7.96 8.26 8.65 9.04 2.82 3.15 5.06 5.03 36% 975
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Table 2: Descriptive statistics by sector (logarithmic values)

Y K S U S/U gr.
SECTOR Short 1995 2005 1995 2005 1995 2005 1995 2005 95-05 #obs
Food, beverage & tobacco FD 8.67 8.80 9.46 9.71 3.32 3.57 5.69 5.57 40% 37
Textile products TX 8.23 8.17 8.76 8.79 3.05 3.06 5.56 5.15 48% 37
Leather & footwear LF 6.41 6.12 6.95 6.89 1.35 1.15 3.81 3.21 45% 33
Wood products WO 7.02 7.34 7.55 7.98 2.07 2.41 4.48 4.44 43% 38
Paper, printing & publishing PP 7.90 8.18 8.53 8.91 2.71 3.01 4.94 4.88 39% 37
Coke & refined petroleum CP 6.30 6.22 7.48 7.85 1.02 1.11 3.12 2.90 32% 22
Chemical products CH 7.97 8.33 8.69 9.02 2.67 2.81 4.75 4.59 32% 29
Rubber & plastics RP 7.15 7.68 7.75 8.25 2.06 2.47 4.34 4.41 40% 38
Non-metallic mineral products NM 7.83 8.20 8.70 8.96 2.43 2.63 4.72 4.56 38% 36
Basic & fabricated metal BM 8.37 8.71 9.16 9.40 3.11 3.49 5.41 5.43 38% 38
Machinery MA 7.87 8.29 8.24 8.56 2.82 3.02 5.07 4.88 44% 37
Electrical & optical equipment EL 7.80 8.42 8.21 8.72 2.65 2.98 4.90 4.88 40% 33
Transport Equipment TR 7.64 8.12 8.17 8.64 2.45 2.82 4.69 4.68 41% 37
Other manufacturing OT 7.29 7.64 7.59 8.03 2.39 2.77 4.67 4.68 39% 35
Motor vehicle & fuel trade mv 7.78 8.16 8.23 8.63 2.89 3.37 5.09 5.27 24% 34
Wholesale trade wt 9.08 9.50 9.34 9.77 3.94 4.34 6.12 6.20 33% 33
Retail trade rt 9.02 9.40 9.34 9.79 4.42 4.88 6.66 6.80 37% 37
Land transport lt 8.62 8.87 9.94 10.32 3.72 4.05 5.93 5.95 32% 38
Water transport wa 5.99 6.13 7.33 7.62 0.92 1.04 3.06 2.88 35% 32
Air transport at 5.97 6.31 7.30 7.63 1.02 1.39 3.19 3.24 42% 33
Transport services ts 7.91 8.31 9.18 9.72 2.50 3.05 4.66 4.92 34% 37
Post & telecommunications pt 8.10 8.84 8.92 9.69 2.79 3.35 5.08 5.18 49% 32
Real estate re 9.55 10.10 11.83 12.19 4.96 5.51 5.59 5.99 23% 4
Business services bs 8.94 9.47 9.07 10.10 4.97 5.61 5.61 6.03 19% 33
Agriculture, forestry & fishing ag 9.52 9.64 10.45 10.73 4.12 4.34 7.39 7.07 54% 32
Mining & quarrying mq 7.10 7.18 8.40 8.55 1.81 1.84 4.18 3.92 33% 31
Utilities ut 8.03 8.20 9.80 10.21 2.90 3.26 5.02 4.81 55% 20
Construction co 8.92 9.18 8.98 9.44 3.80 4.11 6.35 6.50 19% 30
Hotels & restaurants hr 8.36 8.63 8.69 9.27 3.27 3.79 6.00 6.22 35% 38
Financial services fs 9.07 9.38 9.26 9.66 4.21 4.64 5.22 5.16 50% 24
Avg/Tot 7.95 8.25 8.71 9.10 2.88 3.20 5.04 5.01 36% 975

Table 3: Estimated MRTS (average values).

P25 Mean P50 P75

󰁦MRTS
s,u

cj,t 1.101 1.487 1.356 1.677
(0.275) (0.595) (0.368) (0.545)

󰁦MRTS
s,u

cj,T 1.204 1.819 1.442 1.761
(0.241) (0.716) (0.345) (0.551)

󰁩MRTS
s,u

cj,T 1.267 1.815 1.530 1.847
(0.062) (0.384) (0.120) (0.218)

a Standard errors in parentheses. P=%ile.
b Computation of Equation (21) for initial, final and
counterfactual periods.
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Table 4: Decomposition by country.

COUNTRY ∆ ln 󰁦MRTS
s,u

cj,tT ∆ ln 󰁨Bs,u
cj,tT ∆ ln󰁨Fs,u

cj,tT ∆ lnWs,u
cj,tT

󰁥Θs,u
cj,tT ln 󰁥τs,u

cj,T # obs

AUS 0.044 0.126 -0.082 0.055 0.032 -0.099 27
AUT 0.101 0.126 -0.025 -0.034 -0.099 -0.308 25
BEL 0.086 0.122 -0.036 -0.034 -0.063 -0.304 23
BGR 0.137 0.162 -0.025 -0.095 -0.179 -0.533 27
BRA 0.104 0.082 0.022 -0.104 -0.262 -0.803 20
CAN 0.109 0.107 0.002 0.074 0.050 0.247 23
CYP 0.310 0.311 -0.002 -0.055 -0.348 -0.717 22
CZE 0.086 0.113 -0.027 0.007 -0.039 -0.300 29
DEU -0.068 0.023 -0.091 0.019 0.006 -0.145 26
DNK 0.023 0.095 -0.072 0.033 0.032 -0.038 25
ESP 0.174 0.082 0.093 -0.065 0.165 -0.051 24
EST 0.193 0.319 -0.127 -0.112 -0.271 -0.694 25
FIN 0.112 0.118 -0.007 0.111 -0.022 -0.155 25
FRA -0.019 0.074 -0.093 -0.176 -0.101 -0.191 27
GBR -0.008 0.063 -0.070 -0.042 -0.007 0.042 24
GRC 0.019 0.106 -0.087 -0.026 -0.013 -0.094 23
HUN 0.127 0.115 0.013 -0.026 -0.144 -0.610 29
IDN 0.454 0.148 0.307 0.032 -0.115 -1.112 17
IND 0.452 -0.062 0.514 0.087 0.452 0.154 13
IRL -0.034 0.165 -0.199 0.111 -0.010 -0.060 21
ITA 0.352 0.148 0.205 -0.195 -0.381 -0.633 23
JPN -0.179 0.130 -0.309 -0.012 -0.142 0.288 19
KOR -0.246 0.056 -0.302 0.037 -0.043 0.177 23
LTU 0.152 0.233 -0.082 -0.098 -0.226 -0.608 29
LUX 0.240 0.281 -0.040 0.358 0.127 -0.168 19
LVA 0.177 0.198 -0.020 -0.100 -0.247 -0.674 25
MEX 0.218 0.079 0.139 -0.081 0.091 -0.184 23
MLT 0.508 0.284 0.224 -0.102 -0.610 -1.630 22
NLD 0.052 0.100 -0.049 0.078 0.024 -0.090 24
POL 0.029 0.099 -0.071 -0.036 0.042 -0.113 28
PRT 0.105 0.088 0.018 -0.102 -0.206 -0.759 22
ROU 0.295 0.097 0.198 -0.108 -0.400 -0.657 27
RUS 0.096 0.138 -0.041 -0.021 -0.051 -0.261 21
SVK 0.057 0.103 -0.046 0.076 -0.021 -0.282 28
SVN 0.065 0.139 -0.074 -0.025 -0.090 -0.542 27
SWE 0.066 0.123 -0.057 -0.156 -0.073 -0.211 24
TUR 0.130 0.117 0.013 -0.053 -0.183 -0.631 24
USA -0.195 0.290 -0.486 0.046 -0.117 0.332 19
NON OECD 0.163 0.150 0.013 -0.044 -0.149 -0.520 435
OECD 0.057 0.120 -0.062 -0.005 -0.048 -0.159 467
Avg/Tot 0.115 0.137 -0.021 -0.024 -0.105 -0.370 902

∆ ln 󰁦MRTS
s,u

cj,tT = Estimated Marginal Rate of Technical Substitution (growth rate); ∆ ln 󰁨Bs,u
cj,tT = Coun-

terfactual Skill Biased Technical Change Effect (growth rate); ∆ ln󰁨Fs,u
cj,tT = Counterfactual Factor Accu-

mulation Effect (growth rate): see decomposition in Equation (23). ∆ lnWs,u
cj,tT = Wage premium growth

rate; 󰁥Θs,u
cj,tT = change in economic efficiency (decreasing values denoting increasing efficiency): see Equa-

tion (29); ln 󰁥τs,u
cj,T = Economic inefficiency in 2005: see Equation (27). Unweighted averages reported.
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Table 5: Decomposition by sector.

COUNTRY ∆ ln 󰁦MRTS
s,u

cj,tT ∆ ln 󰁨Bs,u
cj,tT ∆ ln󰁨Fs,u

cj,tT ∆ lnWs,u
cj,tT

󰁥Θs,u
cj,tT ln 󰁥τs,u

cj,T # obs

Agriculture 0.217 0.079 0.138 -0.056 -0.202 -0.393 24
Air transport 0.225 0.219 0.006 0.067 -0.156 -0.519 31
Basic and fabricated metal 0.192 0.256 -0.064 -0.050 -0.249 -0.403 37
Business service -0.085 0.047 -0.132 0.017 0.101 -0.347 29
Chemical product 0.024 0.100 -0.077 -0.045 -0.074 -0.414 27
Coke and refined products 0.102 0.144 -0.041 -0.025 -0.127 -0.544 18
Construction 0.238 0.112 0.126 -0.026 -0.032 -0.199 24
Electrical and optical 0.018 0.095 -0.077 -0.024 -0.140 -0.250 31
Financial services -0.168 0.088 -0.256 -0.016 -0.055 -0.065 24
Food, beverage, tobacco 0.118 0.128 -0.010 -0.053 -0.104 -0.314 35
Hotels and restaurants 0.360 0.153 0.207 -0.084 -0.048 -0.314 31
Land transport 0.180 0.209 -0.029 0.010 -0.002 -0.214 35
Leather and footwear 0.164 0.174 -0.010 -0.073 -0.169 -0.522 32
Machinery -0.030 0.083 -0.113 -0.024 -0.101 -0.152 35
Mining and quarrying 0.067 0.126 -0.060 -0.057 -0.076 -0.490 29
Motor vehicle 0.138 0.079 0.059 -0.011 -0.074 -0.215 34
Non-metallic min 0.026 0.129 -0.104 -0.033 -0.057 -0.363 35
Other manufacturing 0.091 0.126 -0.035 -0.030 -0.123 -0.247 33
Paper, printing 0.040 0.150 -0.109 -0.046 -0.123 -0.332 36
Post and telecommunication 0.123 0.156 -0.033 0.087 -0.038 -0.286 32
Real estate 0.408 0.310 0.098 -0.040 -0.448 -1.415 2
Retail trade 0.245 0.036 0.209 -0.065 -0.034 -0.001 28
Rubber and plastic 0.122 0.108 0.013 -0.042 -0.184 -0.376 38
Textile products 0.052 0.120 -0.069 -0.079 -0.186 -0.335 35
Transport Equipment 0.128 0.149 -0.020 -0.005 -0.062 -0.282 35
Transport services 0.108 0.135 -0.028 0.045 -0.066 -0.424 37
Utilities -0.053 0.081 -0.133 -0.032 0.004 -0.475 19
Water transport 0.143 0.179 -0.036 0.058 -0.082 -0.587 29
Wholesale trade 0.192 0.122 0.070 -0.059 -0.154 -0.320 30
Wood products 0.075 0.204 -0.128 -0.045 -0.077 -0.299 37
Non-Manufacturing 0.137 0.126 0.011 -0.005 -0.063 -0.329 438
Manufacturing 0.081 0.142 -0.061 -0.041 -0.128 -0.337 464
Avg/Tot 0.115 0.137 -0.021 -0.024 -0.105 -0.370 902

∆ ln 󰁦MRTS
s,u

cj,tT = Estimated Marginal Rate of Technical Substitution (growth rate); ∆ ln 󰁨Bs,u
cj,tT = Counterfactual Skill

Biased Technical Change Effect (growth rate); ∆ ln󰁨Fs,u
cj,tT = Counterfactual Factor Accumulation Effect (growth rate):

see decomposition in Equation (23). ∆ lnWs,u
cj,tT = Wage premium growth rate; 󰁥Θs,u

cj,tT = change in economic efficiency

(decreasing values denoting increasing efficiency): see Equation (29); ln 󰁥τs,u
cj,T = Economic inefficiency in 2005: see Equation

(27). Unweighted averages reported.

Table 6: SBTC: broad validation

(1) (2) (3) (4) (5)

Specialization * IT share (World) 0.385∗∗∗ 0.402∗∗∗

(0.096) (0.103)

Specialization * IT share (US) 0.164∗∗∗

(0.058)

Specialization * Robot stock (World) 0.135∗

(0.082)

Concentration * IT share (World) 0.419∗∗

(0.178)

Constant 0.108∗∗∗ 0.115∗∗∗ 0.121∗∗∗ 0.126∗∗∗ 0.021
(0.008) (0.016) (0.016) (0.016) (0.048)

Sector controls N Y Y Y Y
N 902 902 902 527 902
R2 0.08 0.10 0.08 0.02 0.03

Estimation of Equation (30). Dep. Variable: ∆ ln 󰁨Bs,u
cj,tT = Counterfactual Skill Biased Technical

Change Effect (see Equation (24). Specialization and Concentration are country-specific variables
computed on a output basis. IT share is a sector-specific variable computed on EUKLEMS IT
capital. Robot stock is a sector-specific variable computed on IFR Robot stock data. Bootstrapped
standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Robustness checks and alternative specifications (yearly changes)

∆ ln 󰁦MRTS
s,u

cj,tT ∆ ln 󰁨Bs,u
cj,tT ∆ ln 󰁨Fs,u

cj,tT lnWs,u
cj,tT

High vs Medium-Low (benchmark) 1.14% 1.34% -0.20% -0.19%
(1) Not averaged 1995-2005 1.32% 1.48% -0.15% -0.20%
(2) 1996-2006 1.10% 1.32% -0.23% -0.19%
(3) LSCV Bandwidths 0.95% 0.95% 0.00% -0.24%
(4) Cross-country constant technology 1.15% 1.90% -0.07% -0.24
Avg 1.14% 1.43% -0.13% -0.22%
(5) High-Medium vs Low 2.50% 3.33% -0.83% 0.43%
(6) Accounting for Endogeneity 2.45% 3.82% -1.38% -0.19%

∆ ln 󰁦MRTS
s,u

cj,tT = Estimated Marginal Rate of Technical Substitution (growth rate); ∆ ln 󰁨Bs,u
cj,tT =

Counterfactual Skill Biased Technical Change Effect (growth rate); ∆ ln 󰁨Fs,u
cj,tT = Counterfactual

Factor Accumulation Effect (growth rate): see decomposition in Equation (23). ∆ lnWs,u
cj,tT =

Wage premium growth rate. Unweighted averages reported.

Table 8: Economic (in)efficiency analysis: markers and convergence.

(1) (2) (3) (4)

Economic Inefficiency 1995 -0.476∗∗∗ -0.488∗∗∗ -0.503∗∗∗ -0.506∗∗∗

(0.04) (0.04) (0.04) (0.04)

Minimum Wage Setting * IT Exposure 0.815∗∗ 1.444∗∗∗

(0.32) (0.44)

Union Density * IT Exposure 0.129∗∗

(0.05)

Constant 0.120∗∗∗ 0.087∗ 0.047 -0.028
(0.01) (0.05) (0.05) (0.06)

Sector controls N Y Y Y
N 902 902 582 573
R2 0.30 0.32 0.49 0.50

Dep. Variable: change in Economic Inefficiency (i.e., 󰁥Θs,u
cj,tT ) computed through Equation

(29) (increasing values denoting decreasing efficiency);
IT Exposure is a sector-specific measure of IT employment change;
Minimum Wage Setting and Union Density are country-specific variables;

Bootstrapped standard errors in parentheses;
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 9: Counterfactual analysis: wage inequality under full adjustment of wages to MP.

1995 2005 2005
(actual) (actual) (counterfactual)

Gini 0.78 0.76 0.86
Atkinson (adversion parameter=1) 0.86 0.81 0.94
Decile range (9th vs 1st decile) 95.45 72.69 207.8
Interquartile range (75th vs 25th %ile) 33.55 25.34 32.90
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Figure 1: Change in wage ratio versus change in labor ratio: growth rates, 1995-2005 (country averages).

WIOD Data. High to medium-low skilled ratios. Wages computed by dividing shares in labor compensation by shares in
hours worked (i.e., hourly wage ratios).
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Figure 2: Estimated MRTS and confidence intervals at 95% (1995).

Estimated Marginal Rate of Technical Substitution: ∆ ln 󰁦MRTS
s,u

cj,tT = see Equation (21).
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Figure 3: SBTC and MRTS growth rates, 1995-2005 (country averages). WIOD data.

∆ ln 󰁦MRTS
s,u

cj,tT = Estimated Marginal Rate of Technical Substitution (growth rate); ∆ ln 󰁨Bs,u
cj,tT = Counterfactual Skill

Biased Technical Change Effect (growth rate): see decomposition in Equation (23).
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Figure 4: Wage ratio versus estimated MRTS, SBTC and FA: growth rates, 1995-2005 (country averages).

∆ ln 󰁦MRTS
s,u

cj,tT = Estimated Marginal Rate of Technical Substitution (growth rate); ∆ ln 󰁨Bs,u
cj,tT = Counterfactual Skill

Biased Technical Change Effect (growth rate); ∆ ln 󰁨Fs,u
cj,tT = Counterfactual Factor Accumulation Effect (growth rate): see

decomposition in Equation (23). ∆ lnWs,u
cj,tT = Wage premium growth rate. Bisector lines reported.
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Figure 5: Wage ratio versus estimated MRTS, SBTC and FA: growth rates, 1995-2005 (sector averages).

∆ ln 󰁦MRTS
s,u

cj,tT = Estimated Marginal Rate of Technical Substitution (growth rate); ∆ ln 󰁨Bs,u
cj,tT = Counterfactual Skill

Biased Technical Change Effect (growth rate); ∆ ln 󰁨Fs,u
cj,tT = Counterfactual Factor Accumulation Effect (growth rate): see

decomposition in Equation (23). ∆ lnWs,u
cj,tT = Wage premium growth rate. Bisector lines reported.
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Figure 6: Country-sector convergence in economic inefficiency: 1995-2005 growth rates versus initial
(1995) values.

Economic inefficiency expressed as absolute value of the discrepancy between estimated MRTS and wage ratio (
󰀏󰀏󰀏ln 󰁥τs,ucj,t

󰀏󰀏󰀏).

Growth rate (see Equation (29)): 󰁥Θs,u
cj,tT =

󰀏󰀏󰀏ln 󰁥τs,ucj,2005

󰀏󰀏󰀏−
󰀏󰀏󰀏ln 󰁥τs,ucj,1995

󰀏󰀏󰀏. Initial value:
󰀏󰀏󰀏ln 󰁥τs,ucj,1995

󰀏󰀏󰀏. Univariate OLS regression

line reported.

40



Figure 7: Actual versus counterfactual (full adjustment of wages to MPs) wage distribution: 2005.

In the counterfactual distribution wages are assumed to vary in the same proportion of marginal productivity in each
country-sector, in both the skilled and the unskilled labor market (see Section 6.2).
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APPENDIX – NOT INTENDED FOR PUBLICATION

A The empirical methodology in details

Nonparametric kernel regression is becoming an increasingly popular method of estimation in applied
economic milieus. The main perceived benefit is that it allows for consistent estimation when the
underlying functional form of the regression function is unknown. While this is true, there are many
other benefits which may prove to be just as useful in our context.

Nonparametric kernel methods (basics). Arguably the most popular regression model in the
growth empirics literature is the linear parametric model

yi = α+ βxi + εi, i = 1, 2, . . . , n, (31)

where yi is our response (in this case output growth), xi is a vector of q regressors, α and β are unknown
parameters to be estimated and εi is the additive (mean zero) random disturbance. Consistent estimation
of this model requires that all relevant regressors are included in xi (and that they are uncorrelated with
εi) and the functional form is correctly specified. However, when either of these two assumptions do
not hold, the estimates the model produces will most likely be inconsistent. While non-linear functional
forms are possible in a parametric framework, the data generating process still must be assumed a priori.

Nonparametric kernel methods have the ability to alleviate many of the restrictive assumptions made
in the parametric framework. Consider the nonparametric regression model

yi = m(xi) + ui, i = 1, 2, . . . , n, (32)

where m (·) is an unknown smooth function and the remaining variables are the same as before. Here,
m (·) is interpreted as the conditional mean of y given x. Note that in the (linear) parametric setting
above, it is implicitly assumed that E (yi|xi) = α+ βxi. Further note that the linear model is a special
case of our nonparametric estimator and thus, if the true data generating process is indeed linear, then
the nonparametric estimator will give results consistent with that model.

One popular method for estimation of the unknown function is by local-constant least-squares (LCLS)
regression. The LCLS estimator of the conditional mean function is given as

󰁥m(x) =

n󰁓
i=1

yi
q󰁔

s=1
K

󰀓
xsi−xs

hs

󰀔

n󰁓
i=1

q󰁔
s=1

K
󰀓

xsi−xs

hs

󰀔 , (33)

where
q󰁔

s=1
K

󰀃󰀃
xsi − xs

󰀄
/hs

󰀄
is the product kernel and hs is the smoothing parameter (bandwidth) for

a particular regressor xs (see Pagan and Ullah, 1999). The intuition behind this estimator is that it
is simply a weighted average of yi. It is also known as a local average, given that the weights change
depending upon the location of the regressors. We estimate the conditional mean function by locally
averaging those values of the left-hand-side variable which are “close” in terms of the values taken on
by the regressors. The amount of local information used to construct the average is controlled by the
bandwidth.

Local-linear least-squares (LLLS). While LCLS is undoubtedly the most popular, and widely avail-
able, nonparametric regression estimator, recently there has been an enthusiastic use of the local-linear
least-squares (LLLS) regression estimator as an alternative to LCLS. The LLLS regression estimator
possesses several theoretical and empirical advantages. Theoretically, the LLLS estimator has a simple
finite sample bias that the LCLS estimator, being unbiased in the setting where the conditional mean
is indeed linear. Moreover, the LLLS estimator possesses greater flexibility near the boundaries of the
data. Empirically, the LLLS estimator automatically produces estimates of the conditional mean and
the associated derivatives. This is beneficial as numerical derivatives can be noisy and behave poorly
depending upon the localness of the surrounding data, something that the LCLS estimator can suffer
from.

In short, LLLS performs weighted least-squares regressions around a point x with weights determined
by a kernel function and bandwidth vector. Again, more weight is given to observations in the neigh-
borhood of x. This is performed over the range of x and then the unknown function is estimated by
connecting the point estimates. An added benefit is that if indeed the true functional form is linear, the
LLLS estimator nests the OLS estimator when the bandwidth is very large.
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Specifically, the covariates vector xi in (32) is defined as xi = [xC
i , x

D
i ], where a distinction between

continuous (xC
i ) and discrete (xD

i ) variables is made. We can further decompose xD
i as [xo

i , x
u
i ] where x

o

captures variables that are ordered by nature, and xu captures variables that have no natural ordering.
εi is a random error term and N is the total number of observations.

Estimation of (31) requires the construction of the product kernel, which is the product of univariate
kernel functions (smoothing functions) for each variable. A different type of kernel function is used for
each type of data (continuous, discrete ordered and discrete unordered). The product kernel is written
succinctly as:

Gi,x =

qC󰁜

s=1

K
󰀃
xis, xs, h

C
s

󰀄 qu󰁜

s=1

gu (xu
is, x

u
s ,λ

u
s )

qo󰁜

s=1

go (xo
is, x

o
s,λ

o
s) , (34)

where qC is the number of continuous covariates (in our example qC = 1) and K
󰀃
xis, xs, h

C
s

󰀄
is the

kernel function used for continuous variables with bandwidth hC
s , qu is the number of unordered discrete

regressors (in our example qu = 1) with gu (xu
is, x

u
s ,λ

u
s ) is the kernel function for a particular unordered

discrete regressor with bandwidth λu
s and qo is the total number of ordered discrete regressors with

go (xo
its, x

o
s,λ

o
s) the kernel function for a particular ordered discrete regressors with bandwidth λo

s.
The product kernel is then used to construct point-specific weights which are then used to calculate

a local average estimator. While many different local estimators can be deployed, they all generally have
the form

󰁥m(x) =

N󰁛

i=1

yiAix. (35)

where Aix is a function of the product kernel; different types of local estimators will produce different
forms of Aix. The estimator in Equation (35) is nothing more that a weighted average of output for
observations that are close, where closeness is dictated exclusively through the bandwidths used in the
construction of the estimator (see Li and Racine, 2007 and Henderson and Parmeter, 2015 for more
intuition).

For the continuous regressor we choose the Gaussian kernel function

K
󰀃
xC
is, x

C
s , h

C
s

󰀄
=

1√
2π

e
− 1

2

󰀕
xC
ix−xC

s
hC
s

󰀖2

; (36)

where the bandwidth ranges from zero to infinity.
A variation of the Aitchison and Aitken (1976) kernel function for unordered categorical regressors

is given as

gu (xu
is, x

u
s ,λ

u
s ) =

󰀝
1− λu

s if xu
is = xu

s
λu
s

d−1 otherwise
; (37)

where the bandwidth is constrained to lie in the range [0, (d− 1) /d] and d is the number of unique values
the unordered variable will take. For example, for the case where the unordered variable is a traditional
“dummy variable”, the upper bound will be 0.50.

Finally, the Wang and Van Ryzin (1981) kernel function for ordered categorical regressors is given by

go (xo
is, x

o
s,λ

o
s) =

󰀝
1− λo

s if xo
is = xo

s
1−λo

s

2 (λo
s)

|xo
is−xo

s| otherwise
, (38)

where the bandwidth ranges from zero to unity.
To estimate the production function in the paper, we use a local-linear approximation which can

be viewed as the equivalent of a local Taylor expansion at any point xc. That is, for the relationship
y = m(x) + u, we have data for (y1, x1), (y2, x2), . . . , (yn, xn) and as such, for each point xi, we can
take a linear Taylor approximation for the point x. From the discussion in the paper, xi is meant as an
observation which is indexed over country, sector and time.

To begin, we consider a Taylor expansion about x for observation i as (note the expansion is only for
continuous covariates, xC)

yi = m(xi) + ui

≈ m(x) + (xi − x)β(x) + ui,

where (xi − x) is a 1× qC vector and β(x) is the gradient (column) vector of dimension qC . By ignoring
the higher-order terms and treating m(x) and β(x) as parameters, we have

yi = a+ (xi − x)b+ ui.
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Minimizing a quadratic objective function with respect to a and b gives us

󰁥δ(x) =
󰀕󰁥m(x)

󰁥β(x)

󰀖
=

󰀥
n󰁛

i=1

Gi,x

󰀕
1

xi − x

󰀖󰀃
1, (xi − x)

󰀄
󰀦−1 n󰁛

i=1

Gi,x

󰀕
1

xi − x

󰀖
yi

=(X′G(x)X)
−1

X′G(x)y.

where 󰁥δ = (󰁥a,󰁥b). X is a n × (1 + qC) matrix with first column of all ones and the remaining columns
equal to xi − x. Lastly, G(x) is the diagonal matrix with Gi,x as its (i, i) element.

Bandwidth selection. It is believed that the choice of the continuous kernel function matters little
in the estimation of the conditional mean (see Härdle, 1990) and that selection of the bandwidths is
the most salient factor when performing nonparametric estimation. As indicated above, the bandwidths
control the amount by which the data are smoothed. For continuous variables, large bandwidths will
lead to large amounts of smoothing, resulting in low variance, but high bias. Small bandwidths, on the
other hand, will lead to less smoothing, resulting in high variance, but low bias. This trade-off is well
known in applied nonparametric econometrics, and the “solution” is most often to resort to automated
determination procedures to estimate the bandwidths. Although there exist many selection methods, we
utilize the popular least-squares cross-validation (LSCV) criteria. Specifically, LSCV selects bandwidths
which minimize

CV (h,λo,λu) =

n󰁛

i=1

[yi − 󰁥m−i(xi)]
2
, (39)

where 󰁥m−i(xi) is the leave-one-out estimator of m(·). The idea of the leave-one-out estimator is that the
conditional mean of yi is estimated without using the observation with the most information, xi. In this
way the bandwidths are selected so that the surrounding observations are providing as much information
as possible to assist with smoothing. LSCV is well known to produce bandwidths which are quite small
relative to the theoretical optimum and as such, will produce estimates which are highly noisy.

An alternative selection mechanism is AICc bandwidth selection (Hurvich et al., 1998). The AICc

criterion is

AICc(h) = ln(󰁥σ2) +
1 + tr(H)/n

1− (tr(H) + 2)/n
, (40)

where

󰁥σ2 =
1

n

n󰁛

i=1

[yi − 󰁥m(xi)]
2

and H = (X′G(x)X)
−1

X′G(x).

Notice that a leave-one-out estimator for m(·) is not used. This is because the AICc criterion penalizes
overfitting based on the number of effective parameters used, which is captured by the trace of H. As
the bandwidths decrease (fit improves) this trace increases and leads to larger penalties. The empirical
results in the paper are derived from bandwidths selected using the criterion in (40).

As an aside, we note that an even simpler bandwidth selection procedure, the “ocular” method, is
not appropriate once the number of covariates is larger than two. As the number of regressors exceeds
two, visual methods to investigate the fit of the model are cumbersome and uninstructive. With a
large dimension for the number of regressors, it is suggested that cross-validation techniques be used as
opposed to either ocular or rule-of-thumb methods.
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B The “Accounting for Endogeneity” robustness check in de-
tails

As discussed in the text, potential concerns over endogeneity abound in the estimation of cross-country
production functions. As one avenue to remedy this concern, we discuss a potential approach that
builds lagged Markovian productivity into the estimation via a control function approach, similar to
that adopted in Gandhi, Navarro and Rivers (2020).

Our strategy consists of assuming that time t’s inputs are potentially affected by the observed TFP
in t − 1. This is a reasonable assumption in a country-sector context. Assuming that the TFP shock
follows the first order Markov process zcj,t = hcj,t (zcj,t−1) + εcj,t, the estimating production function
can be written as

ycj,t = mcj,t(xcj,t) + hcj,t(zcj,t−1) + εcj,t, (41)

where xcj,t = (kcj,t, scj,t, ucj,t) and zcj,t−1 is the lagged productivity shock. Without knowledge of this
productivity shock we cannot estimate our production function.

hcj,t (zcj,t−1) can be retrieved from the estimation of the production function in t−1, as the estimated
residual. Hence, (41) becomes

ycj,t = mcj,t(xcj,t) + hcj,t(ycj,t−1 − m̂cj,t−1(xcj,t−1)) + εcj,t. (42)

The difficult is in ensuring that the production function inside of hcj,t(·) is identical to that appearing
on its own. To do this we borrow from the insights of the nonparametric instrumental variable estimator
of Su and Ullah (2008). This estimator works as follows. For an initial time period, t0, the production
function in Equation (41) is estimated and the residuals 󰁥εcj,t0 are obtained. These residuals are then
included as a covariate in the production function in Equation (41) (not explicitly accounting for the
presumed additive separability):

ycj,t = gcj,t(xcj,t, 󰁥εcj,t0) + εcj,t, (43)

This model is estimated using local-linear least-squares as described above and then counterfactual
estimation is performed to separate out the two component functions mcj,t(·) and hcj,t(·) using

󰁥mcj,t(xcj,t) = n−1
n󰁛

j=1

󰁥gcj,t(xcj,t, 󰁥εcj,t0).

From here, new residuals are calculated in time period t0, 󰁥εcj,t0 and the process is iterated until con-
vergence. We stop after a tolerance of 0.0001 has been achieved, where our tolerance is based on the
estimated function evaluated at all points using squared error.

C Estimated MP in details

We hereby report the estimated MPs, together with plots focusing on time consistency and (non) evidence
of decreasing MP.

To capture the dynamics in the two markets, it is useful to compare the growth rate of the MP with
that of the wage level and the used amount of labor in the two markets, as in Figure C.1. In the skilled
labor market, the overall increase in MP (.041 on average) is associated with shrinking (PPP) real wages
(−.31 on average) and growing used quantity (.53 on average). Interestingly, while the wages of unskilled
workers’ shrink at a similar rate, a slight overall decrease in their MP is detected (−.01 an average),
associated with a slight growth in U (.02).

These trends map into increasing economic inefficiency in the use of skilled labor, relative to unskilled
labor, during the decade under consideration.

Figure C.2 focuses on the time consistency of our estimated MPs. Indeed, these reveal quite consistent
over time, with both MPS and MPU increasing by more than 25% on average. Unskilled labor features
a lower median and a higher (much higher than skilled labor) dispersion. Interestingly, we report an
average reduction in MPK (-5.6%), associated with a slight increase in dispersion (around 10%).

Figures C.3 and C.4 show that, differently from capital, increasing (either skilled or unskilled) labor
is not associated with lower MP, neither in levels (Figure C.3) nor in growth rates (Figure C.4). Thus,
no evidence of decreasing MP emerges, for labor, from our estimates. For instance, we find the high-
skill share of hours worked to increase from 23.1% to 28.5%, with the low-medium skill share shrinking
from 31.3% to 24.2% (mostly driven by low skills). Under the conventional view of decreasing MPs and
Hicks-neutral technical change, this would imply a relative reduction in the MRTS between skilled and
unskilled labor. Figures C.3 and C.4 show that this is not the case, according to our analysis.
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Finally, Figure C.5 reports the distribution of the estimated MP of (in order, from left to right)
unskilled labor (MPU), skilled labor (MPS) and capital (MPK) at the start and finish of the period.
Again, estimates look quite consistent over time.

Figure C.1: Estimated MP ((󰁥ms
cj,t), (󰁥mu

cj,t)) versus wage level and used amount of labor: Skilled (S)
and Unskilled (U) labor, country-sector growth rates, 1995-2005.
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Figure C.2: Estimated MP ((󰁥ms
cj,t), (󰁥mu

cj,t), (󰁥mk
cj,t)): time consistency.

Figure C.3: Estimated MP ((󰁥ms
cj,t), (󰁥mu

cj,t), (󰁥mk
cj,t)) versus (S,U,K) input quantity (2005).
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Figure C.4: Change in Estimated MP ((󰁥ms
cj,t), (󰁥mu

cj,t), (󰁥mk
cj,t)) versus change in the (S,U,K) input

quantity (1995-2005).

Figure C.5: Estimated MP ((󰁥ms
cj,t), (󰁥mu

cj,t), (󰁥mk
cj,t)) in 1995 (left) and 2005 (right).
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