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Abstract: Recent advances inperioperativemanagement of
adult and pediatric patients requiring open heart surgery
(OHS) and cardiopulmonary bypass (CPB) for cardiac
and/or congenital heart diseases repair allowed a signifi-
cant reduction in the mortality rate. Conversely morbidity
rate pattern has a flat trend. Perioperative period is crucial
since OHS and CPB are widely accepted as a deliberate
hypoxic-ischemic reperfusion damage representing the cost
to pay at a time when standard of care monitoring proced-
ures can be silent or unavailable. In this respect, the
measurement of neuro-biomarkers (NB), able to detect at
early stage perioperative brain damage could be especially
useful. In the last decade, among a series of NB, S100B
protein has been investigated. After the first promising re-
sults, supporting the usefulness of the protein as predictor
of short/long term adverse neurological outcome, the pro-
tein has been progressively abandoned due to a series of
limitations. In the present review we offer an up-dated
overview of the main S100B pros and cons in the peri-
operative monitoring of adult and pediatric patients.

Keywords: brain injury; cardiac surgery; cardiopulmonary
bypass; neurobiomarker; neuromonitoring; S100B.

Introduction

Congenital heart diseases (CHD) are a heterogeneous
entity characterized by anatomicmalformations of the heart
and/or great arteries occurring during intrauterine devel-
opment [1, 2]. CHD comprise 28% of all major congenital
anomalies and the incidence is estimated at 8–9 per 1,000
live births per year [3]. Given a worldwide annual birth rate
of around 150 million, this means that each year 1.3 million
infants are born with CHD [1–4]. Approximately 30% of
neonates born with CHD are critical and need surgical
correction within the first year of life to avoid early death.
Neurocognitive developmental damage is present in 50% of
the survivors [1–5].

In the last few decades, open heart surgery (OHS) by
means of cardiopulmonary by-pass (CPB) has raised sur-
vival incidence from 67% (1979–1993) to 89% (1994–2005)
[6]. Conversely, perioperative and long-term morbidity
have increased, especially for complex CHD [6]. At this
stage, the keyword for health care systems is “reducing
morbidity”. Among main standard interventions, prenatal
ultrasound screening (PUS) for early CHD diagnosis is the
preferred option in developed countries: in non-cyanotic
CHD, PUS can improve the success of fetal cardiac in-
terventions and can guarantee appropriate preparation for
delivery and the post-neonatal period. However, the rate of
abortion as a last resort for complex CHD management is
still increasing [7, 8].

The quality of perioperative monitoring both in children
and adults is crucial in order to promptly detect cases at risk
of OHS complications, thus preventing or minimizing
neurological damage. Today, despite accurate perioperative
longitudinal neuro-monitoring by means of electroencepha-
lography (EEG) or amplitude-integrated electroencephalog-
raphy (aEEG), transcranial Doppler (TCD) and near-infrared
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spectroscopy (NIRS), brain damage can occur at a stage
when standard procedures may be silent or unavailable
[9–15]. Thus, the inclusion in daily clinical practice of new
tools such as neuro-biomarkers (NB), able to provide useful
information about well-being/stress on the central nervous
system (CNS) during OHS, are eagerly awaited. In this light
and especially in infants and children, the Food and Drug
Administration (FDA), the European Medicines Agency
(EMA) and the National Institutes of Health (NIH) have
recently established a series of criteria which must be met
for NB inclusion in clinical practice [16–18]. In adults,
newer and more useful neuromonitoring strategies in OHS
are still of great interest for the improvement of quality of
life [19]. Literature data reported that the monitoring of
S100B protein in non-CHD infants and traumatic brain
injured children has already been included in daily clinical
practice [20, 21]. However, no consensus has been found on
the usefulness of the protein in CNS perioperative moni-
toring of CHD population and of adult patients.

Therefore, the purpose of the present review is to
investigate the pros and cons of S100B protein assessment
in the perioperative period of CHD infants and adult OHS
population.

Research strategy

The literature review was performed by conducting elec-
tronic searches of MEDLINE (via PubMed and PubMed
Central), EMBASE, CINHAL and the Cochrane Library. The
electronic search used the following keywords and MeSH
terms: (i) congenital heart diseases AND (S100 OR S100beta
OR S100 protein OR S100B OR biomarkers of cerebral
damage); (ii) cardiac surgery AND (S100 OR S100beta OR
S100 protein OR S100B OR biomarkers of cerebral damage);
(iii) cardiopulmonary bypass AND (S100 OR S100beta OR
S100 protein OR S100B OR biomarkers of cerebral damage);
(iv) brain monitoring in cardiac surgery AND (S100 OR
S100beta OR S100 protein OR S100B OR biomarkers of
cerebral damage); (v) neurological damage in cardiac sur-
gery AND (S100 OR S100beta OR S100 protein OR S100B OR
biomarkers of cerebral damage). No publication date limits
were set. To enable full understanding of the studies, the
inclusion criteria were: (i) primary (original) research pub-
lished in a peer-reviewed journal in the English language
and (ii) full text available. For the same reason, case reports,
commentaries, letters to the editor, and reviews were
excluded. Articles including data related to animal models
were also excluded. Literature searches were performed in
the period between 1 January 2019 and 1 November 2020.

Cardiopulmonary by-pass

The performance of CPB in adults and CHD infants varies
according to the complexity of the disease. In adult patients,
CPB is performed in the majority of cardiac surgery proced-
ures including coronary artery bypass grafting, valvular
repair/replacement, complex CHD repair [22]. In infants, data
reported that the incidence of CPB has increased dramati-
cally, especially for cyanotic CHD repair [6]. The primary
objective of OHS-CPB is to guarantee cardiac output and
multi-organ oxygenation maintaining amore stable cerebral
blood flow throughout surgery. Although such perioperative
management decreased neurological morbidity, brain dam-
age still remains amajor post-operative complication both in
adults and in children [23–32]. Intraoperative interven-
tions (CPB and circulatory arrest techniques), inadvertent
events from surgical procedures (thromboembolic events,
strokes, intracranial hemorrhage), and uncorrectable
hypoxia/cyanosis in the post-operative period are consid-
ered the main responsible factors in neurodevelopmental
outcomes in these patients [19, 23–27, 32]. Moreover, brain
injury enhancing factors such as hyperthermia, hypergly-
cemia and systemic inflammatory response during the
perioperative period also contribute to the development of
such complications [33].

The mechanisms underlying the development of
brain injury during and after cardiac surgery ismainly due
to hypoxic-ischemic (HI) insult, followed by the reperfu-
sion phase and more recently the so-called “third phase”,
which continues for weeks and months after the primary
insult [34]. Soon after HI insult, primary energy failure
occurs with deprivation of the glucose and oxygen supply
resulting in a switch to anaerobic metabolism and dele-
terious effects on vascular autoregulation. The advancing
of HI injury actives a biochemical cascade leading to
cellular injury [34–40]. Secondary energy failure occur-
rence varies according to insult characteristics with onset
at about 8–16 h and a nadir at about 24–48 h. Finally,
gliosis, persistent inflammatory receptor activation and
epigenetic changes are responsible for the tertiary phase
(Figure 1) [35–43].

CPB and neurological pattern in adults

In adults, short (memory and visuospatial ability loss) and
long-term (ischemic stroke, cognitive decline) neuro-
cognitive impairment are commonly encountered after
OHS andCPB [43–46].Minute fattymicro-emboli constitute
the major source of post-OHS neurological dysfunction
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where cerebral hypoperfusion and systemic inflammation
play a role either as primary offenders or exacerbating
factors. Other explanations regard CPB strategy (pH-stat,
α-stat), duration, and hypothermia/rewarming degree and
speed. In addition, non-pulsatile flow, hemodilution,
pressure autoregulation, anesthetic/cerebro-protective
drugs, and the neuroimmune response to CPB can alter
cerebral perfusion and metabolism [43–46].

The persistence of post-operative neurocognitive
changesmaybepartially due to patient-specific risk factors
rather than OHS-CPB procedures. This holds for stroke
post-OHS incidence (about 1.2–5.7%), which seems to be
directly age-related, increasing every decade, and often
associated with a medical history comprising the cardio-
vascular, kidney, respiratory and metabolic systems [46].

CPB and neurological pattern in infants

CHD are at high risk of intrauterine, neonatal and/or
superimposed perioperative HI, contributing to global CNS
dysmaturation [34, 36–42, 47]. Long-term neurocognitive
and motor impairments are commonly diagnosed in the
survivors, including poor impulse control, attention
deficit, hyperactivity, mild language and cognitive deficit,
and limited executive functioning ability. Although
appearing outwardly normal, children with such deficits
have poor academic performance and a lack of adult
employability. They may also suffer high rates of depres-
sion and poor quality of life [48].

The issue that CNS damage due to OHS and CPB is
mostly neither thrombotic nor hemorrhagic suggests that

Figure 1: Biochemical cascade of events involving S100B protein in patients undergone to open heart surgery and cardiopulmonary bypass.
O2, oxygen; ATP, adenosine triphosphate; ROS, reactive oxygen species; SVC, superior vena cava; IVC, inferior vena cava; CPB,
cardiopulmonary bypass; Ca2+, calcium; nM, nanomolar; μM, micromolar; CaBPs, Ca2+-binding proteins; RAGE, receptor for advanced
glycation end products.
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optimizing the hemodynamic parameters during CPB could
significantly reduce the incidence of neurological deficits
[49, 50]. Apart from non-modifiable characteristics such
as cardiac diagnosis, genetic anomalies, birthweight, pre-
maturity, brain immaturity and gender [1–5], many other
intra-operative-related temperature and flow-dependent
factors potentially play a role in the development of
neurological damage in infants. Among these, deep hypo-
thermia circulatory arrest (DHCA), hypoperfusion, air
emboli and systemic inflammatory response are the main
causes [28, 30, 31, 50–64].

Altogether, it is possible to argue that there are signifi-
cant differences in CPBmanagement as well as in post-OHS
CNS clinical patterns. The main ones regard the need in
infants/children for extreme measures which are unnec-
essary in adults, such as DHCA, hemodilution, acid-base
strategies, low perfusion pressures and wide variation of
perfusion flow rates (Table 1). Nonetheless, smaller circu-
lating blood volume, higher oxygen consumption rate,
reactive pulmonary vascular bed, immature organ systems,
and altered thermoregulation constitute differentiating
factors explaining the different vulnerability to deleterious
OHS-CPB effects in infants/children [50] (Table 1).

CPB neuromonitoring

The main target of the monitoring strategy is to reach and
maintain an adequate cerebral perfusion during cardio-
vascular surgery, thereby preventing or minimizing neuro-
logical damage. Today, the most applied non-invasive
neuromonitoring strategies include electroencephalog-
raphy EEG or aEEG, TCD and NIRS [9–15, 65].

EEG or aEEG

Pros

EEG/aEEG provide useful information on large electro-
cortical activity areas, detecting subclinical seizures and
confirmingelectrical silenceduringdeephypothermia [9, 10].

Cons

EEG/aEEG suffer from low resolution andcannot easily detect
smaller areas of cortical ischemia. Hypothermia/DHCAand
related therapeutic strategies such as anesthesia are the
main bias for EEG/aEEG interpretation and experienced
personnel are required [19].

TCD

Pros

TCD allows continuous and bilateral recordings of cerebral
blood flow velocities through the major cerebral vessels
duringOHS-CPBphases. Decreased blood flowvelocities in
cerebral vessels have been associated with poor cognitive
performance [11, 65] as well as high-intensity transient
signals (HITS) which appear on the spectral envelope
display to indicate an embolic event.

Cons

TCD monitoring requires an experienced team in order to
limit several side-effects, such as HITS artifacts and the
impossibility of differentiating gaseous from particulate
emboli. In addition, other intra-operative issues such as
constant probe position and sterile environment mainte-
nance are limitations deserving consideration [19].

NIRS

Pros

NIRS provides non-invasive longitudinal monitoring of
cerebral oximetry, function and hemodynamics. It detects
hypoxia-ischemia insult during CPB associated CNS injury
and later neurodevelopment [12–15, 66–68].

Cons

NIRS suffers from signal contamination from extracranial
tissues and significant intra-patient and inter-patient

Table : Cardiopulmonary by-pass management comparison
between adult and pediatric patients.

Parameter Adult Pediatric

Minimum CPB temperature, °C – –
DHCA Rare Frequent
Pump prime
Blood volume dilution, % – –
Whole blood or RBC support Rare Frequent
Perfusion pressure, mmHg – –
Acid-base management strategy α-stat pH-stat
Temperature, °C >– <–
Glucose management
Hyperglycemia requiring insulin therapy Frequent Rare
Hypoglycemia Rare Frequent

CPB, cardiopulmonary by-pass; °C, celsius; DHCA, deep hypothermic
circulatory arrest; RBC, red blood cells; Y, yes; N, no.
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variability in baseline regional cerebral oxygen saturation
(rcSO2) levels. Main limitations regard changes in the par-
tial pressure of CO2 affecting the distribution of arterial and
venous blood in the cranial vault, hemodilution, tissue
edema, and skin pigmentation that may impact rcSO2

availability. Additional factors are related CPB-phases
such as cooling/rewarming, DHCA and CPB duration [19].

Finally, on the basis of the aforementioned findings it
is reasonable to argue that despite recent technolog-
ical advances in neuromonitoring of patients who have
undergone OHS-CPB, the possibility of detecting periop-
erative brain injury is an issue needingmuch further study.

Biochemical markers

The assessment of NB in biological fluids may provide an
alternative, direct indicator of cell damage in the CNSwhen
clinical, laboratory and radiological standard monitoring
parameters are silent or unresponsive. They have the
advantage of providing a quantitative indicator of the
extent of brain lesions. More recently, FDA, EMA and NIH
have voiced support for NB research. They encourage the
integration of NB in drug development and their appro-
priate use in clinical practice by promoting NB qualifica-
tion programs [16–18]. For example, in adults, as part of
this process, newmethods of assessing β-amyloid 1–42 and
t-tau in the cerebrospinal fluid (CSF) of Alzheimer patients
and of amyloid imaging using positron emission tomog-
raphy have already been validated [69, 70]. Indeed,
circulating cardiac Troponins T-I have been included in
clinical guidelines as markers of cardiac morphologic
damage [71] as well as glial fibrillary acidic protein (GFAP)
and ubiquitin carboxyl-terminal hydrolase L1 in traumatic
brain injury [72, 73].

In the perinatal period, the statements required by
official institutions for validation of a NB in clinical
guidelines are completely different than at adult age. In
this regard, an optimality score for a NB has been defined
that includes several criteria that need to be met as far as
possible. In particular, the optimal NB should be: 1. alter-
native and direct indicator of CNS damage when clinical
and radiological assessments are still silent; 2. early pre-
dictor of degree and location of injury; 3. indicator of the
extent of brain lesion; 4. marker of disease progression; 5.
well-studied in the pediatric population; 6. measurable
worldwide by commercially available and easily repro-
ducible kits; 7. with an available range of reference for the
pediatric population; 8. ability to be assessed in different
biological fluids (CSF, blood, amniotic fluid, urine, saliva,
milk) [18, 36, 41, 74–79].

Over the last few decades, NB such as oxidative stress
markers, neuro and calcium binding proteins, inflamma-
tion biomarkers and vasoactive agents were evaluated as
tools for prognostic evaluation in non-CHD/CHD infants
and in the adult population [18, 36, 72–79].

Adenylate kinase, creatinine phosphokinase isoen-
zyme BB, lactate, myelin basic protein, S100B, neuron-
specific enolase and glial fibrillary acidic protein are the
main NB of interest in cardiac surgery [73, 80–84]. Results
on their availability as early brain damage markers are
encouraging, although several issues need to be overcome
before their inclusion in daily practice [82].

Among several NB currently investigated in CNS
monitoring, S100B protein seems to be one of the most
promising NB of brain damage detection and prognosis
both in adult, pediatric and newborn patients [18, 85, 86].
While in non-CHDpatients the usefulness of S100B in brain
monitoring has been proven, the history of the protein in
CHD adults, children and infants showed a Gaussian-like
trend: outstanding at first, followed by a dramatic decay
and finally rehabilitated.

S100B

S100B is an acidic, calcium-binding protein of low molec-
ular weight (10.7 kDa), first identified by Moore as a protein
fraction detectable in the CNS, particularly in glial and
Schwann cells and in specific neuronal subpopulations
[84–88]. The protein has a half-life of 30–60 min, and it is
mostly eliminated by the kidney route (98%) [89]. S100B is
involved in intracellular signal transduction via protein
phosphorylation inhibition, enzyme activity modulation,
calcium homeostasis dysregulation, and affects cell
morphology via interaction with cytoplasmic cytoskeleton
elements [85–91]. At physiological concentrations (around
nM), the protein acts as a neurotrophic factor during
neuronal development and regenerative processes [92–95].
Conversely, at high concentrations (sub-microMormicroM),
S100B manifests neurotoxic properties causing the cascade
of pathophysiological events leading to cell apoptosis [85,
86, 95]. Recently, it has been suggested that S100B release
occurs in isolated Schwann cells through a process that
requires activation of the cell surface receptor, RAGE (re-
ceptor for advanced glycation end products). In particular,
there is evidence that: i) S100Bbinds to theRAGEV-domain,
ii) the high extracellular Ca2+ conditions might favor the
formation of S100B multimers, and iii) S100B multimers
cause RAGE dimerization or stabilization of preformed
RAGE oligomers. Interestingly, at doses ≥500 nM S100B
up-regulates RAGE expression in neuronal cell lines due to
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RAGE-mediated reactive oxygen species (ROS) generation
and the subsequent activation of MEK/ERK1/2 [93]. There-
fore, these findings suggest that even at concentrations
commonly thought to be protective towards neurons,
S100B might turn neurotoxic in the presence of excess ROS
generation.

Further sources of S100B

S100s are dimeric proteins constituting a major component
of the cytosol of various cell types. A1B and BB dimers are
mainly concentrated in the CNS. In detail, BB is mainly
located in glial and Schwann cells but is also present in
specific neuron sub-populations and in neural precursor
cells [85, 86]. A1B dimer is also concentrated in extra-
nervous tissues such as white fat, skeletal muscle, heart,
liver, spleen and kidney [85, 86, 96]. In this light, the pos-
sibility that extra-source sites of concentration of the protein
could somewhat affect its reliability as a brain damage
marker has been hypothesized. To this end, Haimoto et al.
investigated the differential distribution of S100 A and B
dimers in non-nervous human tissues. They showed that, of
the total amount of S100B found in different tissues during
the post-natal period, the highest concentration was in the
brain (538,000 μg, 90.9%), followed by the muscles
(42,000 μg, 7.1%), the adipocytes (10,500 μg, 1.77%), the
heart (1,000 μg, 0.2%), and the liver (200 μg, 0.03%) [96].
Another S100B extra-source is the placenta: the protein has
been shown, by immunohistochemistry, to be localized in
villous and intermediate trophoblast cells of the normal
placenta at various trimesters of gestation. Concentration of
S100B in the placenta has been found to be gestational-age-
dependent [97–100].

Finally, S100B levels have been shown to reflect
blood-brain barrier (BBB) integrity: changes in oxygen
and carbon dioxide blood levels as well as metabolic CNS
diseases can damage or change BBB permeability leading
to a transport of the protein from brain to systemic cir-
culation [101].

S100B measurement techniques

In the last few decades, many assays have been developed to
improve detection of S100 protein in biological fluids:
microcomplement fixation, radioimmuno, particle-counting,
two-site immunoradioactive/IRMA (Sangtec 100, AD Sangtec
Medical, Bromma, Sweden), immunoluminometric assay
(Lia-mat Sangtec 100, AB Sangtec Medical, Bromma, Swe-
den) and ELISA (SynX Pharma, Toronto, Ontario, Canada).

Immunoluminometric assays are mainly used because of
their qualities: they are rapid, reproducible, reliable and
low-cost tests. Technological progress has improved the
sensitivity of assays, whose threshold has decreased from
1.5 to 0.2 μg/L and lower than 0.02 μg/L by using chem-
iluminescence (Liaison S100, Dietzenbach, Germany) [102].

Currently Roche Diagnostics and DiaSorin, two com-
panies specializing in in vitro diagnosis, have offered
automated analyzers able to determine S100B protein con-
centration in serum. Roche Diagnostics’ (Meylan, France)
electrochemiluminescence immunoassay has shown a
lower limit of protein detection of about 0.005 μg/L, while
by using DiaSorin assay the mean values are 27% higher
than the former. Notably, both immunoassays can detect
S100 dimers that contain S100B (S100BB and S100A1B)
and provide a result within 18 min [103].

Recently bioMerieux Vidas (Marcy l’Etoile, France) has
developed an automated enzyme-linked fluorescence
assay with a lower threshold of 0.012 μg/L, analysis time of
approximately 20 min and the ability to detect both S100B
dimers [102–105].

S100B in adult OHS

In Table 2 the main results of S100B pros and cons as a NB
both in adults undergone to OHS and CPB are reported.

Pros

Preliminary studies showed a S100B perioperative pattern
characterized by an increase in blood protein levels from
the onset of CPB, peaking at the end of the by-pass, and
followed by a decline in the post-OHS period. In partic-
ular, a relationship has recently been observed between
high S100B levels and post-OHS outcome, namely:
i) short/long-term neurocognitive disorders with a sensi-
tivity and specificity of 90% [106], ii) stroke, also corre-
lating with the extension of CNS damage [107], iii) a series
of neurological phenomena including delirium, sleep
disorders, memory loss and cognitive impairment up to
8weeks post-OHS [107–111]. Finally, the length of hospital
stay has also been correlated with high S100B post-OHS
levels [112]. Based on the aforementioned findings, it has
been suggested that S100B assessment in the first post-
operative day might not only be a useful marker of
post-OHS neurological complications but also a tool
for evaluating the efficacy/side-effects of new OHS ap-
proaches and neuroprotective strategies [107–113]. This
especially holds for other peri-OHS and patient parame-
ters. The former, included a positive correlation between
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S100B and the duration of aortic cross-clamping, of
DHCA, and of occurrence of cerebral emboli [107, 112, 114,
115]. The latter with pre-existing patient specific factors
such as age, cerebrovascular complications, and renal
impairment. This finding is noteworthy bearing in mind
that the protein’s concentrations are age-dependent [113].

Cons

Initial confidence in the correlation between S100B and
brain damage has faded over the years following the
demonstration that some early increases in serum protein
levels may reveal the presence of an extra-cerebral S100B
origin [115–118]. One of the main reasons may reside in the
measurement of the protein during the use of new specific
surgical devices such as a filter in the arterial line or
heparin-coated surfaces and new OHS phases including

the on-off-pump phase [114, 116]. Furthermore, the intro-
duction of autotransfusion andmediastinal shed blood has
been found to influence the S100B release from CPB phase
up to 10 h post-OHS [116]. Moreover, cardiotomy suction
has been suggested as a bias factor in increased S100B
release during CPB [117].

The effects of surgical procedure deserve further
consideration. These mainly regarded the absence of any
perioperative S100B differences between: i) patients who
had undergone OHS using a cell-saving device with CPB
and in those operated on off-pump [119] ii) samples
collected from pleural drainage of patients having a tho-
racotomy without CPB and those collected from medias-
tinal drains with CPB [120].

The effects of the different sites of sampling have been
found to affect S100B reliability as a brain damage marker.
In particular, higher protein levels (up to 1,000 times)

Table : Literature data on SB patterns in adult patients undergone to open heart surgery and cardiopulmonary by-pass.

Ref. Study n Assay P/C Main results

[] PS  IRMA P Higher SB at  h after surgery correlated with the size of infarcted
brain tissue and predicted median term survival.

[] PS  LIA P Higher postoperative SB predicted early adverse neuropsycholog-
ical and neuropsychiatric outcome.

[] PS  LIA P Patients with elevated SB values have more sleep disturbances
after cardiac surgery.

[] PS  IRMA P Higher SB correlated with age, CPB duration bypass time and with
impaired memory performance.

[] PS  LIA C No correlation between SB and long-term cognitive impairment.
[] PS  LIA C Lower perioperative SB levels in adults undergone to OHS without

CPB than those with CPB.
[] PS  IRMA C Higher postoperative SB from the surgical field and in the shed

mediastinal blood. Autotransfusion interferes SB availability as
brain damage marker.

[] PS  LIA C Six-fold reduced SB peak levels in the cell saving device group
compared to the cardiotomy suction group.

[] PS  LIA, ELISA C SAB and SBB analysis did not distinguish SB cerebral
from extracerebral sources in mediastinal blood.

[] M  C Off-pump and on-pump CABG surgeries increase SB in adult CHD
patients within  h after on-pump CABG surgery.

[] PS  LIA C Increased serum SB levels due to protein’s mediastinal extra-
source.

[] PS  LIA C Early increase in SB correlatedwithmarkers of tissue injury outside
the brain.

[] PS  LIA C Both intravenousUFHand subcutaneous LMWHadministration induces
increases in serum S concentration.

[] M  C Lower SB in the inhalation anesthesia group than in the TIVA group
after CPB and  h after surgery.

[] PS  ELISA C SB levels correlated with severe insulin resistance and stress
hyperglycemia.

Ref., references; n, number; P, pros; C, cons; PS, prospective study; IRMA, immunoradiometric assay; LIA, luminescence immunoassay; CPB,
cardiopulmonary bypass; OHS, open heart surgery; ELISA, enzyme-linked immunosorbent assays; M, metanalysis; CABG, coronary artery
bypass graft surgery; CHD, congenital heart disease; UFH, unfractionated heparin; LMWH, lowmolecular weight heparin; TIVA, total intravenous
anesthesia.
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detected in blood from surgical wounds, bone marrow
aspirate, and from traumatizedmediastinal fat and skeletal
muscle did not make it possible to distinguish cerebral
from extracerebral origin of S100B. Authors concluded that
an early increase in S100B resulted from extra-cerebral
contamination, while a late increase (after 24–48 h) of
S100B correlated with brain damage [118, 121]. However,
the aforementioned confounding factors have been partly
overcome by using a cardiotomy reservoir, thus reducing
the total amount of extra-source protein.

Lastly, perioperative therapeutic strategies side-
effects on S100B releasing in the systemic circulation
has to be considered. This holds for unfractionated hep-
arin and low molecular weight heparin administration
routinely used for venous thromboembolism prophylaxis
in OHSpatients inwhich an increase of the total amount of
S100 proteins members including at least one S100B
monomer has been found [122]. This result could be due to
heparin anti-inflammatory action via inhibition of S100
binding to RAGE [122].

Finally, anesthesia methods and glucose metabolic
impairment have been found to interfere with S100B
release [123, 124]. In detail, lower S100B levels have been
found in patients subjected to generally inhaled rather than

intravenous anesthesia, suggesting a brain protecting role
[123]. Conversely, hyperglycemia led to higher S100B levels,
indicating insulin-resistance and stress hyperglycemia as
enhancers of OHS brain injury in these patients [124].

S100B in infants and children OHS

In Table 3 the main results of S100B pros and cons as a NB
both in adults undergone to OHS and CPB are reported.

Pros

Following the observations on adults, S100B has been
assessed in CHD infants subjected to OHS to monitor brain
stress in different perioperative phases. In particular,
studies evaluating CNS stress during OHS showed signifi-
cantly higher protein levels: i) either before or after the end
of surgical procedure [41]; ii) during and after OHS in
infants complicated by early perioperative death and/or
brain damage [41, 125–128] when compared to infants
without perioperative complications; iii) as an index of
increased cerebrovascular resistance and of changes in
cerebral oxygen saturation bymeans of NIRS perioperative

Table : Literature data on SB patterns in congenital heart diseases infants undergone to open heart surgery and cardiopulmonary by-
pass.

Ref. Study n Assay P/C Main results

[] RS  LIA P Perioperative SB z-scores were significantly higher in the cases
developing neurological deficits.

[] PS  IRMA P A significant correlation between SB and increased cerebrovascu-
lar resistance.

[] PS  ELISA P Higher SB in the perioperative period (particularly CPB) in cases
with a wide cerebral arteriovenous difference measured by NIRS.

[] PS  LIA P Perioperative SB inversely correlatedwith the size of the ascending
aorta in hypoplastic left heart syndrome and suggested as a marker for
pre-existing brain injury and mortality.

[] CCS  LIA P Higher SB concentrations in CHD cyanotic infants.
[] PS  LIA P Higher SB in CHD cyanotic infants undergone to uncontrolled

hyperoxic reoxygenation in the rewarming-CPB phase.
[] RCT  ELISA P Controlled reoxygenation rewarming-CPB phase significantly

decreased SB levels in CHD infants (single-ventricle).
[] RCT  ELISA P SB significantly differed between the normoxic and hyperoxic

groups at different CPB phases.
[] PS  LIA C Higher SB in pleural, pericardial and peritoneal fluids before and

after cardiac surgery in CHD infants.
[] PS  LIA P In CHD infants SB protein is not affected by an adipose tissue extra-

source release.
[] RCT  LIA P Higher SB in the phentolamine-treated group than in controls from

the rewarming-CPB phase up to  h from surgery.

Ref., references; n, number; P, pros; C, cons; RS, retrospective study; LIA, luminescence immunoassay; PS, prospective study; IRMA,
immunoradiometric assay; ELISA, enzyme-linked immunosorbent assay; CPB, cardiopulmonary by-pass; NIRS, near infrared spectroscopy; CCS,
case-control study; CHD, congenital heart disease; RCT, randomized control study; h, hours.
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monitoring, particularly the rewarming phase [129], iv) in
cyanotic CHD infants when compared to non-cyanotic CHD
because of their increased chance of brain stress/damage
perioperative exposure [130, 131], and v) in infantswho had
undergone CPB weaning with or without the controlled
rewarming re-oxygenation strategy [132–136]. The neuro-
protective action of re-oxygenation has been confirmed by
a lower S100B release in systemic circulation both in ani-
mal models and in cyanotic CHD infants [133–138]. Alto-
gether, it is reasonable to argue for the usefulness of S100B
as a predictor of brain distress/damage as well as of a
potentially fatal outcome.

Cons

Despite the aforementioned promising results, the fate of
S100B as a diagnostic tool of CNS damage in the periopera-
tive period of CHD infants is still controversial and debated.
As for adults the protein was progressively abandoned for
CNS monitoring in CHD children due to a putative extra-
source of protein bias [118, 139–143]. This especially refers to
its potential release from cardiac adipose tissue during CPB
phases [140, 143]. Another non-neural S100B sourcemight be
the pericardial fluid in which the protein has been measured
in CHD children during OHS [139]. Finally, further studies
aimed at investigating the adoption of new cardiotomy res-
ervoirs and of controlled re-oxygenation effects on S100B
release are needed in pediatric patients.

Conclusions

Today, as for non-CHD high risk infants a trustable NB able
to predict perioperative brain damage in CHD children is
still eagerly awaited. At this stage, there are no clinical
protocols or guidelines approved by FDA, NIH or by the

EMA validating S100B assessment in CHD children as for
traumatic brain injury. The issue is noteworthy taking into
consideration the lack of studies in children and particu-
larly in adults fulfilling the items requested by FDA, EMA
and NIH (Table 4).

Before answering the question: “Does S100B behave as
a friend or an enemy in the management of OHS?” the
following confounding points affecting the protein’s reli-
ability as a predictor of CNS damage need to be addressed:
(1) A clear dichotomy has to be taken into account between

adult and pediatric patients. The main differences
regard: i) the diseases subjected to surgical treatment
(acquired vs. congenital) [1–4, 5], ii) CPB strategy
(pH vs. α-stat) [50], iii) degree of CPB length, the need of
hypothermia and of DHCA that are not often necessary
for adults, iv) clinical history characterized by most
common pre-OHS medical conditions affecting cardio-
vascular, metabolic, renal and CNS systems instead of
pre-existing multiorgan congenital/genetic disorders
[1–4, 46], and iv) adults vs. children multiorgan adap-
tation to CPB widely accepted as a deliberate hypoxic-
ischemic reperfusion damage representing the price
to pay during OHS repair. This especially refers to
different pediatric cardiovascular and cerebrovascular
anatomical and physiological characteristics in terms
of immaturity, smaller circulating blood volume and
higher oxygen consumption rate [50].

(2) The design of the trials themselves in terms of small
cohort sizes, lack of multicenter investigations, het-
erogeneity of neurological complications and of CHD
investigated (cyanotic, non-cyanotic).

(3) The operator-dependent heterogeneity of OHS tech-
niques varying from center to center, which can surely
affect S100B reliability.

(4) The advances in the devices and strategies recently used
for CPB performance (cardiotomy reservoir, controlled

Table : Food and Drugs Administration and European Medicine Agency criteria for perinatal neuro-biomarkers inclusion in clinical guide-
lines. Comparison between adult and pediatric obtained results.

SB Adults Ref. Infants Ref.

Indicator of CNS damage Y [, , , ] Y [, , , ]
Degree of injury Y [, ] Y [, , , , ]
Lesion extension Y [, ] Y [, , ]
Longitudinal monitoring Y [–] Y [–, , , , , –]
Pediatric/adult population Y [] Y []
Available kits Y [–] Y [–]
Reference range Y [] Y []
Biological fluid CSF, PB [] CSF, PB, AF, CB, U, S, M [, –, , , , ]

CNS, central nervous system; Y, yes; CSF, cerebrospinal fluid; PB, peripheral blood; AF, amniotic fluid; CB, cord blood; U, urine; S, saliva; M,
milk.
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re-oxygenation, on-off pump) that can constitute a bias
in the evaluation of S100B reliability as a perioperative
CNS damage diagnostic test.

(5) Previous data on the presence of non-neural S100B
sources, in adults and children who have undergone
OHS, thus affecting the reliability of the protein as a
brain damage marker warrants further consideration.
The main issue regards the release of S100B from adi-
pose tissueunder different perioperative conditionsand
sites of concentration suchas: sternotomy, on-off-pump
phase, autotransfusion and shed mediastinal blood,
cardiotomy suction, thoracic and pericardial drainage
[117, 121]. However, no data, at this time, have been
provided regarding the measurement of the amount of
adipose tissue released during OHS either in adults or
pediatric patients. The issue is of relevance bearing in
mind that, in the absence of any related endocrine
disorder, the total amount of adipose tissue is age-
related and significantly higher in children than in
adults. Notably, the absence of any difference in blood
levels of a well-established biomarker of circulating
adipose tissue such as adiponectin, in CHD, OHS-CPB
treated children, offers additional information on the
present controversial and debated issue [144]. It is
noteworthy, in this respect, that other intra-operatory
events can be related to an exaggerated S100B release
in systemic circulation such as: i) hypoxia-hyperoxia
insults occurring during CPB cooling and rewarming
phases [128, 129], ii) changes in brain blood barrier
permeability temperature and CPB-management-depen-
dent techniques (anesthesia, on-off pump,DHCA) [82, 83,
139], and iii) cyanotic or non-cyanotic CHD [128]. Alto-
gether, taking into consideration that adipose tissue
accounts for 1.77% of the total amount of S100B, the
possibility that during OHS and CPB it could somewhat
affect S100B level in systemic circulation, and its reli-
ability as brain damage marker is remote.

(6) Different protein assessment techniques and assays
performed in the studies herein reported, each of
which measured S100 BB or A1B dimers, deserve
further discussion. The issue is noteworthy since A1B
dimer is not brain tissue-specific but is also concen-
trated in extra-nervous tissues (i.e.: white fat, skeletal
muscle, heart, liver, spleen and kidney) [88, 89,
103–106, 146]. In conclusion, the present overview
supports the notion that S100B protein assessment in
biological fluids of patients who have undergone OHS
and CPB could be a useful diagnostic tool of periop-
erative CNS stress and damage. Further studies
measuring contemporary adiponectin and S100B pro-
tein in carefully selected study populations are needed

to shed further light on this currently much-debated
and controversial issue.
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