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Lutein levels in arterial cord blood correlate 
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Abstract 

Background:  S100B is an established biomarker of brain development and damage. Lutein (LT) is a naturally occur-
ring xanthophyll carotenoid mainly concentrated in the central nervous system (CNS), but its neurotrophic role is still 
debated. We investigated whether LT cord blood concentrations correlate with S100B in a cohort of preterm and term 
healthy newborns.

Methods:  We conducted a prospective study on the distribution of LT and S100B in arterial cord blood of healthy 
preterm (n = 50) and term (n = 50) newborns.

Results:  S100B and LT showed a pattern of concentration characterized by higher levels (P < 0.01, for all) at 
33-36 weeks gestation (GA) followed by a progressive decrease (P < 0.01, for all) from 37 onwards with a dip at term. 
Both S100B and LT were gender-dependent with significantly (P < 0.01, for all) higher levels in females in preterm and 
term groups. S100B (R = 0.68; P < 0.001) and LT (R = 0.40; P = 0.005) correlated with GA at sampling. A positive signifi-
cant correlation (R = 0.87; P < 0.001) between S100B and LT was found.

Conclusions:  The present data showing a correlation between S100B and LT supports the notion of a LT trophic role 
in the CNS. Further investigations in high-risk infants are needed to elucidate LT involvement in the pathophysiologi-
cal cascade of events leading to CNS development and damage.
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Background
S100B is a brain-specific acidic calcium binding protein 
of the EF-hand family mainly concentrated in glial cells 
and in neuronal sub-populations [1]. There is evidence 
that the protein is a consolidated marker of central nerv-
ous system (CNS) growth and damage mimicking a Janus 
face: when secreted, S100B is believed to have paracrine/
autocrine trophic effects at physiological (nanomolar) 

concentrations, and neurotoxic effects at higher (micro-
molar) concentrations [2].

In different biological fluids (i.e. amniotic, cerebrospi-
nal, blood, urine, saliva and milk) of fetuses, newborns 
and pediatric patients S100B correlates with clinical, 
laboratory and radiologic parameters suggestive of CNS 
development and damage [2–9].

In the last decade, Food and Drugs Administration 
(FDA), European Medical Agency (EMA) and more 
recently the National Institute of Health (NIH) supported 
investigations on neurobiomarkers (NB) in the perinatal 
period. The aim was to encourage the integration of NB 
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in drug development and their appropriate use in clinical 
practice, promoting NB qualification programs [10].

Among different new NB, to date still matter of inves-
tigation Lutein (LT) is a naturally xanthophyll carotenoid 
not synthesized by humans. In biological fluids and tis-
sues LT concentration depends on daily dietary intake 
since it is found at high levels in fruits and vegetables (i.e. 
spinach and kale) [11–14]. In the perinatal period, LT has 
been shown to be highly concentrated in different biolog-
ical fluids (blood and human milk) and in CNS specific 
areas (i.e. neuro-retinal, frontal, occipital cortex and hip-
pocampus) [15–18]. In this regard, LT has been shown 
to be involved in CNS development through a not still 
understood mechanism [19, 20]. LT trophic role has been 
suggested by its clinical and biochemical correlation: the 
former with gestational age (GA) and gender in healthy 
preterm/term newborns; the latter with a consolidated 
brain growth factor such as Activin A [20].

Therefore, in the present study we aimed at investigat-
ing whether LT arterial cord blood levels correlated with 
S100B in healthy preterm and term infants, thus support-
ing its CNS trophic role.

Materials and methods
Population
The local Ethics Committees approved the study protocol 
and informed and signed consent was obtained from all 
parents of patients.

We recruited 100 women with consecutive healthy 
pregnancies (preterm n = 50; term n = 50), delivering 
between 33+6d and 41+6d weeks of GA (Fig. 1).

GA was determined by clinical data and by 
ultrasound scan performed in the first trimester. 
Appropriate growth was defined as follows: i) a bipa-
rietal diameter and abdominal circumference between 
10th-90th centiles in agreement with Campbell and 
Thoms [21], and ii) birth weight (BW) between 
10th-90th centiles according to our population stand-
ards, after correction for the mother’s height, weight, 
parity, and the sex of the newborn [22]. Preterm and 
term newborns were classified when they were born 
before or after 37 GA, respectively. We include into 
the study only preterm and term infants showing the 
following perinatal outcomes: no maternal illness; no 
signs of fetal distress; pH > 7.2 in cord or venous blood; 
and Apgar scores at 1-5 min > 7.

Exclusion criteria were: the presence of any maternal 
CNS illness, multiple pregnancies, intrauterine growth 
retardation, gestational hypertension, diabetes and infec-
tions, any fetal malformations, chromosomal abnormali-
ties, perinatal asphyxia and dystocia.

Arterial cord blood samples were collected at birth to 
assess standard laboratory monitoring parameters, S100B 
and LT. All samples collected for NB measurement were 
centrifuged at 900 g (S100B) and 2500 g (LT), respectively, 
and stored at − 70 °C.

Fig. 1  Flow chart showing patient recruitment
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Neurological examination
Neurological examination was performed daily dur-
ing hospital staying according to a qualitative approach 
by Prechtl [23] that assigned each infant to one of three 
diagnostic groups: normal, suspect or abnormal. An 
infant was considered abnormal when one or more of 
neurological syndromes such as hyper- or hypokinesia, 
hyper- or hypotonia, hemisyndrome, apathy and hyper-
excitability syndromes were present. An infant was classi-
fied as suspect in absence of a defined syndrome or when 
only isolated signs were present. Neurological examina-
tion was performed by a single examiner who was blind 
to NB results.

S100B measurement
S100B levels were measured using an immunolumi-
nometric assay (Liaison S100, Dietzenbach, Germany) 
according to the manufacturer’s instructions. The detec-
tion limit of the assay was 0.02 μg/L, the coefficient of 
variation was ≤2.8% within-assay and ≤ 5.3% interassay 
for concentrations ranging between 0.09 and 18.9 μg/L.

Lutein measurement
LT extraction and high-performance liquid cromatog-
raphy (HPLC) analysis were performed using analyti-
cal conditions as previously reported [18, 20]. Briefly, 
an aliquot of 500 μL of serum was treated with 500 μL of 
ethanol (1% BHT) to precipitate proteic pellet. Hydroal-
coholic fraction and pellet were separately extracted 
twice with 500 μL of hexane. Hexanic fractions, con-
taining serum carotenoids, were combined, evaporated 
under nitrogen and solubilized in 50 μL of chloroform 
before HPLC analysis. Chromatographic separation of LT 
was performed on a LC-10 AD Shimadzu HPLC system 
equipped with binary pump and a column compartment, 
coupled to a UV-diode array detector.

Separation was performed on a Develosil 5 μm RP-
AQUEUOUS C30, 250 × 4,6 mm column (Phenomenex 
Torrance, CA, USA) using chromatographic conditions 
previously reported [18]. Quantification of LT was done 
by the external standard method using a calibration curve 
built with LT as reference standard. The limit of detection 
was 0.017 nmol/mL.

The identification of LT and its metabolite was per-
formed by liquid chromatography coupled to a tandem 
mass spectrometer. The chromatographic separation 
was performed by HPLC connected with two micro-
pumps 200 (Perkin Elmer, Carlsbad, CA, USA), using the 
same column and the same chromatographic conditions 
described for HPLC analysis.

The API 3000 tandem mass spectrometer (API 3000, 
Applied Biosystem, Waltham, MA, USA) equipped with 

an atmospheric pressure chemical ionization source 
(APCI) was used for mass spectrometry analysis. The 
optimum settings of the mass spectrometer were: probe 
temperature 500 °C, the nebulizer current 4 μA, declus-
tering potential 45 V and focusing potential 300 V.

Cerebral ultrasound
CUS was performed during the first 72 h of life or at dis-
charge from hospital in all the study population. Record-
ings were performed by real-time ultrasound machine 
(Acuson 128SP5 Mountain View CA, USA) at the pre-
determined monitoring time-points. A single examiner 
who did not know the results of the cord blood test and 
clinical data reviewed images. Cerebral haemorrhage was 
classified according to Papile et al. criteria [24].

Monitoring parameters
In all recruited infants pulsed arterial oxygen saturation 
(SaO2) and the main laboratory parameters such as red 
blood cell count (RBC); hemoglobin blood concentra-
tions (Hb); hematocrit rate (Ht); venous blood pH; partial 
venous carbon dioxide pressure (pCO2); partial venous 
oxygen pressure (pO2); base excess (BE); blood ions were 
recorded at the admission into the study.

Statistical analysis
For sample size calculation, we used changes in S100B 
arterial cord blood concentrations in healthy preterm 
and term infants at birth as the main parameter [25]. 
We assumed a decrease of 0.5 standard deviation (SD) in 
S100B to be clinically significant. Considering an α = 0.05 
and using a two-sided test, we estimated a power of 0.95, 
recruiting 45 preterm and 45 term infants. We added 
n = 5 infants per group to allow for dropouts, cross-over 
and consent retirement (Fig. 1).

Clinical data is reported as mean and SD. Biochemi-
cal data is reported as median and interquartile centiles. 
The results of fetal and neonatal monitoring parameters 
were compared between groups by the two-sided Mann–
Whitney U test and by Kruskal–Wallis one-way ANOVA 
followed by the Dunn post-hoc test when the data did 
not follow a Gaussian distribution. Comparisons between 
proportions were performed with the Fisher exact test. 
Linear regression analysis was performed for correla-
tions between S100B, LT and GA, respectively. Statisti-
cal analysis was performed using Sigma Stat 3.5 (GmBH, 
Germany). A value of P < 0.05 was considered significant.

Results
Table  1 shows maternal and perinatal characteristics 
in the term and preterm newborns at admission into 
the study. In particular, maternal age, delivery mode 
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and gender were comparable between the two groups 
(P > 0.05, for all).

As expected, significant differences (P < 0.001, for 
both) were observed between preterm and term new-
borns regarding GA and BW. No significant differences 
(P > 0.05, for all) were detectable between studied groups 
regarding Apgar scores at 1st and 5th minutes, SaO2 and 
the main laboratory parameters (RBC, Hb, Ht, venous 
blood pH; pCO2, pO2, BE and blood ions).

Neurological examination and cerebral ultrasound pat-
terns did not differ between groups. Moreover, at dis-
charge from hospital, no overt neurological syndrome 
was detectable in all infants admitted to the study.

S100B protein measurements
S100B arterial blood levels were detectable in all the 
samples collected. S100B pattern of concentration was 

characterized by higher levels in the early GA (P < 0.01, 
for all) with a peak at 33-36 GA (S100B median: 1.51 μg/
mL; 25th–75th centile: 1.12-1.90 μg/mL) and by a pro-
gressive decrease, with a dip at 41 GA (S100B median: 
0.60 μg/mL; 25th–75th centile: 0.33-0.75 μg/mL). More-
over, S100B has been found to be GA dependent 
(R = − 0.68; P < 0.001).

When S100B levels were corrected for gender, we 
found higher (P < 0.01, for all) protein levels in females 
than males both in preterm and term infants (Fig.  2, 
panel A).

Lutein measurements
LT arterial blood levels were detectable in all the samples 
collected. LT showed a pattern of concentration charac-
terized by higher levels in the early GA (P < 0.01, for all) 
with a peak at 33-36 GA (LT median: 82.06 pmol/mL; 
25th–75th centile: 57.45–133.50 pmol/mL), followed by 
a progressive decrease from 37 GA onwards, with the 
lower dip at 42 GA (LT median: 57.60 pmol/mL; 25th–75th 
centile: 42.50–65.07 pmol/mL). Moreover, LT has been 
found to be GA dependent (R = − 0.40; P = 0.005). When 
LT levels were corrected for gender, we found higher 
(P < 0.01, for all) LT levels in females than males both in 
preterm and term infants (Fig. 2, panel B).

S100B and lutein correlation
In Table 2 S100B and LT correlations are reported. There 
were significant positive correlations (P < 0.05, for all) 
between S100B and LT when considered total popula-
tions and when sub-groups for GA and gender.

Discussion
In the last decade there has been an emerging request 
of new diagnostic tools to include in daily clinical prac-
tice for early detection of cases at risk for perinatal brain 
injury [2–4]. On this light, FDA, EMA and more recently 
NIH approved the inclusion of NB such as S100B, Ubiq-
uitin carboxyl-terminal hydrolase L1a and glial fibrillary 
acidic protein (G-FAP) in clinical protocols of adult and 
pediatric diseases such as traumatic brain injury [26].

In the perinatal period, there is growing evidence that 
the pathophysiological cascade of events involved in CNS 
development and damage are still not fully elucidated and 
are subjects of investigation. More recently, it has been 
shown that among a series of NB, S100B appears the only 
one fulfilling the majority of the criteria requested by 
FDA, EMA and NIH statements [10, 19, 27].

In the present study, we provide evidence that, in pre-
term and term healthy infants, arterial cord blood LT 
levels correlated with a consolidated NB of CNS devel-
opment/damage namely S100B protein. Furthermore LT, 
as S100B, were GA- and gender-dependent with higher 

Table 1  Perinatal characteristics in preterm and term newborns

Data are given as mean ± (SD)

Abbreviations: GA gestational age, BW Birth-weight, SaO2 arterial oxygen 
saturation, RBC Red blood cell count, Hb Hemoglobin, Ht Hematocrit rate;\ pCO2 
partial venous carbon dioxide pressure, pO2 partial venous oxygen pressure
* P < 0.05

Parameters Preterm (n = 50) Term (n = 50)

Maternal Age (y) 31 (3) 32 (2)

Mode of delivery, n (%)

  Caesarean 10 (20) 5 (10)

  Vaginal 40 (80) 45 (90)

Gender (male/female) 27/23 26/24

BW (g) 2615 (377) 3390 (312)*

GA (wks) 35 (1) 40 (2)*

Apgar score > 7 n (%)

  At 1 min 50 (100) 50 (100)

  At 5 min 50 (100) 50 (100)

SaO2 (%) 95 ± 3 96 ± 2

Laboratory parameters

  RBC (106/mm3) 3.87 ± 0.2 3.95 ± 0.03

  Hb (g/dL) 13.3 ± 0.02 13.5 ± 0.01

  Ht (%) 40.1 ± 0.04 40.5 ± 0.02

  Venous blood pH 7.32 ± 0.01 7.35 ± 0.06

  pCO2 (mmHg) 42.6 ± 1.5 41.3 ± 1.5

  pO2 (mmHg) 43.1 ± 1.8 45.2 ± 0.7

  Base excess − 0.4 ± 0.1 −0.3 ± 0.9

  Na+ (mmol/L) 137 ± 0.3 139 ± 0.4

  K+ (mmol/L) 4.0 ± 0.1 4.2 ± 0.1

  Ca++ (mmol/L) 1.15 ± 0.02 1.13 ± 0.01

Prechtl score (normal/total)

  Normal 50 (50) 50 (50)

  Suspect 0 (50) 0 (50)

  Abnormal 0 (50) 0 (50)

Cerebral ultrasound (normal/total) 50 (50) 50 (50)
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LT and S100B levels detectable in the early weeks of the 
third trimester of gestation (i.e. 33-36 wks) and lower in 
the near term.

The fact that both LT and S100B were GA and gender-
dependent agrees with previous observations [5–9, 18, 
20]. S100B trophic role is not surprising since the pro-
tein has been recently shown to fulfill all FDA, EMA, 
and NIH criteria. Nonetheless, LT trophic role is far to 
be fully elucidated. Results showed that LT was higher in 
the late preterm period (i.e. 33+6d-36+6d wks) mimick-
ing S100B pattern. The finding deserves further consid-
eration bearing in mind that at this time period the brain 
volume, weight and structure are at their highest growing 

Fig. 2  Panel A S100B (μg/L) arterial cord blood concentrations in term (T) and preterm (PT) newborns and when corrected for gender (male: M; 
female: F). Data are given as median and 5th–95th centiles. (*) P < 0.01. Panel B Lutein (pmol/mL) arterial cord blood concentrations in term (T) and 
preterm (PT) newborns and when corrected for gender. Data are given as medians and 5th–95th centiles. (*) P < 0.01

Table 2  Correlation between S100B protein and Lutein arterial 
cord blood levels (LT) at different gestational ages and after 
correction for gender

Parameter R P

S100B total vs LT total 0.65 < 0.001

S100B term vs LT term 0.87 < 0.001

S100B term male vs LT term male 0.84 < 0.001

S100B term female vs LT term female 0.65 < 0.001

S100B preterm vs LT preterm 0.77 < 0.001

S100B preterm male vs LT preterm male 0.80 < 0.001

S100B preterm female vs LT preterm female 0.42 0.04
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level [28–31]. In particular: i) magnetic resonance imag-
ing (MRI) patterns were suggestive of the timing and 
duration of different myelinisation processes at the stage 
under investigation [30], ii) the assessment in biologi-
cal fluids of NB such as S100B, activin A, G-FAP were in 
agreement with MRI patterns and with the biochemical, 
morphological and electrophysiological maturation of the 
CNS [2–4, 19, 28, 31], and iii) near infrared spectroscopy 
patterns in the late preterm period, in healthy infants, 
showed an improved oxygenation status and increased 
tissue function suggestive of CNS development [32–34]. 
On the basis of the present findings, it is reasonable to 
support a LT CNS trophic role. The explanation may 
reside in LT site of concentration, metabolic and signal 
transmission actions. In particular LT: i) is mainly located 
in CNS areas crucial for learning and memory [16, 17], 
ii) correlates with, metabolites (i.e. 1-octadecanol, phos-
phate, NADH) involved in energy pathways leading to 
the peak of myelinisation during CNS development [17, 
35, 36], iii) correlates with fatty acids and lysophospho-
lipids involved in cortical development and folding, oli-
godendrocyte maturation and intracellular and cell-cell 
signalling [36–38], and iv) correlates with neurotransmit-
ters (i.e. γ-aminobutyric acid, aspartate) involved in the 
main CNS developmental cascade of events (i.e. modu-
lation of neuronal proliferation and maturation, neurite 
outgrowth, synapse formation, neurotransmission) [17, 
39–43]. On the other hand, S100B: i) is mainly concen-
trated in the CNS where is located in glial and neuronal 
cells [2–4], ii) interacts with dopamine D2 receptor that 
belongs to the G protein-coupled receptor family with 
seven transmembrane domains and is widely distributed 
in neurons of the CNS [44], iii) extracellularly, it binds 
to receptor for advanced glycation end products, which 
activates several intracellular signalling pathways such 
as regulations of phosphorylation mediated by protein 
kinases, modulation of enzymatic activity, maintenance 
of cell shape and motility, influence of some signal trans-
duction pathways, and promotion of calcium homeo-
stasis [45, 46], and iv) depending on the concentration 
secreted, it exerts either trophic or toxic effects. At lower 
concentrations (nanomolar), S100B is thought to stimu-
late neuronal growth and enhancement of neuronal sur-
vival during development, while at higher concentrations 
(micromolar), S100B may have deleterious effects by 
increasing expression of the pro-inflammatory cytokine 
IL-6 and inducing apoptotic neuronal death [2–4]. On 
the basis of the present findings, it is reasonable to argue 
that LT and S100B are involved in a cascade of events 
modulating CNS development and neuroprotection.

Lastly, in the present series we also showed that LT 
and S100B are gender dependent. The finding deserves 
further consideration bearing in mind the different fetal/

neonatal: i) pattern of CNS development in the two sexes, 
ii) growth, metabolic, hormonal developmental steps of 
maturation and, iii) biochemical and NB patterns of con-
centration at the stage under investigation [2–4, 6–8].

Finally, we recognize that the present study has several 
limitations, such as: i) the small population recruited, ii) 
the need of an empowerment in LT measurement tech-
nique in terms of reproducibility, and iii) longitudinal NB 
monitoring. Further investigations aimed at addressing 
the aforementioned issues are eagerly awaited.

Conclusions
In conclusion, the present results showing a correlation 
between LT and S100B support the notion of a potential 
LT neurotrophic role and open the way to further inves-
tigations aimed at promoting LT in a panel of trustable 
biomarkers of CNS development/damage.
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