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Introduction: Narrow Band Imaging (NBI) is an endoscopic visualization technique useful
for upper aero-digestive tract (UADT) cancer detection and margins evaluation. However,
NBI analysis is strongly operator-dependent and requires high expertise, thus limiting its
wider implementation. Recently, artificial intelligence (AI) has demonstrated potential for
applications in UADT videoendoscopy. Among AI methods, deep learning algorithms, and
especially convolutional neural networks (CNNs), are particularly suitable for delineating
cancers on videoendoscopy. This study is aimed to develop a CNN for automatic
semantic segmentation of UADT cancer on endoscopic images.

Materials and Methods: A dataset of white light and NBI videoframes of laryngeal
squamous cell carcinoma (LSCC) was collected and manually annotated. A novel DL
segmentation model (SegMENT) was designed. SegMENT relies on DeepLabV3+ CNN
architecture, modified using Xception as a backbone and incorporating ensemble features
from other CNNs. The performance of SegMENTwas compared to state-of-the-art CNNs
(UNet, ResUNet, andDeepLabv3). SegMENTwas then validated on two external datasets
of NBI images of oropharyngeal (OPSCC) and oral cavity SCC (OSCC) obtained from a
previously published study. The impact of in-domain transfer learning through an
ensemble technique was evaluated on the external datasets.

Results: 219 LSCC patients were retrospectively included in the study. A total of 683
videoframes composed the LSCC dataset, while the external validation cohorts of
OPSCC and OCSCC contained 116 and 102 images. On the LSCC dataset,
SegMENT outperformed the other DL models, obtaining the following median values:
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0.68 intersection over union (IoU), 0.81 dice similarity coefficient (DSC), 0.95 recall, 0.78
precision, 0.97 accuracy. For the OCSCC and OPSCC datasets, results were superior
compared to previously published data: the median performance metrics were,
respectively, improved as follows: DSC=10.3% and 11.9%, recall=15.0% and 5.1%,
precision=17.0% and 14.7%, accuracy=4.1% and 10.3%.

Conclusion: SegMENT achieved promising performances, showing that automatic
tumor segmentation in endoscopic images is feasible even within the highly
heterogeneous and complex UADT environment. SegMENT outperformed the
previously published results on the external validation cohorts. The model
demonstrated potential for improved detection of early tumors, more precise biopsies,
and better selection of resection margins.

Keywords: larynx cancer, oral cancer, oropharynx cancer, machine learning, endoscopy, laryngoscopy, computer
vision, otorhinolaryngology

INTRODUCTION

At present, the cornerstone of the otolaryngological clinical
examination of the upper aero-digestive tract (UADT) is
represented by endoscopy. Whether performed through the nose
with flexible instrumentation or transorally by rigid telescopes,
endoscopy, especially if coupled with high-definition (HD)
technology, provides a detailed, magnified, and comprehensively
enhanced vision of the UADT. Endoscopy enhancing filters (EEFs),
such as Narrow Band Imaging (NBI) or the Storz Professional
Image Enhancement System (SPIES), have been playing a
fundamental role in the past decade, empowering conventional
white light (WL) endoscopy by highlighting the submucosal and
subepithelial neoangiogenic network associated with malignant
transformation (1). By enhancing visualization of the cancer-
related abnormal intrapapillary capillary loops, these
“bioendoscopic” tools have been shown to provide better
performance compared to standard WL endoscopy in the
diagnosis of UADT carcinomas (2–5). Nowadays, EEFs like NBI
are widely used in various head and neck subsites such as the larynx/
hypopharynx (3, 6, 7), oropharynx (8, 9), nasopharynx (10–12), and
oral cavity (13–15), where they play a fundamental role in detection,
characterization, and delineation of superficial margins of malignant
lesions. However, caution is needed in the analysis and
interpretation of UADT videoendoscopies, especially in centers
less experienced with these techniques. Even with EEFs, in fact,
the detection and evaluation of vascular abnormalities is limited by
the considerable heterogeneity in the appearance of squamous cell
carcinomas (SCCs) of this area. Moreover, margins delineation can
be challenging when mucosal vascularization is altered by other
factors, such as inflammatory disease or previous (chemo)
radiotherapy (16). Finally, several aspects hinder the large-scale
implementation of EEFs during routine UADT endoscopic
assessment, such as its intrinsic operator-dependent nature and
the relatively steep learning curve needed to master this technique.

Artificial intelligence (AI) is a potentially powerful ally to
support clinicians in this complex scenario, prompting our
research group to envision the birth of “Videomics” as a new

and promising field of application of such a tool in the diagnostic
challenges of the UADT oncologic diseases (17). The term
Videomics was coined to refer to computer vision and deep
learning methods that are systematically used to process the
unstructured video data obtained from diagnostic endoscopy to
convert subjective assessment into objective findings. Parallelly,
the use of AI in videoendoscopy, especially in the gastrointestinal
field, has already become relevant in the literature and even on
the market (18). When moving to the specific field of UADT,
however, only a few studies have been published in the current
literature, with most focusing on laryngeal endoscopy (19).
Among all AI-powered methods, deep learning (DL)
techniques based on convolutional neural networks (CNNs)
are increasingly used in UADT videoendoscopy analysis for
automatic disease detection (20–22), classification (23, 24), and
segmentation (25). In fact, thanks to their unique architecture,
CNNs provide improved performance compared to conventional
computer vision and machine learning methods.

Image segmentation is typically used to locate objects in
images by marking their specific contours and the area inside
those. In computer vision, semantic segmentation is referred as
the task of assigning each pixel in an image to a predefined set of
classes. Within the different computer vision tasks, semantic
segmentation is particularly interesting for UADT endoscopy.
Indeed, the possibility offered by DL to automatically detect
tumor boundaries, especially if coupled with EEFs imaging,
would represent a valuable support in clinical practice. This
could make the benefits of EEFs accessible to all physicians and
contribute to improve their performance in tumor recognition
and margins delineation. However, only a few studies have
pursued automatic segmentation of UADT lesions so far (26–
29) and, thus, further research is needed to progress this
technology and advance it towards its clinical implementation.

In this paper, we describe a new CNN-based semantic
segmentation model for videoendoscopy of the UADT, named
SegMENT. This model was specifically developed for the
identification and segmentation of UADT cancer in endoscopic
video frames, with particular attention to laryngeal squamous cell
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carcinoma (LSCC), oral cavity squamous cell carcinoma (OCSCC)
and oropharyngeal squamous cell carcinoma (OPSCC). The list of
abbreviations used in the article is reported in Table 1.

MATERIALS AND METHODS

Data Acquisition
Recorded videoendoscopies of patients treated between 2014 and
2019 at the Unit of Otorhinolaryngology – Head and Neck
Surgery of the IRCSS Ospedale Policlinico San Martino,

Genoa, Italy, were retrospectively revised. Selection criteria
comprised a pathology report positive for LSCC and the
availability of at least one recorded videoendoscopy before
treatment. Local Institutional Review Board approval was
obtained (CER Liguria: 230/2019). All patients were first
examined through transnasal videolaryngoscopy (HD Video
Rhino-laryngoscope Olympus ENF-VH, Olympus Medical
System Corporation, Tokyo, Japan) in the office before
treatment. For those submitted to transoral laryngeal
microsurgery, an additional intraoperative endoscopic
evaluation was conducted using 0°, 30° or 70° telescopes
coupled to a HD camera head connected to a Visera Elite
CLV-S190 l ight source (Olympus Medica l Sys tem
Corporation). In both settings, a thorough examination was
conducted under WL videoendoscopy, then switching to NBI.

From each of the collected videos, four expert physicians
extracted, when available, one WL and one NBI frame. Frames
were selected to be the most representative of the lesion and
possibly offer a clear view of its boundaries. Priority in image
selection was given to steady frames with few artifacts and blur.
The extracted videoframes were then labeled by the same
physicians using the VGG Image Annotator (VIA) 2.0 (https://
www.robots.ox.ac.uk/~vgg/software/via/), an open-source web-
based annotation software. The annotation process consisted in
the manual segmentation of the neoplastic lesion borders: this
was done by manually tracing its contour following the visible
tumor margins identified both in WL and in NBI. The pixels
comprised in the traced regions were classified as “LSCC” and no
specific label was assigned for NBI or WL images. If multiple
lesions were visible, multiple segmentations were carried out in
order to select all the LSCC pixels in the image. If a physician was
not completely sure about the correctness of the annotations, all
four otolaryngologists revised them collectively. Finally, a senior
surgeon (the author G.P.) checked all annotations and referred

FIGURE 1 | Flow chart of data acquisition for the laryngeal squamous cell carcinoma (LSCC) dataset. WL, white light; NBI, narrow band imaging.

TABLE 1 | Abbreviations and acronyms.

AI Artificial Intelligence
ANOVA Analysis of Variance
ASPP Atrous Spatial Pyramid Pooling
CNN convolutional neural network
DL Deep Learning
DSC Dice Similarity Coefficient
EEF Endoscopy Enhancing Filter
FPS Frames Per Second
FN False Negative
FP False Positive
HD High-Definition
IoU Intersection over Union
LSCC Laryngeal Squamous Cell Carcinoma
NBI Narrow Band Imaging
OPSCC Oropharyngeal Squamous Cell Carcinoma
OCSCC Oral Cavity Squamous Cell Carcinoma
SPIES Storz Professional Image Enhancement System
SCC Squamous Cell Carcinoma
TP True Positive
TN True Negative
TL Transfer Learning
UADT Upper Aero-Digestive Tract
VIA VGG Image Annotator
WL White Light
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the inexact ones for collective revision. Figure 1 summarizes the
data acquisition process.

Finally, two datasets of NBI endoscopic images were obtained
from a previous study on automatic segmentation of OCSCC and
OPSCC (26). The datasets included the corresponding ground-
truth annotations, as previously described.

SegMENT Architecture
Figure 2 describes the architecture of SegMENT. This latter is
based on concepts introduced by the DeepLabV3+ model (30),
which were expanded and customized here for precise cancer
segmentation in UADT videoendoscopies. The segMENT
backbone was built on the Xception architecture (31), which
was chosen for its high benchmark results on ImageNet (32), the
largest dataset of natural images publicly available. Xception has a
smaller number of parameters compared to the most popular
CNN architectures like VGG16 and VGG19, but an almost equal
number of parameters than Resnet50 and DensNet121 (33). The
Xception backbone architecture is composed of two primary
components: convolutional layers with pooling for feature
extraction, and fully connected dense layers at the top of the
network for classification. To customize this backbone network
for segmentation tasks, we removed the network fully connected
dense layers and maintained only the feature extraction layers.
The functionalities to resize the input frames into 256x256 pixels

were maintained. In addition, we used three-skip connections to
get feature map outputs (of size 16×16, 32×32, and 64×64 pixels)
from Xception backbone convolution layers. These were then
merged using Atrous Spatial Pyramid Pooling (ASPP) blocks in
the encoder part of our model.

Given the heterogeneous nature of UADT lesions in terms of
dimension, form, and contour, we designed the encoder part of
SegMENT to use two ASPP blocks. These can potentially
contribute to increased segmentation accuracy. The ASPP
block-1 is designed for high-level image features (shapes,
tumor composition, etc.). It is fed with 16×16 pixels input
images directly from the Xception backbone and contains 256
filters. ASPP block-1 comprises five rates of dilation convolution
layers (1, 3, 6, 12, and 18), which were chosen given the small-
scale input images. The ASPP block-2 is designed for low-level
image features (edges, contours, texture) and accepts two scales
of input images (32×32 and 64×64 pixels). It is also comprised of
five rates of dilation convolution layers (1, 6, 12, 18, and 24),
which are higher here because of the larger scale of the input
images. The ASPP block-2 employs 48 filters for 64×64 pixels
input images and 64 filters for 32×32 pixels input images. Finally,
the convolutional layers of SegMENT use the Mish activation
function (except for the last layers that use a sigmoid activation
function). This activation function was selected to replace the
traditional Relu activation function as it was shown to provide

FIGURE 2 | Workflow diagram of the proposed SegMENT semantic segmentation architecture. The Xception backbone is customized for segmentation tasks by
eliminating the dense layers for classification while maintaining the feature extraction layers. The model encoder uses two ASPP blocks designed, respectively, for
high- and low-level image features. The decoder section concatenates the information coming from the two ASPP blocks, producing segmentation masks.
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better performance (34). The decoder section accepts the
encoder outputs with the three resized (16×16, 32×32, and
64×64 pixels) images. The output images of ASPP block-1 are
four times up-sampled using the UpSampling2D layer and
bilinear interpolation technique to yield 64×64 pixels images.
The images from ASPP block-2 with 32×32 pixels are up-
sampled two times. Next, 64×64 pixel images from ASPP
block-2 are concatenated with the up-sampled 64×64 pixel
images generated by ASPP block-1. This concatenation
produces 64×64 pixels images. Afterward, a 2D convolutional
layer with a kernel size of 3×3 and 256 filters is applied to these
images. Again, images are further up-sampled four times to get
256×256 pixel images. Finally, the segmented tumor area is
retrieved through a bitwise-AND operation, which generates
an output image of 256x256 pixels.

Baseline Models
Three state-of-the-art baseline CNNs for semantic segmentation
(i.e., UNet, ResUNet, and DeepLabv3+) were investigated and
tested as part of a comparative study. Each segmentation model
incorporates a backbone architecture for feature extraction. The
backbones considered were VGG16, VGG19, MobileNetV2,
ResNet50, ResNet101V2, DenseNet121, and Xception. Pre-

trained backbone weights from the ImageNet dataset were
used (32). The UNet network (35) is equipped with an
encoding path that learns to encode texture descriptors and a
decoding path that achieves the segmentation task. ResUNet (36)
is a segmentation model based on the UNet architecture that
implements residual units instead of plain neural units, in order
to obtain good performance with fewer parameters. Finally,
DeepLabV3+ (30) uses dilated separable convolutions and
spatial pyramid pooling in a U-shaped architecture to produce
accelerated inference times and reduced loss values. The training
and testing of these baseline models were performed in the same
environment and using the same data as SegMENT.

Ensemble Technique
Multiple ensemble techniques are described in the literature for
decreasing segmentation errors and optimizing efficiency (37–
39). Their utility becomes evident especially when the available
training dataset for a new application area is small or highly
heterogeneous, such as the case of the OCSCC and OPSCC
datasets. In this work, we evaluated the value of using the
weighted average ensemble approach (27) during the testing
phase of the segmentation network. This technique implements a
weighted ensemble of predictions from different models. Its

FIGURE 3 | Diagram describing the training and testing of the models assessed in this work. Initially, the models are initialized with weights obtained from training
on the ImageNet dataset. Next, the models are trained on the specific datasets of interest. During testing, the trained models provide segmentation predictions, and
ensemble used to generate the final segmentations. In addition, in-domain transfer learning (TL) can be used to enhance the segmentation performance on small
datasets using trained weights from other anatomical subsites. LSCC, laryngeal squamous cell carcinoma; OCSCC, oral cavity squamous cell carcinoma; OPSCC,
oropharyngeal squamous cell carcinoma.
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integration into the proposed segmentation architecture is
shown in Figure 3.

In LSCC segmentation, the predictions of the two best-
performing models (SegMENT and UNet-DenseNet121) were
combined to improve the accuracy of laryngeal cancer
segmentation. Initially, the two models were independently
trained on the LSCC dataset. Their predictions were then
combined following the weighted average ensemble approach.

In OCSCC segmentation tasks, three different predictions
were ensembled during testing. One was taken from a SegMENT
model trained on the OCSCC dataset. The other two predictions
were taken from SegMENT and UNet-DenseNet121 trained on
the LSCC dataset. To produce the single final output prediction,
the three output predictions were multiplied by the assigned
weight values, which were obtained through a grid
search technique.

The same strategy was used for OPSCC segmentation, with
the difference that the first SegMENT model was trained on the
OPSCC dataset. The other two predictions were taken from
SegMENT and UNet-DenseNet121 models trained on the LSCC
dataset, as before.

Training Parameters
For training of SegMENT, the Tverky loss function (40) was used.
This loss function is used for highly unbalanced datasets. In our
model, we used a learning rate of 0.001 with a batch size of 8
images per epoch during training. The learning rate decay was set
to a factor of 0.1. If the training loss did not improve after four
consecutive epochs of learning, the decay was slowed down. Data
augmentation was used during training to increase the variability
of the training dataset: flip, crop, translation, rotation, and
scaling were applied, as well as hue, brightness, and contrast
augmentation. A Tesla K80 GPU with 12 GB of memory and an
Intel(R) Xeon(R) CPU running at 2.20 GHz with 13 GB of
memory using Keras and a Tensorflow (41) back-end were used
for all experiments.

Validation on LSCC Dataset
The first experiments were performed on the LSCC dataset,
which was split into a training and a test sets using a respective
split ratio of 80% and 20% with randomly selected images.
Initially, the baseline models and SegMENT were trained and
tested on the LSCC dataset starting from pre-trained weights
obtained from ImageNet. Afterward, the weights of SegMENT
and UNet-DenseNet121 were combined using the weighted
ensemble method in the testing phase.

Validation on OCSCC and OPSCC Datasets
The OCSCC and OPSCC datasets were separately used to
validate SegMENT on these different UADT sites. Each dataset
was split into a training and a validation/test groups with a 70/30
percent split ratio based on a random image selection process.

SegMENT was first trained and tested separately on the
OCSCC and OPSCC datasets, starting from ImageNet pre-
trained weights without applying the ensemble technique.
Following this, the described in-domain transfer learning (TL)
method based on a weighted ensemble technique was used to

assess potential performance improvements. We hypothesized
that, compared to the standard TL provided by ImageNet, which
is based on natural images (such as daily objects, and animals), a
specific in-domain TL based on LSCC trained weights might
enable better performance on images from other UADT regions.
Therefore, the SegMENT ensemble model, incorporating features
initially learned from the LSCC dataset, was tested on the
OCSCC and OPSCC datasets during the testing phase of the
segmentation framework.

Outcome Analysis
The outcomes of each DL model were evaluated by comparing
the predicted segmentations with the manual annotations
performed by expert physicians (i.e., the ground-truth
segmentations). Standard evaluation metrics for semantic
segmentation were used as previously reported (42). A
classification of each pixel in the images as true positive (TP),
true negative (TN), false positive (FP), or false negative (FN) was
used to derive the evaluation metrics below.

• Accuracy: the percentage of pixels in the image that is
correctly classified by the model.

Accuracy¼ TPþTN
TPþFPþTNþFN

• Precision (positive predictive value): the fraction of pixels that
are true positives (correctly predicted pixels of the targeting
class) among the total predicted pixels:

Precision¼ TP
TPþFP

• Recall (sensitivity): the fraction of pixels that are true positives
among the total ground truth segmented pixels:

Recall¼ TP
TPþFN

• Dice similarity coefficient (DSC): represent the harmonic
weight of Precision and Recall values (also called F1 score):

DSC¼ 2TP
2TPþFNþFP

• Intersection over Union (IoU): the fraction of pixels that are
true positives among the union of pixels that are positive
predictions and belong to the target class (Figure 4).

loU ¼ TP
TPþFNþFP

Statistical Analysis
Differences in distributions of continuous variables among more
than two independent groups were assessed with the analysis of
variance (ANOVA) test. Post-hoc analysis was performed using
Tukey’s multiple comparisons test to control for the inflated
Type I error. A p<0.05 was considered significant. Data analysis
was carried out using statistical functions (scipy.stat) and
statistical models (statmodels v0.13.2) libraries in python (v3.9).
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RESULTS

Two hundred and nineteen patients with a mean age of 67.9
years (SD ± 11.8 years) were enrolled. Among these, 196 (89.4%)
were males and 23 (10.6%) females. A total of 683 frames

representing LSCC were extracted from videolaryngoscopies.
Of those, 223 were in-office WL, 129 intraoperative WL, 223
in-office NBI, and 108 intraoperative NBI images. Figure 5
presents an overview of the final composition of the
LSCC dataset.

FIGURE 4 | Graphical representation of the intersection over union (IoU) calculation on a white light right glottic cancer intraoperative videoframe. The boundary
traced in light blue represents the ground truth segmentation provided by an expert clinician, while the red one represents the model prediction. The IoU is
calculated by dividing the overlapping area (containing the true positive pixels) by the total area of union (encompassing the false negative, true positive, and
false positive pixels).

FIGURE 5 | Overview of the final configuration of laryngeal squamous cell carcinoma (LSCC), oral cavity squamous cell carcinoma (OCSCC) and oropharyngeal
squamous cell carcinoma (OPSCC) dataset. Val, validation; WL, white light; NBI, narrow band imaging; Intra, intraoperative endoscopy acquired image; Office,
inoffice endoscopy acquired image.
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The semantic segmentation models were trained on the LSCC
dataset after random distribution of the images into a training set
(547 images), a validation set (68 images), and a test set (68 images).
During experiments, it was observed that the proposed SegMENT
model outperformed the other state-of-the-art segmentation
models. Among the baseline models, the UNet-DenseNet121
performed better than the other baseline models. Thus, the
ensemble technique was used to integrate the training weights
from this model with those from SegMENT, leading to better
segmentation performance during testing. The performances of
the models on the test set are shown in Table 2. The median
values achieved by SegMENT with the ensemble technique on the
LSCC dataset were: IoU=0.685, DSC=0.814, recall=0.951,
precision=0.785, and accuracy=0.973. The boxplots showing the
IoU and DSC score performances of SegMENT and the other state-
of-the-art segmentation models during testing on the LSCC dataset
are shown in Figures 6, 7. The processing rates of all base-line
models ranged from 6.3 to 8.7 frames per second (fps), while the
proposed ensemble model processed an average of 2.1 fps (taking
0.48 seconds to process a single frame). Examples of LSCC

segmentation including ground-truth labels and the resulting
automatic segmentations are shown in Figure 8.

When comparing results among all the models using
ANOVA test, the differences were significant for each metric
(p<0.001). When performing multiple comparisons on IoU, the
SegMENT ensemble model achieved significantly better results
than UNet, ResUNet, UNet-MobileNetV2, and UNet-ResNet50
CNNs (p=0.001, p=0.001, p=0.001, and p=0.03, respectively).
Concerning DSC, the SegMENT ensemble model achieved a
significantly better result compared to UNet, ResUNet, and
UNet-MobileNetV2 CNNs (p=0.001, p=0.001, and p=0.001,
respectively). Considering recall, the SegMENT ensemble
model significantly outperformed UNet, ResUNet, UNet-
VGG16, UNet-MobileNetV2, and DeepLabv3+CNNs (p=0.001,
p=0.001, p=0.02, p=0.001, and p=0.001, respectively). For
precision and accuracy values, the SegMENT ensemble model
performed significantly better compared to UNet and ResUNet
(p=0.001 and p=0.001, respectively).

The external validation cohorts comprised 102 images for
OCSCC (72 for training, 15 for validation, and 15 for testing)

FIGURE 6 | Boxplots of Intersection over Union (IoU) results from SegMENT ensemble and the other state-of-the-art segmentation models on the laryngeal
squamous cell carcinoma (LSCC) dataset. The cross sign represents the mean value while the horizontal line inside the boxplot shows the median value.

TABLE 2 | Performance evaluation of different semantic segmentation models during testing on the laryngeal squamous cell carcinoma (LSCC) dataset.

Dataset Model Backbone IoU DSC Recall Precision Accuracy

Larynx Cancer (LSCC) UNet – 0.264 0.418 0.641 0.351 0.895
ResUNet – 0.309 0.473 0.486 0.490 0.928
UNet VGG16 0.595 0.746 0.817 0.823 0.968
UNet VGG19 0.618 0.763 0.900 0.827 0.967
UNet MobileNetV2 0.469 0.639 0.579 0.855 0.961
DeepLabV3+ ResNet50 0.587 0.740 0.714 0.830 0.968
UNet ResNet50 0.476 0.645 0.834 0.745 0.952
UNet ResNet101V2 0.586 0.739 0.841 0.788 0.963
UNet DenseNet121 0.677 0.807 0.847 0.840 0.971
SegMENT Xception 0.686 0.814 0.916 0.830 0.969
SegMENT ensemble Xception 0.685 0.814 0.951 0.785 0.973

Values in bold denote the best results. IoU, intersection over union; DSC, dice similarity coefficient.
The results represent the median scores from all the tests for each metric.
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FIGURE 7 | Boxplots of Dice similarity coefficient (DSC) results from SegMENT ensemble and the other state-of-the-art segmentation models on the laryngeal
squamous cell carcinoma (LSCC) dataset. The cross sign represents the mean value, while the horizontal line inside the boxplot shows the median value.

FIGURE 8 | Examples of automatic segmentation results for the laryngeal squamous cell carcinoma dataset using SegMENT ensemble. DSC, dice similarity
coefficient; IoU, intersection over union; WL, white light; NBI, Narrow Band Imaging.
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and 116 images for OPSCC (82 for training, 17 for validation,
and 17 for testing). Previously published outcomes (26) are
compared to the proposed models performance in Table 3.
However, while the images used were the same, it must be
highlighted that it was not possible to perform the same exact
image allocation in the training/testing cohorts as in the
previous study. The SegMENT model pre-trained on
ImageNet already performed better than the previous study
CNNs on all metrics. The in-domain TL also helped to improve
the results, especially for the OPSCC dataset. Indeed, the
median metrics on the OCSCC and OPSCC datasets
improved compared to the previously published by,
respectively, 10.3% and 11.9% for DSC, 15.0% and 5.1% for
recall, 17.0% and 14.7% for precision, and 4.1% and 10.3% for

accuracy. The processing rate of our model was 3.9 fps on both
the OCSCC and OPSCC datasets. Examples of segmentation of
OCSCC and OPSCC frames displaying both the ground-truth
labels and the resulting automatic segmentations are shown
in Figure 9.

DISCUSSION

The development of semantic segmentation AI models for
medical image analysis is a field of study that is becoming
increasingly widespread, especially for radiologic imaging (43–
45). Conversely, the exploitation of these algorithms to
investigate videoendoscopic images represents a sphere of

TABLE 3 | Performance evaluation of models during testing on the oral cavity (OCSCC) and oropharynx squamous cell carcinoma (OPSCC) datasets.

Dataset Model Backbone IoU DSC Recall Precision Accuracy

Oral Cavity Cancer (OCSCC) UNet (26) – – 0.654 0.755 0.632 0.890
ResNet with 5×2 blocks (26) – – 0.656 0.670 0.708 0.879
SegMENT Xception 0.612 0.759 0.757 0.878 0.931
SegMENT + ensemble TL Xception 0.749 0.598 0.905 0.602 0.917

Oropharynx Cancer (OPSCC) UNet (26) – – 0.712 0.815 0.704 0.819
ResNet with 4×2 blocks (26) – – 0.760 0.856 0.772 0.830
SegMENT Xception 0.685 0.786 0.767 0.874 0.932
SegMENT + ensemble TL Xception 0.784 0.879 0.907 0.919 0.933

The results achieved by SegMENT trained only on the specific datasets and by the SegMENT ensemble model (i.e., incorporating features learned from the LSCC dataset) are compared to
those reported employing UNet and ResNet in the previous study (26). The results represent the median scores from all the tests for each metric. Values in bold denote the best results.
IoU, intersection over Union; DSC, dice similarity coefficient; TL, transfer learning.

FIGURE 9 | Examples of automatic segmentation results for the oral cavity and oropharyngeal squamous cell carcinoma datasets using SegMENT + ensemble in-
domain transfer learning. DSC, Dice similarity coefficient; IoU, intersection over union; NBI, Narrow Band Imaging.
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research less explored in the literature, as demonstrated by the
lack of proper terminology to indicate such a field of interest
before our first proposal to identify it as “Videomics” (17).
Notably, the vast majority of studies analyzing the applicability
of DL-based semantic segmentation models in endoscopy
come from the gastrointestinal field (46, 47). On the other
hand, reports regarding the use of such algorithms in
videoendoscopic examination of the UADT are scarce. This
can be attributed to many factors: first, the insidious and
diversified mucosal anatomy and a wide variety of lesions
arising from this region are a challenge for AI-based image
recognition models; second, while HD colonoscopy and
esophago-gastroduodenoscopy have been routinely used in
worldwide screening protocols for decades (48, 49),
implementation of UADT endoscopic examination coupled
with HD-videoendoscopy is more recent and less widespread,
thus limiting the amount of data available for the application of
AI technologies.

In this study, the authors present the promising results of a
new CNN specifically designed for the automatic segmentation
of UADT SCC. This new processing network was first tested on
a dataset of LSCC images and subsequently validated on
OCSCC and OPSCC images obtained from a previous study
(26). The proposed model showed similar diagnostic outcomes
for all three investigated sites, demonstrating good
generalization capacity and, thus, the potential for using it in
real-life clinical scenarios. Considering the tests performed on
the LSCC dataset, the SegMENT ensemble model performed
better than the state-of-the-art CNNs, especially considering
the IoU and Dsc metrics, which are the most reliable and widely
used for the evaluation of semantic segmentation models. These
performances were maintained when the model was validated
on the OCSCC and OPSCC cohorts, where SegMENT
outperformed the results of the state-of-the-art models
previously investigated on the same datasets (26). Notably,
the adjunction of specific-TL features borrowed from the
LSCC dataset allowed reaching even higher results, especially
for the OPSCC dataset, compared to the basal SegMENT pre-
trained on ImageNet. While most methods for medical image
analysis employ TL from general natural images (e.g.,
ImageNet) (32) this strategy has been proven to be less
effective compared to in-domain TL due to the mismatch in
learned features between natural and medical images (50).
Similarly, our results indicate that in-domain TL is a
promi s ing s t r a t egy fo r the proce s s ing o f UADT
videoendoscopies. Nonetheless, our findings should be further
validated on larger datasets, as the results on the OCSCC
dataset were improved less compared to OPSCC. These
contradic tory outcomes may be expla ined by the
heterogeneous image composition of the OCSCC dataset.
Indeed, endoscopic examination of the oral cavity often
includes videoframes of the lip cutaneous surfaces, alveolar
ridges, or teeth crowns. Therefore, these non-mucosal areas
that differ markedly from the laryngeal and oropharyngeal
endoscopic appearance may have contributed to confuse the
model and decrease its performance. Moreover, the limited

number of images included in the validation datasets might
limit the effect of in-domain TL which we believe could lead to
even better results if tested on more images.

The comparable results obtained by the proposed model for
the LSCC (WL+NBI), the OCSCC (NBI only), and OPSCC (NBI
only) datasets confirm the good generalization capacity of this
model, which performs well regardless of the light source used to
acquire images. Moreover, even without in-domain TL, the
SegMENT ensemble model maintained its performance on the
OCSCC and OPSCC datasets regardless of the small training
datasets (13% and 15%, respectively, compared to the LSCC
dataset). This finding possibly suggests that EEFs images, with
their enhanced visual characteristics, may offer more
information to the model during the training phase, thus
helping to mitigate the shortage of images. Nevertheless, a
prospective study comparing WL vs. EEFs cohorts is
recommended to better investigate this finding.

To date, the present study represents the first attempt to
validate a DL-based semantic segmentation model capable of
achieving good results in the endoscopic assessment of SCC
arising from the oral cavity, oropharynx, and larynx.
The segmentation task has been seldomly applied to
videoendoscopic images of the UADT, making this field of
study innovative. Laves et al. previously tested different CNNs
to automatically delineate different tissues and anatomical
subsites on images obtained during intraoperative endoscopic
evaluation of the glottis (27). The authors reported high mean
values of IoU (84.7%) by segmenting every object in the image
but did not focus on the annotation of cancer. Moreover, their
dataset consisted of similar images obtained from only two
patients, hence impairing a reasonable comparison with our
results. A more specific paper on laryngeal lesion segmentation
was published by Ji and colleagues (28). In this work, several
CNN models were implemented to delineate glottic leucoplakias
on a dataset of 649 images with segmentation metrics in line with
our results (DSC=0.78 and IoU=0.66). Interestingly, the best
processing performance achieved by their models was 5 fps
which, together with the previous results of Paderno and
colleagues (ranging within 8.7 and 16.9 fps) (26), were faster
than the 3.9 fps processed by our proposed model.
Notwithstanding, all these processing times are still far from
real-time inferences (20-30 fps), meaning that different strategies
and different CNNs must be explored in order to maintain high
diagnostic performance while reaching real-time efficiency.
Investigating a different UADT subsite, Li and colleagues
employed a CNN to automatically segment endoscopic images
of nasopharyngeal carcinoma (29). Their work included a large
dataset of WL in-office endoscopic frames (30,396 images)
obtained in a single tertiary-level institution. Of note, the only
segmentation metric reported is mean DSC (0.75±0.26), which is
comparable to the results of our model. Interestingly, the authors
underlined the value of the proposed semantic segmentation
algorithm as an instrument to perform a target biopsy in case of
suspicious nasopharyngeal lesions. Indeed, the common
presence of adenoid/lymphatic hyperplasia in this area
burdened the performance of endoscopic biopsies taken in an

Azam et al. Automatic Segmentation of UADT Cancer

Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 90045111

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


office-based setting, thus resulting in considerable false negatives
rates (29). The same issue is frequently encountered when
performing endoscopy-driven biopsies of suspicious neoplasms
of other UADT districts. Regarding the oropharynx, lesions
arising from the base of tongue and amygdalo-glossal sulcus
are frequently hidden by lymphatic tissue present in this area,
and can sometimes be misinterpreted and confused with
mucosal/lymphatic hyperplasia (26). Similarly, tumors in the
oral cavity can nest in inflammatory lesions such as leucoplakias
or lichen, which may also hinder the real target to biopsy.
Regarding the larynx, the performance of incisional biopsies
under WL has been largely questioned due to its low sensitivity
(51). The introduction of EEFs, by allowing to better select the
most suspicious area to target, represented an important step
forward leading to a significant improvement in the
performances of endoscopic biopsies (2, 52–54). Nevertheless,
the difficulties encountered during human evaluation of such
images burden the capillary application of EEFs, hence paving
the way to the innovative application of AI for these tasks.
Indeed, the use of trustworthy semantic segmentation DLmodels
during endoscopy may automatically delineate the superficial
area where to conduct the biopsy, even when facing
heterogeneous and mystifying lesions such as SCCs of
the UADT.

Additionally, automatic-segmentation models may find a
field of application even intraoperatively for surgical guidance
(55), or for driving tumor excision and provide an improved rate
of negative surgical margins. Of note, the use of NBI during
surgery for SCC of the oral cavity, oropharynx, and larynx has
been already shown to be effective in these tasks (56–59), but we
believe that AI-based tools, once rigorously validated, will
represent a more precise and objective method for surgical
margins sampling. Final ly , pursuing the automatic
segmentation in this field is expected to become increasingly
relevant in the future not only for surgical practice but in other
fields as well. In fact, semantic segmentation is paramount for
establishing boundaries between objects in order to explain
complex situations to computers. In the future, highly
elaborated AI tools might be able to autonomously understand
the relationships between different elements, even in a highly
complex environment such as the UADT, and suggest
meaningful clinical decisions to physicians.

The present work has l imitat ions that must be
acknowledged. First, the study conclusions are restricted by
the small size of the datasets, especially the external validation
cohorts, and by its retrospective design. To overcome such
drawbacks, an enriched data collection will characterize our
future projects in order to increase the dataset’s size.
Additionally, data acquisition protocols will be implemented
by gathering videos from different video sources, with the
purpose of enhancing the generalization capability of the
algorithm. Furthermore, the previously collected NBI images
from the validation cohorts did not allow head-to-head
comparison of WL vs. NBI. Moreover, as SegMENT was
trained to recognize the appearance of lesions, the finding of
diffuse and narrow intrapapillary capillary loops, typical of

inflammatory diseases or radiotherapy, may lead to decreased
lesion segmentation performance. To minimize this potential
issue, future research should consider training CNN models
using endoscopic images obtained from heterogeneous cohorts
of patients, including those that were previously irradiated or
are concomitantly affected by inflammatory diseases. Finally,
the annotations performed by physicians were not cross-
validated by other institutions, representing a bias that will be
addressed in future studies.

CONCLUSIONS

This work represents the first multicentric validation of a DL-
based semantic segmentation model applied on UADT
videoendoscopic images of SCC. The model maintained
reliable diagnostic performance analyzing both WL and NBI
images from three distinct anatomical subsites. Ensemble
strategies and in-domain transfer learning techniques
demonstrated the potential to increase segmentation
performance. Exploration of new CNNs should be carried out
to pursue real-time clinical implementation, while further
studies powered by a larger training dataset and larger
external validation cohorts are needed before setting up
clinical trials.
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Towards a Better Understanding of Transfer Learning for Medical Imaging: A
Case Study. Appl Sci (2020) 10:1–21. doi: 10.3390/app10134523

51. Cohen JT, Benyamini L. Transnasal Flexible Fiberoptic in-Office Laryngeal
Biopsies-Our Experience With 117 Patients With Suspicious Lesions.
Rambam Maimonides Med J (2014) 5:e0011. doi: 10.5041/RMMJ.10145

52. Galli J, Settimi S, Mele DA, Salvati A, Schiavi E, Parrilla C, et al. Role of
Narrow Band Imaging Technology in the Diagnosis and Follow Up of
Laryngeal Lesions: Assessment of Diagnostic Accuracy and Reliability in a
Large Patient Cohort. J Clin Med (2021) 10:1–10. doi: 10.3390/jcm10061224

53. Nair D, Qayyumi B, Sharin F, Mair M, Bal M, Pimple S, et al. Narrow Band
Imaging Observed Oral Mucosa Microvasculature as a Tool to Detect Early
Oral Cancer: An Indian Experience. Eur Arch Oto-Rhino-Laryngol (2021)
278:3965–71. doi: 10.1007/s00405-020-06578-4

54. Carobbio ALC, Vallin A, Ioppi A, Missale F, Ascoli A, Mocellin D, et al.
Application of Bioendoscopy Filters in Endoscopic Assessment of Sinonasal
Schneiderian Papillomas. Int Forum Allergy Rhinol (2021) 11(6):1025–8.
doi: 10.1002/alr.22760

55. Gong J, Holsinger FC, Noel JE, Mitani S, Jopling J, Bedi N, et al. Using Deep
Learning to Identify the Recurrent Laryngeal Nerve During Thyroidectomy.
Sci Rep (2021) 11:1–11. doi: 10.1038/s41598-021-93202-y

56. Garofolo S, Piazza C, Del Bon F, Mangili S, Guastini L, Mora F, et al.
Intraoperative Narrow Band Imaging Better Delineates Superficial Resection
Margins During Transoral Laser Microsurgery for Early Glottic Cancer. Ann
Otol Rhinol Laryngol (2015) 124:294–8. doi: 10.1177/0003489414556082

57. Bertino G, Cacciola S, Fernandes WB, Fernandes CM, Occhini A, Tinelli C,
et al. Effectiveness of Narrow Band Imaging in the Detection of Premalignant
andMalignant Lesions of the Larynx: Validation of a New Endoscopic Clinical
Classification. Head Neck (2015) 37:215–22. doi: 10.1002/HED.23582

58. Tirelli G, Piovesana M, Gatto A, Tofanelli M, Biasotto M, Boscolo Nata F.
Narrow Band Imaging in the Intra-Operative Definition of Resection Margins
in Oral Cavity and Oropharyngeal Cancer. Oral Oncol (2015) 51:908–13.
doi: 10.1016/j.oraloncology.2015.07.005

59. Farah CS, Dalley AJ, Nguyen P, Batstone M, Kordbacheh F, Perry-Keene J,
et al. Improved Surgical Margin Definition by Narrow Band Imaging for
Resection of Oral Squamous Cell Carcinoma: A Prospective Gene Expression
Profiling Study. Head Neck (2016) 38:832–9. doi: 10.1002/HED.23989

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Azam, Sampieri, Ioppi, Benzi, Giordano, De Vecchi, Campagnari,
Li, Guastini, Paderno, Moccia, Piazza, Mattos and Peretti. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Azam et al. Automatic Segmentation of UADT Cancer

Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 90045114

https://doi.org/10.1109/ATC52653.2021.9598342
https://doi.org/10.1109/ATC52653.2021.9598342
https://doi.org/10.3390/s19224822
https://doi.org/10.3390/s19224822
https://doi.org/10.2166/wst.2018.477
https://doi.org/10.1109/ISBI.2019.8759329
https://doi.org/10.1016/0076-6879(83)01039-3
https://doi.org/10.1109/ACCESS.2021.3063716
https://doi.org/10.1109/ACCESS.2021.3063716
https://doi.org/10.3390/jpm11070629
https://doi.org/10.1016/j.cmpb.2019.105102
https://doi.org/10.3389/fonc.2021.638197
https://doi.org/10.1016/j.media.2020.101838
https://doi.org/10.1016/j.media.2020.101838
https://doi.org/10.3322/canjclin.56.3.143
https://doi.org/10.3322/canjclin.56.3.143
https://doi.org/10.1111/den.13972
https://doi.org/10.3390/app10134523
https://doi.org/10.5041/RMMJ.10145
https://doi.org/10.3390/jcm10061224
https://doi.org/10.1007/s00405-020-06578-4
https://doi.org/10.1002/alr.22760
https://doi.org/10.1038/s41598-021-93202-y
https://doi.org/10.1177/0003489414556082
https://doi.org/10.1002/HED.23582
https://doi.org/10.1016/j.oraloncology.2015.07.005
https://doi.org/10.1002/HED.23989
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Videomics of the Upper Aero-Digestive Tract Cancer: Deep Learning Applied to White Light and Narrow Band Imaging for Automatic Segmentation of Endoscopic Images
	Introduction
	Materials and Methods
	Data Acquisition
	SegMENT Architecture
	Baseline Models
	Ensemble Technique
	Training Parameters
	Validation on LSCC Dataset
	Validation on OCSCC and OPSCC Datasets
	Outcome Analysis
	Statistical Analysis

	Results
	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


