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Abstract: Martian chaos terrains are fractured depressions consisting of block landforms that are 

often located in source areas of outflow channels. Numerous chaos and chaos-like features have 

been found on Mars; however, a global-scale classification has not been pursued. Here, we perform 

recognition and classification of Martian chaos using imagery machine learning. We developed neu-

ral network models to classify block landforms commonly found in chaos terrains—which are as-

sociated with outflow channels formed by water activity (referred to as Aromatum-Hydraotes-

Oxia-like (or AHO) chaos blocks) or with geological features suggesting volcanic activity (Arsinoes-

Pyrrhae-like (or AP) chaos blocks)—and also non-chaos surface features, based on >1400 surface 

images. Our models can recognize chaos and non-chaos features with 93.9% ± 0.3% test accuracy, 

and they can be used to classify both AHO and AP chaos blocks with >89 ± 4% test accuracy. By 

applying our models to ~3150 images of block landforms of chaos-like features, we identified 2 types 

of chaos terrain. These include hybrid chaos terrain, where AHO and AP chaos blocks co-exist in 

one basin, and AHO-dominant chaos terrain. Hybrid chaos terrains are predominantly found in the 

circum-Chryse outflow channels region. AHO-dominant chaos terrains are widely distributed 

across Aeolis, Cydonia, and Nepenthes Mensae along the dichotomy boundary. Their locations co-

incide with regions suggested to exhibit upwelling groundwater on Hesperian Mars. 
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1. Introduction 

Chaos terrains consist of large, irregularly shaped, depressed blocks of crustal rocks 

or ice and are found on several Solar System bodies, including Mars, Europa, Pluto, and 

Mercury (e.g., [1–9]). On Mars, chaos terrains are usually located near the dichotomy 

boundary of the northern lowlands and southern highlands, as well as in the southern 

highlands (Figure 1). The vertical displacements of block landforms in Martian chaos ter-

rains are typically 1–2 km, reaching up to 3 km; their sizes range from kilometers to tens 

of kilometers (e.g., [10,11]). Blocks of chaos terrains usually preserve surface features that 

resemble the surrounding upland surfaces [11], thus suggesting that chaos would have 

formed through the collapse of surface rocks and the removal of subsurface materials 

(e.g., [4,11–13]). 
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Figure 1. Global distribution of chaotic terrains named by the International Astronomical Union 

(IAU; triangles: IAU Planetary Names, cf. https://planetarynames.wr.usgs.gov/ (accessed on 14 Jan-

uary 2020)), floor-fractured craters (FFCs; hexagons: [14]), and chaos-like features (rhombuses: [15]) 

on Mars, superimposed on an elevation map. Blue and red colors represent chaotic terrains or FFCs 

that have been investigated previously based on detailed geological analyses (e.g., [1,2,4–7,16,17]) 

and which were used as training data for our neural network models in the context of Aromatum-

Hydraotes-Oxia-like (or AHO) and Arsinoes-Pyrrhae-like (or AP) chaos blocks, respectively. Yellow 

circles represent chaos-like features found in the present study (see Figure S6 for the images). Gray 

color represents the locations of images used as target data. 

Previous studies have investigated the formation mechanisms of specific chaos ter-

rains on Mars based on detailed geomorphic and geological analyses (e.g., [1,2,4–7,13,16–

19]). Some previous studies have suggested that the melting of ground ice or clathrate 

hydrate and subsequent outbursts of water would have caused surface collapse, based on 

its association with outflow channels (e.g., [1,2,4,11,13,16,17,20,21]). Depressions of some 

chaos terrains may have been caused by disruption of the local cryosphere, induced by 

the intrusion of volcanic sills and the associated heat (Figure 2) [1,2,21]. By contrast, sev-

eral chaos terrains may have formed through volcano-tectonic activity, such as by the in-

flation–deflation of magma chambers, without any water activity [5–7,12]. Graben, radial 

and concentric fault systems, orthogonal fractures, lava flows, and pit chains were likely 

generated through repeated inflation and deflation of magma chambers and a subsequent 

piecemeal caldera collapse (Figure 3) [5–7]. Thanks to high-resolution images taken by 

recent Mars orbiters (e.g., Mars Reconnaissance Orbiter; MRO), more than 400 chaos-like 

features have been found (Figure 1; e.g., [14,15,22,23]). Nevertheless, no global-scale clas-

sification of Martian chaos and chaos-like features based on their formation mechanisms 

has been undertaken to date. In addition to chaos and chaos-like features, floor-fractured 

craters (FFCs) have recently been found on Mars that exhibit fracture features on crater 

floors that are similar to chaos (e.g., [14,22–24]). In general, detailed geological and geo-

morphic analyses are needed to infer the formation mechanisms of individual chaos ter-

rains. Since such analyses require substantial time investment and knowledge of geology, 

the number of chaos terrains analyzed is limited despite the rapid increase in the number 

of identified chaos and chaos-like features and FFCs. 

Automatic mapping and classification are a new approach in planetary geology (e.g., 

[25–29]) and can drastically reduce the effort required for investigations of surface fea-

tures. Nevertheless, to date, there have been a rather limited number of examples of this 

approach pertaining to geological investigations of Mars (e.g., [28,30–35]). Machine learn-

ing is increasingly used as an application in industry. It has the potential to reduce the 

time and effort needed for planetary surface studies when a great quantity of data is avail-

able, such as in the case of Mars (e.g., [28,36–38]). Such studies using machine learning 
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include automated landform detections on Mars and comparison with Earth’s [25,28]. In 

addition, the nature of the methodology potentially permits the recognition and charac-

terization of surface features in a manner similar to the approach taken by geologists when 

performing their surveys. Previous studies applied machine-learning techniques to rec-

ognize impact craters on various Solar System bodies (e.g., [39]), as well as dust devil trails 

on Mars [40]. However, to our knowledge, no previous study has been performed to rec-

ognize and classify chaos terrain on Mars using machine learning. 

 

Figure 2. (a) A THEMIS daytime infrared image of Aromatum Chaos, Hydraotes Chaos, Iamuna 

Chaos, and Oxia Chaos. The areas surrounded by the yellow dotted line indicate the chaos terrains. 

The chaos terrains are connected to outflow channels (the area colored light blue). The white box 

indicates the location of the pitted cones shown in panel (c). (b) A THEMIS daytime infrared image 

of the Ravi Vallis outflow channel system. The outflow channel system seems to originate from 

Aromatum Chaos and Iamuna Chaos. (c) A close-up CTX image of a pitted cone near Hydraotes 

Chaos. 

Here, we use imagery machine learning to identify different types of block landforms 

of chaos terrain with the aim to recognize and classify chaos terrains, chaos-like features, 

and FFCs, which are distributed globally on Mars. In our machine-learning approach, we 

used images of block landforms associated with several chaos terrains, whose formation 

mechanisms were previously investigated, leading to detailed hypotheses based on pre-

vious geological and geomorphic analyses. These images were used as training data (see 

Section 2). We used >1400 images of blocks of chaos and non-chaos features (e.g., impact 

craters, valley networks, plains) for our training data to develop our neural network mod-

els (Section 2). We evaluated the models developed by means of the accuracy, precision, 

and recall rates obtained for randomly selected test data (Section 3). Then, through the 

classification of 3148 images of blocks in unclassified chaos terrains, chaos-like features, 
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and FFCs, we obtain and present the global distributions of different types of chaos ter-

rains, plausibly formed through either water or volcano–tectonic activity (Section 4). Fi-

nally, based on our results, we discuss the relationship between the distribution of chaos 

terrain formed through water activity and any hypothesized regions of upwelling 

groundwater on early Mars (Section 5). 

2. Methods 

2.1. Outline of the Methodology 

We developed fine-tuned convolutional neural network models (so-called ‘classifi-

ers’) that aimed to recognize chaos terrains and non-chaos surface features and classify 

the recognized chaos terrains into different categories. To this end, we used the architec-

ture of the pre-trained VGG19 model [41], which was originally constructed by the Visual 

Geometry Group at the University of Oxford (UK). We modified the final layers of the 

pre-trained VGG19 through fine-tuning for the purpose of classifying chaos terrain on 

Mars (see Section 2.2 for details of the model). 

For the training data, we used three distinct image sources of the Martian surface. 

These included gray-scale visible geomorphic images taken with the Context Camera 

(CTX) [42] onboard the MRO at its original resolution of 6 m pixel–1, thermal inertia images 

taken by the Thermal Emission Imaging System (THEMIS) [43] onboard Mars Odyssey at 

its original resolution of 100 m pixel–1, and colored elevation images of the Mars digital 

elevation model (DEM) at its original resolution of 200 m pixel–1, based on data taken by 

the Mars Orbiter Laser Altimeter (MOLA) [44] on the Mars Global Surveyor and the High-

Resolution Stereo Camera (HRSC) [45] on Mars Express. The three types of images were 

each used as training data for machine learning; that is, we performed training and testing 

in three ways using the different image sources (see Section 2.3). 

To recognize and classify Martian chaos terrain, we defined three categories of sur-

face features. The first encompassed block landforms of chaos that are possibly associated 

with water activity [1]. We defined this category as chaos terrains directly connected to 

outflow channels, which are typically found in Aromatum Chaos, Hydraotes Chaos, and 

Oxia Chaos (Figure 2) [1] (hereafter referred to as Aromatum-Hydraotes-Oxia-like (or 

AHO) chaos blocks; see Section AHO Chaos Blocks for the details). The second was block 

landforms of chaos possibly associated with volcanic activity [5–7]. We defined the latter 

category as chaos terrains associated with widespread volcano–tectonic geomorphology 

(e.g., graben, radial and concentric fault systems, orthogonal fractures, lava flows, and pit 

chains) and without any outflow channels [5–7]. The latter chaos terrains are found in 

Arsinoes Chaos and Pyrrhae Chaos (Figure 3) (Arsinoes-Pyrrhae-like (or AP) chaos 

blocks; see Section AP Chaos Blocks for the details). The final type represented Martian 

surface features other than chaos, including valley networks, impact craters, and plains 

(‘non-chaos surface features’; see Section Non-Chaos Surface Features). The training data 

of AHO and AP chaos blocks were images of depressed blocks inside chaos terrains, ex-

cluding areas surrounding outflow channels and fault systems that characterized the type 

of chaos terrain. 

Our two categories of AHO and AP chaos blocks might be insufficient to classify all 

chaos-like features on Mars. In fact, clathrate hydrate destabilization has been suggested 

as an additional important formation process of chaotic terrain (e.g., [17,20,46]). This may 

add further complexity to the chaos block landforms. However, to add another classifica-

tion category, a large number of images representing the new category are required for 

training. Given the size of chaos blocks (length > several kilometers), widespread chaos 

terrains (area > 104–105 km2) characterized by well-known formation mechanisms are re-

quired for training data. However, the number of such large chaos terrains is limited. In 

addition, the application of machine learning to the classification of planetary surface im-

ages remains challenging. To our knowledge, the present study is the first attempt at 
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applying machine-learning techniques to the classification of chaos terrain. Thus, we 

opted to use the simplest possible classification categories. 

Evaluation of our newly constructed models was performed based on analyses of the 

transition of the learning curves and a confusion matrix (see Section 2.4). To understand 

the classification criteria used for our machine-learning approach, we performed data 

analysis using the Gradient-weighted Class Activation Mapping (Grad-CAM) method 

[47]. The Grad-CAM method can visualize regions by means of heat maps (Section 2.4.2). 

For the target data, we collected images of block landforms of chaos that were provi-

sionally named by the IAU, chaos-like features that are not recognized by the IAU, FFCs, 

and non-chaos regions (see Section 2.3.2). Since previous work that searched chaos-like 

features did not cover the Martian surface globally (e.g., [14]), we manually searched for 

additional chaos-like features on Mars using available CTX and MOLA images to fill gaps 

in the previous work. We found several chaos-like features on Mars (yellow circles in Fig-

ure 1). The target data include chaos-like features that were newly found in the present 

study. 

 

Figure 3. (a) A THEMIS daytime infrared image of Arsinoes Chaos and Pyrrhae Chaos. The areas 

surrounded by the yellow dotted lines indicate the chaos terrains. The red dotted lines indicate 

faults and elongated graben-like depressions possibly formed by volcanic activity [5,6]. The white 

box indicates the locations of lava flows shown in panels (b) and (c). (b) A close-up CTX image of 

lava flows. The white dotted line indicates the outline of lava. (c) A close-up THEMIS thermal inertia 

image of lava flows. The black arrow indicates the lava flow with high thermal inertia. 

2.2. Convolutional Neural Network 

To develop the classification models, we performed fine-tuning of the final layers of 

the original VGG19 network [41]. The VGG19 network is a convolutional neural network 

(CNN), that is, a type of deep neural network [48]. CNNs have been used in many appli-

cations, especially for the classification of image data (e.g., [49]). CNNs typically consist 

of three types of neural network layers (e.g., [50]). The first is a convolutional layer. In 
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CNNs, convolution is carried out through slide filtering, where particular filters (known 

as kernels) are applied equally to every point in an input image. A convolution layer ex-

tracts feature values of an input image using kernels and creates a feature map (e.g., [50]). 

By adjusting the kernel weight and bias through repeated learning, convolution layers can 

extract particular features from an input image. A feature map created by a convolution 

layer is transferred to a pooling layer. Since such a feature map is sensitive to the location 

of the features in the input image, a pooling layer downsamples the feature map in order 

to be robust to changes in the feature location in the input image (e.g., [50]). A pooling 

layer usually performs downsampling by setting a maximum value in a particular region 

of a feature map as a representative value of that region (max-pooling layer) (e.g., [50]). 

No weight or bias learning is done in a pooling layer. The final layer is a fully connected 

layer that summarizes the results from the pooling layer. In addition to these three layers, 

input and output (softmax) layers were used. The input layer arrayed and contained pixel 

values for a given image. The output (softmax) layer converted the discrimination result 

from the neural network into a probability. 

In the pre-trained VGG19 network, there are 19 weight layers (16 convolutional and 

3 fully connected layers), 5 pooling layers, and a softmax layer (Figure 4a). The pre-trained 

VGG19 network enables one to improve the accuracy of the deep architecture using a 

small convolution filter [41]. In this model, an input of an RGB image with a resolution of 

224 × 224 pixels2 (i.e., 224 × 224 × 3 matrix) is passed through multiple convolution layers 

(Figure 4a), which consist of filters with 3 × 3 kernels, as shown in the illustration of Figure 

4a. The spatial resolution (width and height) of the input channel is preserved in convo-

lution by the convolution stride as unity (Figure 4a). After multiple convolutions, spatial 

pooling is performed with 5 max-pooling layers with a 2 × 2 window (Figure 4a). Using 

the 2 × 2 window, the spatial resolution (width and height) of the input channel is reduced 

to half in pooling (e.g., 224 × 224 to 112 × 112). The depth of convolution layers (the number 

of channels) starts with 64 in the first layer and increases by a factor of 2 after the max-

pooling layer, reaching up to 512 (Figure 4a). By repeating the convolution and pooling, 

the pre-trained VGG19 network extracts condensed feature values from a given RGB im-

age. The final max-pooling layer is connected to three fully-connected layers (Figure 4a). 

The first two fully-connected layers each contain 4096 channels, whereas the last has 1000 

channels (Figure 4a). Through the above-mentioned algorithm, the pre-trained VGG19 

network yields 1000 class estimated probabilities from an input of a 224 × 224 image (Fig-

ure 4a). 

Our model was based on the pre-trained VGG19 network. To construct the classifiers 

for the chaos terrains, we excluded the original final layers of the pre-trained VGG19 net-

work and revised the latter by adding a new final layer that yielded 3-class (i.e., AHO 

chaos blocks, AP chaos blocks, and non-chaos surface features) estimated probabilities 

(Figure 4b). We fine-tuned both the final and original VGG19 layers (the first pooling 

layer) based on the characteristics of our image dataset of the Martian surface (Figure 4b). 

The other calculation algorithms used in our study were the same as those of the pre-

trained VGG19 network shown in Figure 4a. 

As for the pre-trained VGG19 network, we included a dropout in our neural network 

to reduce the overfitting of specific features of the training data during the training [51]. 

This was done by inactivating some nodes. The probability of inactivating nodes was set 

at 0.5 based on a previous study [48]. In the calculations, we used data augmentation, 

where convolutional biases were smoothed out. We also used a cross-entropy loss func-

tion in the loss calculations. The initial input images of our study were RGB images with 

a resolution of 200 × 200 pixel2 (Figure 4b), which is smaller than the RGB images with a 

resolution of 224 × 224 pixel2 of the pre-trained VGG19 network. Our neural network 

model performed zero padding to adjust the size of 200 × 200 images to 224 × 224 ones in 

the first convolution layer (Figure 4b). The typical time required for one cycle of training 

was about two hours. We repeated the training to find the optimal settings by changing 

the number of epochs and the batch size. The number of epochs represents the number of 
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times one training dataset was used for repeated learning. When the number of epochs 

becomes too large, overfitting of specific features in the training data occurs. The number 

of epochs was set at 15 through trial and error (see Section 3.2). 

The batch size is the amount of data in a subset of our training data. Large batch sizes 

can help reduce the training time [52]; however, a neural network model cannot general-

ize training data well when the batch size is too large [53]. By contrast, a model with batch 

sizes that are too small cannot achieve optimal learning [53]. In order to investigate the 

effect of varying the batch size, we used batch sizes of 32 and 64 in our training. We used 

neither small batch sizes, such as 8 and 16, nor large ones, such as 128. The former was to 

avoid trapping in local optima of irregular features of chaotic terrains. The latter was ow-

ing to the limited number of the dataset of AP chaos blocks (92 images for the 4 Division 

and 368 images for 16 Division: see Section 2.3.1 below for details). 

 

Figure 4. Architecture of (a) the pre-trained VGG19 network and (b) our revised classifier. There are 

19 weight layers (16 convolutional layers and 3 fully connected layers), 5 pooling layers, and 1 soft-

max layer in the pre-trained VGG19 network. We replaced the fully connected layers and the soft-

max layer in our classifiers (see the text for details). 

2.3. Dataset 

2.3.1. Image Data 

As described above in Section 2.1, we used the three types, CTX, THEMIS, and 

MOLA, of images to develop our classifiers. CTX images capture visible geomorphic fea-

tures on the surface, whereas THEMIS images reflect the thermal inertia of the surface 

materials. MOLA images are color elevation maps. We will refer to our classifier based on 

the CTX geomorphic images, the THEMIS thermal inertia images, and the MOLA 
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elevation images as the ‘CTX classifier’, the ‘THEMIS classifier’, and the ‘MOLA classifier’, 

respectively. CTX geomorphic images reflect differences in surface albedo at visible wave-

lengths, thus emphasizing the geomorphology of the Martian surface. THEMIS thermal 

inertia images reflect the roughness and size of regolith on the surface. MOLA elevation 

images emphasize differences in surface elevations (Figure 5). 

The CTX geomorphic and THEMIS thermal inertia mosaic images were collected us-

ing Java Mission-planning and Analysis for Remote Sensing (JMARS; 

https://jmars.asu.edu/ (accessed on 30 October 2020)) [54]. When inputting the image data 

into the model, we normalized the pixel values of all CTX geomorphic and THEMIS ther-

mal inertia images using histogram equalization, which is an image processing technique 

to adjust the contrast of images by equalizing the histogram of the number of pixels as a 

function of pixel value (e.g., [55]). Thus, any difference in the absolute values and dynamic 

range of the original images obtained in different regions would not affect the model re-

sults, but the spatial patterns of the images affect the model results. The incidence angles 

at which the CTX images were taken are summarized on the JMARS CTX website 

(http://murray-lab.caltech.edu/CTX/ (accessed on 29 October 2021)). The incidence angles 

ranged from 30 to 85° but were mostly 40–65°. The MOLA elevation images were collected 

from the MOLA–HRSC blended digital elevation model using open-source software of 

the geographic information system, QGIS. To create MOLA elevation images in QGIS, we 

adopted a color contour chart so that the highest location in an image was colored white 

and locations 1000 m below the top were colored blue (no images with elevations more 

than 1000 m in our dataset). We introduced the original images of CTX, THEMIS, and 

MOLA with different resolutions at the same location to QGIS to convert them to the jpg 

files with the same resolution of 800 × 800 pixels2. In other words, the image resampling 

algorithm of QGIS was used to equalize the original difference in resolution. 

 

Figure 5. Comparison of typical CTX geomorphic, THEMIS thermal inertia, and MOLA elevation 

images for AHO chaos blocks (Aram Chaos), AP chaos blocks (Crater Lipany), and non-chaos 
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surface features (Jezero Crater) used as training data before normalization of pixel values (see the 

text for details). 

Preparation of the training images was performed as follows. We first collected 800 

× 800 pixels2 images, approximately corresponding to a spatial scale of ~46 × 46 km2 on 

Mars for the target areas’ latitudes. We then collected mosaic images so as to exclude the 

surrounding non-chaos surface features from the training data. We chose the locations of 

the image collection so that we could collect images as much as possible from a chaos 

terrain. We then divided one original image with a resolution of 800 × 800 pixels2 into four 

images with a resolution of 400 × 400 pixels2 to increase the number of independent train-

ing datasets (hereafter, we will refer to these datasets as the 4 Division data). We also 

divided the same original image into 16 images with a resolution of 200 × 200 pixels2 (here-

after, we will refer to these datasets as the 16 Division data). To reduce the GPU burden 

of the calculations, the resolutions of the 4 and 16 Division images were reduced to 200 × 

200 and 100 × 100 pixels2, respectively. The number of the 4 Division data is 1/4 times that 

of the 16 Division data, whereas the resolution of the 4 Division data is twice that of the 

16 Division data. By comparing the results of the 4 and 16 Division data, we evaluate the 

effects of the number of training data and their resolution on the precision of chaos clas-

sification. 

We prepared a total of 1484 images for the 4 Division training data, including 416 

AHO chaos blocks (from 6 locations: see Section AHO Chaos Blocks), 92 AP chaos blocks 

(from 3 locations: see Section AP Chaos Blocks), and 976 non-chaos surface features (from 

126 locations: see Section Non-Chaos Surface Features). For the 16 Division training data, 

we prepared a total of 5232 images, including 1664 AHO chaos blocks, 368 AP chaos 

blocks, and 3200 non-chaos surface features. The original 4 Division image data used for 

the training were the same as for the 16 Division images. The small number of AP chaos 

block images is because the AP chaos terrains identified by previous work [5–7] are lim-

ited on Mars. 

To train and evaluate our newly developed models, we randomly divided the col-

lected images into two datasets. One is the training data used for training, and the other 

is the test data that was not used for training. For the training data, we selected 1228 im-

ages for 4 Division (and 4400 images for 16 Division) from the collected images. Using the 

training data, we also obtained the training accuracy, which is the classification accuracy 

based on the images used in the training. The test data contained 256 and 832 images for 

4 and 16 Division, respectively (i.e., 16–17% relative to training data images). The present 

study did not make the validation data to obtain the validation accuracy because the num-

ber of AP chaos block images is limited due to its small areas on Mars. In the present 

study, the test accuracy was used for the evaluation of model performance. During train-

ing, our neural network models produced a training accuracy and a test accuracy after 

each epoch. Variation curves of the training accuracy and the test accuracy as a function 

of the number of epochs were obtained using Matplotlib, a Python drawing library. 

There is a class imbalance of the image numbers among AHO chaos, AP chaos, and 

non-chaos surface features in our training data because the number of available images of 

total AP chaos blocks is only 92 for 4 Division. To evaluate the class imbalance, we pre-

pared the balanced training data by reducing the number of the original images to 92 im-

ages each for the 3 categories in addition to the above-mentioned dataset for training and 

testing. 

AHO Chaos Blocks 

The image data pertaining to the AHO chaos blocks were images of block landforms 

inside chaos terrain that were directly connected with outflow channels (e.g., 

[1,2,4,13,16,21]), although we excluded images of the associated outflow channels from 

the training and test data. The chaos terrains used for the training data were Aromatum 

Chaos (1°5′24′′S, 317°00′00′′E), Hydraotes Chaos (0°48′00′′N, 35°24′00′′W), Iamuna Chaos 
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(0°16′48′′S, 319°23′24′′ E), Oxia Chaos (0°13′12′′N, 320°7′48′′E), Hydaspis Chaos (3°12′00′′N, 

27°6′00′′W), Aram Chaos (2°36′00′′N, 21°30′00′′W), and Echus Chaos (10°69′67′′N, 74°81′ 

10′′W): e.g., see Figure 1. Since all of these chaotic terrains are associated with outflow 

channels, they would have formed through outflows of groundwater (e.g., 

[1,2,4,13,16,21]). 

The geological characteristics of the AHO chaos terrains used for the training and test 

data can be summarized as follows. Aromatum Chaos is directly connected to the Ravi 

Vallis outflow channel system (Figure 2), strongly suggesting that Aromatum Chaos was 

the source of outflowing liquid water [1]. The channels may have formed during the Hes-

perian [1]. The margin of Hydraotes Chaos truncates the Ravi Vallis outflow channel sys-

tem (Figure 2; [1]), indicating that Hydraotes Chaos postdates the formation of the Ravi 

Vallis outflow channel system. Iamuna Chaos and Oxia Chaos occur within the Ravi Vallis 

outflow channels (Figure 2; [1]), which indicates that Iamuna Chaos and Oxia Chaos post-

date the formation of the Ravi Vallis outflow channel system. Meresse et al. [2] proposed 

the dikes/sills emplacement interacting with the cryosphere as a formation mechanism for 

the overall chaos formation of Hydraotes Chaos. Hydaspis Chaos is suggested to have 

formed through breakage of extensive subsurface caverns induced by artesian pressur-

ized groundwater (Figure S1; [16]), based on the presence of meandering channels and 

lobate features. These geological features may have formed through upward emanations 

of pressurized fluids [16]. The removal of basal materials would have caused subsequent 

subsidence and fracturing of the cavern’s roof [16]. Based on continuous surface features 

throughout the Aram Chaos sediments and the surrounding highland terrain, Aram 

Chaos is considered to have formed through the melting of a buried ice lake (Figure S2; 

[4,13]). 

As described above in Section 2.1, we have randomly chosen the images of chaos 

blocks for testing and training from the AHO chaos terrains. In addition to this, we have 

split the dataset for testing and training depending on the region of chaos terrains. This 

was done because the training and testing using spatially contiguous images of the same 

terrains could have caused an overestimate of testing accuracy. More specifically, in the 

split dataset, we have used images of AHO chaos blocks from Aromatum Chaos, 

Hydaspis Chaos, Iamuna Chaos, and Oxia Chaos as the test dataset, and the images from 

Hydraotes Chaos, Adam Chaos, and Echus Chaos as the training dataset. We did not split 

the image dataset of AP chaos blocks because all images of AP chaos were taken from one 

single region. 

AP Chaos Blocks 

The training data pertaining to the AP chaos blocks were images of block landforms 

inside chaos terrain that were associated with widespread volcano–tectonic geomorphol-

ogy (e.g., graben, radial and concentric fault systems, orthogonal fractures, lava flows, and 

pit chains) and without any outflow channels [5–7,14]. These features suggest that the AP 

chaos terrains may have been generated through the drainage of magma chambers [5–

7,14]. The chaos terrains used for the training data were Arsinoes Chaos (8°20′23′′ S, 

332°4′47′′E), Pyrrhae Chaos (11°32′23′′S, 331°36′00′′E), and Crater Lipany (0°13′11′′S, 

79°40′12′′E), see Figure 1. 

The geological characteristics of the AP chaos terrains used for the training and test 

data can be summarized as follows. In Arsinoes Chaos and Pyrrhae Chaos, volcano–tec-

tonic geomorphology (e.g., graben, radial and concentric fault systems, orthogonal frac-

tures, lava flows, and pit chains) are abundant and widespread (Figure 3; [6,7]). On Earth, 

similar radial and concentric fault systems occur in association with piecemeal caldera 

collapses [56]. Accordingly, these chaotic terrains are likely to have formed primarily 

through volcano–tectonic activity, such as by repeated inflation and drainage of magma 

chambers and subsequent piecemeal caldera collapses [5–7]. Crater Lipany is one of the 

FFCs, with abundant fractures without any outflow channels or flow features (Figure S3; 

[14]). Pit chains and knobs in the crater have sharp escarpments (Figure S3; [14]), 
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indicative of little erosion through fluvial activity. These observations suggest that the 

fractures affecting Crater Lipany were likely formed through a volcanic process, such as 

intrusive volcanism. 

Non-Chaos Surface Features 

As for our training data pertaining to non-chaos surface features, we chose images of 

valley networks (260 images), plains with impact craters (196 images), mountains (268 

images), trenches (192 images), and streamlined hills (60 images). We collected images of 

valley networks from the southern highlands, mountains/trenches from the Tharsis region 

and the Elysium Planitia/mountain, streamlined hills from Chryse Planitia, and plains/im-

pact craters from the southern highlands and the northern lowlands (Figure S4). 

2.3.2. Target Data 

As for our target data, we chose 125 locations (corresponding to 3148 images for 4 

Division data) that exhibit chaos-like features on Mars (Figure 1). They include Galaxias 

Chaos and Iani Chaos in the circum-Chryse outflow channel region, unnamed chaos ter-

rains, and FFCs. Galaxias Chaos may have formed through subsurface gradual volatile 

losses due to the capping of the lava unit [57]. The Vastitas Borealis formation is consid-

ered to represent H2O-rich residue remaining after huge floods; it is located beneath Gal-

axias Chaos. The Elysium Rise lava unit overlies Galaxias Chaos. Sublimation of the un-

derlying volatile-rich layer by heat from the lava unit would have induced subsidence 

[57]. Based on the presence of flood grooves and extensional fractures, Iani Chaos may 

have formed through extensional fracturing over a pressurized aquifer beneath a thick-

ened cryosphere [11]. We compare our classification with the proposed scenarios [11,57] 

in Section 4. 

2.4. Analytical Methods 

2.4.1. Calculations of Accuracy Rates, Precision Rates, Recall Rates, and F-Measures 

A confusion matrix shows the relationship between the numbers of true and pre-

dicted classifications. We define the terms of Ntrue_x and Nfalse_x as the numbers of true and 

false classifications, respectively, for type x, where x are AHO chaos blocks (x = AHO), AP 

chaos blocks (x = AP), or non-chaos surface features (x = nc). For instance, Ntrue_AHO repre-

sents the number of images of true AHO chaos blocks that were classified as AHO chaos 

blocks by our machine-learning algorithm; Nfalse_AHO is the number of images of true AP 

chaos blocks or non-chaos surface features that were classified as AHO chaos blocks. The 

relationship between Ntrue_x and Nfalse_x is shown in a confusion matrix (Figure S5). 

We used an accuracy rate, A, a precision rate, Px, a recall rate, Rx, and an F-measure, 

Fx, as our performance measures. An accuracy rate is the most intuitive performance 

measure and a ratio of correctly predicted classifications to the total classifications. Based 

on the confusion matrix generated by our model using the tripartite classification, the ac-

curacy rate (A) can be expressed as follows: 

� =
�����_���� �����_��� �����_��

�����_���� ������_���� �����_��� ������_��� �����_��� ������_��
  (1)

The precision rate is the ratio of correctly predicted positive classifications to the total 

predicted positive classifications. The precision rate is used to evaluate how many images 

are correctly predicted among actual classifications and can be expressed as follows: 

�� =
�����_�

�����_�� ������_�
 . (2)

The recall rate is the ratio of correctly predicted positive classifications to all classifi-

cations in the actual class. The recall rate is used to evaluate how many images did not 

overlook among the actual class and is expressed as follows: 
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where the label in parentheses of term Nfalse_x means the true label of images. For instance, 

Nfalse_AHO(nc) means the number of images of true non-chaos surface features that are classi-

fied as AHO chaos by machine learning. The f-measure is a harmonic mean of the preci-

sion rate and recall rate in order to control the precision-recall tradeoff and can be ex-

pressed as follows: 

�� =
�×��×��

�����
 . (6)

We constructed three distinct classifiers for one parameter set (i.e., the batch size and 

the number of divisions) using different training and testing images, which were ran-

domly chosen each time from the image data. We calculated A, Px, Rx, and Fx three times 

using three distinct classifiers to obtain the average A, Px, Rx, and Fx values, with their 

errors (one standard deviation, 1σ), which were used for comparison of our classifiers 

with the parameter set. Matplotlib software was used to display confusion matrixes. 

2.4.2. Heat Map 

In general, CNNs are unable to generate classification criteria to reach an assessment 

because of a failure of the model’s decomposability. To improve the assessment transpar-

ency, we used Grad-CAM. Grad-CAM is a method used to define possible criteria for 

assessment by visualizing the regions [47]. Grad-CAM uses gradients in the final convo-

lutional layer for visualization. Any region that contributes significantly to the output val-

ues of a prediction has a large gradient in the final convolutional layer; thus, it is likely to 

be important for assessment. Grad-CAM can display a heat map of regions, showing large 

gradients, and, as such, CNN focuses on learning. The Grad-CAM source code was down-

loaded from the GitHub website (https://github.com/vickyliin/gradcam_plus_plus-

pytorch (accessed on 23 October 2020)). The source code was modified in Google Colabor-

atory to satisfy our calculation setup. 

2.5. Search for Chaos-like Features 

In addition to reported chaos, chaos-like features, and FFCs, we searched for chaos-

like features globally on Mars using available remote sensing images. This was performed 

by manually viewing many CTX and/or MOLA images with a scale of ~100 km to cover 

the survey region continuously and globally on Mars. When we found a candidate, we 

downloaded CTX geomorphic and THEMIS thermal inertia images from JMARS. The sur-

vey was performed mainly to map chaos terrains, chaos-like features, and FFCs in the 

same category and to fill gaps in the global map of FFCs provided by Bamberg et al. [14]. 

The survey area includes areas in the northern lowlands and southern highlands (Aonia 

Terra: 60°S97°W; Noachis Terra: 45°S350°E; and Terra Cimmeria: 34.7°S145°E). 

By searching for chaos-like features on Mars, we confirmed the conclusions of Bam-

berg et al. [14] that chaos terrains and chaos-like features are concentrated around the 

dichotomy boundary and the circum-Chryse outflow channel region. We found new 

chaos-like features in the Utopia Rupēs and Avernus Colles regions (Figure S6). No new 

chaos-like features were found in other regions, such as in middle and high latitude re-

gions, the northern lowlands, or the southern highlands (Aonia Terra: 60°S97°W; Noachis 

Terra: 45°S350°E; and Terra Cimmeria: 34.7°S145°E). 
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3. Results 

3.1. Comparison of Developed Classifiers 

Figure 6 shows the results of the test accuracy for the CTX, THEMIS, and MOLA 

classifiers, adapting for the training data of the 4 Division images and a batch size of 64. 

Figure 6a–c shows the variation of the test accuracy as a function of the number of learning 

epochs. The results show that the test accuracy increases with the number of epochs of 

learning, approaching convergence after 15 epochs. 

 

Figure 6. Typical results of learning curves and confusion matrices for CTX, THEMIS, and MOLA 

classifiers for 4 Division training data and a batch size of 64. Panels (a–c) are learning curves per-

taining to the CTX, THEMIS, and MOLA classifiers, respectively, for 15 epochs of learning. Calcu-

lated test and training accuracies are shown as orange and blue lines, respectively. Panels (d–f) are 

the confusion matrices associated with the CTX, THEMIS, and MOLA classifiers, respectively. Col-

ors and numbers in the confusion matrices represent the test accuracy and the numbers of classified 

images, respectively, for 15 epochs of learning. 

Figure 6a–c also shows the typical variation in the training accuracy. Since the train-

ing accuracy is obtained for the example data used for the training, its values should ap-

proach ~1.0 (~100% accuracy) over repeated epochs of learning. On the other hand, the 

test accuracies, obtained by using the dataset that was not used for training, become near 

constant when epochs of learning become more than 12. Given that fluctuation of the ac-

curacy rate becomes less than 0.03, we use the values of the test accuracy after 15 epochs 

as representative values for our neural network. The differences between the test and 

training accuracies are <0.2 after 15 epochs of learning for the 4 Division images and a 

batch size of 64 (Figure 6). If the difference between the test and training accuracies is large 

(e.g., >0.2), overfitting of learning may occur in neural network models [58]. Overfitting 

in machine learning occurs when learning is performed too specifically for given training 

data and the models cannot generalize the training data adequately. Our results indicate 

that overfitting would not occur in our neural network model (Figure 6). 

Over 15 epochs of learning, the test accuracies of the CTX, THEMIS, and MOLA clas-

sifiers reach 94.5%, 94.9%, and 91.4%, respectively (Figure 6). Figure 6d–f shows the typi-

cal confusion matrices relating the number of true and predicted classifications for differ-

ent image categories. As described in Section 2.4.1, we calculated the average values and 

their errors from the test accuracies of the three distinct classifiers. Table 1 and S1 summa-

rize the average test accuracies obtained, the test recall rates, the test precision rates, and 

the F-measures, as well as their errors, pertaining to our CTX, THEMIS, and MOLA clas-

sifiers. The test accuracies, A, for our CTX, THEMIS, and MOLA classifiers (Table 1 and 

S1) are always higher than the random classification accuracy (the probability achieved 
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by randomly assigning a sample to one class) 64–67% for our test data (given 976 images 

of non-chaos surface features in total 1484 images, the random classification accuracy be-

comes ~66% for our data). The recall rates, RAP, of AP chaos blocks (the probability of 

correctly predicting classifications in AP chaos blocks) by the MOLA and THEMIS classi-

fiers are generally low compared with the CTX classifier (Table 1 and S1). For instance, 

the RAP values by the MOLA classifier are ~64–65% for 4 Division and ~40–60% for 16 

Division (Table 1 and S1). However, the RAP values are much higher than the random 

classification accuracy of ~6% for AP chaos blocks (given 92 images of AP chaos blocks in 

total 1484 images, the random classification accuracy for AP chaos blocks becomes ~6%). 

Comparing the results for different classifiers, the test recall rate, Rnc, of the non-chaos 

surface features becomes highly independent of the image type (Table 1). This indicates a 

low probability of overlooking non-chaos surface features. The recall rate, RAHO, of the 

AHO chaos blocks becomes high for the CTX, THEMIS, and MOLA classifiers (Table 1), 

whereas the recall rates, RAP, of AP chaos blocks are moderate or relatively low (Table 1). 

This indicates a possibility that our classifiers, especially the THEMIS and MOLA classi-

fiers, may overlook AP chaos blocks. In addition, Table 1 and S1 show that the precision 

rates, PAP, of AP chaos blocks are generally lower than those of non-chaos surface features, 

indicating that the probability of false positives is relatively high for AP chaos blocks. The 

relatively low RAP and PAP rates may be partially due to the small number of both training 

data and test sets of AP chaos blocks. 

Table 1. Summary of average accuracy rates, precision rates, recall rates, and F-measures with their 

errors (1σ) for the CTX, THEMIS, and MOLA classifiers. Results for 4 Division images and a batch 

size of 64. See Supplementary Table S1 for the results for 16 Division images and a batch size of 32 

and 64. We adopted the parameter set of Table 1 for application to Martian chaos data. 

 Accuracy (%) Precision (%) Recall (%) F-measure 

(a) CTX classifier A = 93.5 (σ = 0.7)    

AHO chaos blocks  PAHO = 92.1 (σ = 2.1) RAHO = 85.2 (σ = 0.5) FAHO = 88.5 (σ = 0.8) 

AP chaos blocks  PAP = 94.1 (σ = 4.6) RAP = 71.3 (σ = 13.8) FAP = 80.7 (σ = 10.5) 

Non-chaos surface fea-

tures 
 Pnc = 93.9 (σ = 0.3) Rnc = 99.0 (σ = 0.3) Fnc = 96.4 (σ = 0.3) 

(b) THEMIS classifier A = 91.3 (σ = 2.6)    

AHO chaos blocks  PAHO = 88.8 (σ = 3.7) RAHO = 80.4 (σ = 4.7) FAHO = 84.4 (σ = 4.2) 

AP chaos blocks  PAP = 90.3 (σ = 7.1) RAP = 64.6 (σ = 21.5) FAP = 72.7 (σ = 13.1) 

Non-chaos surface fea-

tures 
 Pnc = 92.4 (σ = 2.8) Rnc = 98.2 (σ = 0.0) Fnc = 95.2 (σ = 1.5) 

(c) MOLA classifier A = 88.5 (σ = 2.1)    

AHO chaos blocks  PAHO = 85.0 (σ = 5.7) RAHO = 77.2 (σ = 8.6) FAHO = 80.4 (σ = 3.9) 

AP chaos blocks  PAP = 80.2 (σ = 9.0) RAP = 63.9 (σ = 17.5) FAP = 70.3 (σ = 14.4) 

Non-chaos surface fea-

tures 
 Pnc = 91.0 (σ = 3.0) Rnc = 96.4 (σ = 1.8) Fnc = 93.6 (σ = 0.8) 

Our CTX, THEMIS, and MOLA classifiers can classify non-chaos surface features 

with high accuracy and low incidence of false positives; however, the MOLA classifier 

cannot recognize AP chaos blocks well (Table 1). The precision rate, PAP, of AP chaos 

blocks for the MOLA classifier (~80%) is lower than those for the CTX and THEMIS clas-

sifiers (~90%) (Table 1). The high false positive rate (~20%) of AP chaos blocks for the 

MOLA classifier suggests that it would overlook and classify AHO chaos blocks and non-

chaos surface features as AP blocks. On the other hand, the CTX and THEMIS classifiers 

can recognize AHO and AP chaos blocks with high accuracy (Tables 1 and S1). The false 

positive rate of AHO and AP chaos blocks was also low (<10%) (Table 1). Based on these 

results, we conclude that the CTX and THEMIS classifiers are more appropriate for chaos 

classification than the MOLA classifier. 
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3.2. Sensitivity to the Dataset and Batch Size 

Figure 6 and S7 show the variations in the test accuracy and confusion matrices for 

different combinations of batch size (i.e., 32 and 64) and image division (4 Division and 16 

Division). Compared with the results shown in Figure 6 and S7, the effects of batch size 

on the test accuracy seem to be relatively small. In general, fluctuations of test accuracy in 

a learning curve tend to be large for small batch sizes of the training data due to the results 

occasionally being trapped in local optima. The latter are generated by noise in the gradi-

ent estimates in our machine-learning algorithms [53]. When a batch size is large, noise in 

gradient estimates tends to be less important, while training with large batch sizes may 

not allow generalization of the training data (i.e., overfitting). Since Figure 6 and S7 show 

that overfitting does not occur for batch sizes of 64, we used the classifiers developed with 

a batch size of 64 for our classification of Martian chaos (Section 4). 

Table 1 and S1 also compare the average test accuracies of 4 Division and 16 Division 

images, showing that the test accuracies for 16 Division generally become lower than those 

for 4 Division. During the training of our classifiers using the 16 Division dataset, the test 

accuracy fluctuated significantly compared with the 4 Division dataset (Figure S7). This 

enhanced fluctuation occurred because the small spatial scale of the dataset tends to pro-

duce more noise in the gradient estimates in our machine-learning algorithms. 4 Division 

images have a resolution of 200 × 200 pixels2, corresponding to 23 × 23 km2 on Mars; 16 

Division images have a resolution of 100 × 100 pixels2, which corresponds to 11.5 × 11.5 

km2 spatially. Since the typical size of blocks of chaos ranges from kilometers to tens of 

kilometers (e.g., [10]), training based on 16 Division images would not be appropriate to 

classify block images of chaos. Therefore, we used the classifiers developed using 4 Divi-

sion images for our classification of Martian chaos (Section 4). 

As described in Section 2.3.1 above, the numbers of our training data for the three 

categories are imbalanced due to the small area of AP chaos terrains. Table S1d shows the 

test accuracies using the balanced dataset with 92 images for each class. The test accuracies 

become 87.0%, 81.8%, and 81.3% for the CTX, THEMIS, and MOLA classifiers, respec-

tively, for the balanced dataset. All values became worse than those using the original 

training data (Table 1) because of the reduction in the size of the dataset. Thus, we used 

the classifiers developed using the original, imbalanced training dataset for the classifica-

tion of Martian chaos terrains. 

Table 2 shows the results of the precision rate, recall rate, and f-measure for the three 

classifiers when we have split the training and testing dataset of AHO chaos blocks based 

on the regions of chaos terrains. Comparing Table 1 and 2, the precision rate, recall rate, 

and f-measure of AHO chaos blocks are unchanged within errors, or even increased, due 

to the splitting of the dataset (e.g., the precision rate = 0.94 ± 0.02 and 0.92 ± 0.02 for the 

CTX classifier of the split and original dataset, respectively). This strongly suggests that 

our model can recognize the AHO chaos blocks regardless of the choice of region for train-

ing. However, the precision rate, recall rate, and f-measure of AP chaos blocks are de-

creased by splitting the AHO dataset based on the region (Table 2) (e.g., the precision rate 

= 0.60 ± 0.05 and 0.90 ± 0.07 for the CTX classifier of the split and original dataset, respec-

tively). We consider that the decrease in precision for AP chaos blocks occurs because 

some local, particular features seen in the selected AHO chaos terrains might occur in the 

AP chaos terrains as well, which may cause misrecognition of some AP chaos blocks. To 

avoid the artificial error caused by the choice of region, we use the model developed using 

the randomly chosen dataset for the application to Martian chaos classification in Section 

4. 

Table 2. Same as Table 1 but using the split dataset of AHO chaos blocks for testing and training 

based on the region of the chaos terrains (i.e., the images from Aromatum Chaos, Hydaspis Chaos, 

Iamuna Chaos, and Oxia Chaos for testing, and the images from Hydraotes Chaos, Adam Chaos, 

and Echus Chaos for training). 
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 Accuracy (%) Precision (%) Recall (%) F-Measure 

CTX classifier A = 87.2 (σ = 0.5)    

AHO chaos blocks  PAHO = 94.0 (σ = 1.5) RAHO = 65.0 (σ = 2.7) FAHO = 76.8 (σ = 1.6) 

AP chaos blocks  PAP = 59.5 (σ = 4.9) RAP = 76.5 (σ = 6.5) FAP = 66.7 (σ = 4.4) 

Non-chaos surface fea-

tures 
 Pnc = 88.5 (σ = 0.6) Rnc = 99.6 (σ = 0.6) Fnc = 93.7 (σ = 0.4) 

THEMIS classifier A = 89.1 (σ = 0.3)    

AHO chaos blocks  PAHO = 92.2 (σ = 2.8) RAHO = 71.7 (σ = 3.1) FAHO = 80.5 (σ = 1.2) 

AP chaos blocks  PAP = 83.5 (σ = 3.5) RAP = 84.9 (σ = 2.9) FAP = 84.1 (σ = 1.4) 

Non-chaos surface fea-

tures 
 Pnc = 88.6 (σ = 1.0) Rnc = 98.3 (σ = 1.1) Fnc = 93.2 (σ = 0.1) 

MOLA classifier A = 81.3 (σ = 1.4)    

AHO chaos blocks  PAHO = 84.6 (σ = 7.7) RAHO = 52.5 (σ = 2.7) FAHO = 64.5 (σ = 0.5) 

AP chaos blocks  PAP = 31.8 (σ = 12.0) RAP = 68.1 (σ = 8.1) FAP = 42.6 (σ = 13.5) 

Non-chaos surface fea-

tures 
 Pnc = 88.8 (σ = 1.4) Rnc = 96.3 (σ = 3.1) Fnc = 92.4 (σ = 1.7) 

4. Classification of Martian Chaos Terrain 

4.1. Distribution of Recognized Chaos on Mars 

We applied the CTX, THEMIS, and MOLA classifiers developed using the training 

data with 4 Division and batch size 64 for recognition and classification of 3148 images of 

block landforms across chaos terrains, chaos-like features, and FFCs. Although the CTX 

and THEMIS classifiers would be more appropriate for chaos classification than the 

MOLA classifier (Section 3.1), the accuracy and recall rate of the MOLA classifier for the 

training data, including RAP, are higher than the chance level performances (Section 3.1 

and Table 1). Thereby, we consider that a comparison of the three classifiers would be 

valuable to understand the characteristics of each classifier and to categorize the target 

images of chaos terrains on Mars. 

The classification results are summarized in Table 3. For instance, our CTX classifier 

recognized 1527 images as chaos, including both AHO and AP chaos blocks (Table 3). The 

relatively high percentage of chaos-like features classified as non-chaos surface features 

suggests that our three classes may be insufficient to explain all chaos-like features on 

Mars. 

Table 3. Summary of the numbers of classified images pertaining to the CTX, THEMIS, and MOLA 

classifiers. The numbers in brackets represent the total numbers of classified images with probabil-

ities of 80% or greater. 

 AHO Chaos Blocks AP Chaos Blocks 
Non-Chaos Surface 

Features 

CTX classifier 1202 (882)/3148 325 (181)/3148 1621 (1296)/3148 

THEMIS classifier 1017 (683)/3148 350 (223)/3148 1781 (1498)/3148 

MOLA classifier 1513 (1067)/3148 178 (82)/3148 1457 (1103)/3148 

Figure 7 shows the spatial distribution of the recognized AHO and AP chaos blocks 

and of the non-chaos surface features on Mars. Across one terrain, there are multiple im-

ages of block landforms that were categorized into different classes. Accordingly, we 

show pie charts to indicate the percentages of the numbers of the three categories across 

one terrain in Figure 7. The size of the pie chart represents the number of images. Recog-

nized AHO chaos blocks are distributed around the dichotomy boundary on Mars, 

whereas recognized AP chaos blocks are mainly located in the circum-Chryse outflow 

channel region (Figure 7a). The estimated probabilities of recognized chaos being 
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classified as non-chaos surface features are generally low in the circum-Chryse outflow 

channel region. 

The trends seen for the spatial distributions of the recognized AHO and AP chaos 

blocks for the CTX classifier are similar to those for the THEMIS and MOLA classifiers 

(Figure 7b,c). The THEMIS classifier tends to recognize more non-chaos surface features 

around the dichotomy boundary than the CTX classifier (Figure 7b). The MOLA classifier 

recognizes more AP chaos blocks around the dichotomy than the other classifiers (Figure 

7c). Given the low accuracy of AP chaos block recognition by the MOLA classifier (see 

Section 3.2) and the fact that both the CTX and THEMIS classifiers do not recognize any 

AP chaos blocks around the dichotomy boundary (Figure 7), the AP chaos blocks recog-

nized by the MOLA classifier around the dichotomy boundary may include false posi-

tives. 

Figure 7 shows that around the dichotomy boundary (such as in the Cydonia Mensae 

region), some AHO chaos blocks recognized by the CTX and MOLA classifiers were rec-

ognized by the THEMIS classifier as non-chaos surface features. Some images of newly 

found chaos-like features (in the present study) are also classified as AHO chaos blocks 

by the CTX classifier, but they were classified as non-chaos surface features by the THE-

MIS classifier (Figure 7). Based on Table 1, the precision rates for the recognition of AHO 

chaos blocks and non-chaos surface features are >85.0% (mostly >90%). Accordingly, the 

probabilities of returning false positives would be too low to explain the discrepancy in 

classification results between the CTX/MOLA and THEMIS classifiers. 

One possibility that may cause this discrepancy for images from the Cydonia Mensae 

region is that the surface pattern of chaos terrains in Cydonia Mensae may be overwritten 

by aeolian landforms with very low thermal inertia. There are multiple intra-crater dune 

fields in Cydonia Mensae (Figure S8). This region is characterized as an area that tends to 

accumulate aeolian deposits based on the previously determined global distribution of 

dune fields and modeled wind directions using Global Climate Models [59]. Figure S8c 

shows that aeolian landforms (such as wind streaks and drift sands) are frequently found 

within the chaos terrains of Cydonia Mensae. On the other hand, THEMIS thermal inertia 

images of the training data pertaining to AHO chaos blocks (i.e., Hydraotes Chaos and 

Hydaspis Chaos) and recognized AHO chaos blocks (e.g., Aeolis Mensae) do not seem to 

be covered by aeolian landforms with low thermal inertia (Figure S8e–g). These results 

suggest that the THEMIS classifier may consider blocks of chaos in Cydonia Mensae as 

non-chaos surface features because of widespread coverage by aeolian landforms with 

low thermal inertia. 

Figure 8 shows the histograms of AHO chaos blocks, AP chaos blocks, and non-chaos 

features as functions of latitude, longitude, and elevation. The number and fraction of 

both AHO and AP chaos blocks become highest in the region of 10°N–10°S in latitude and 

0–75°W in longitude. This region corresponds to the circum-Chryse outflow channel re-

gion. The AHO chaos blocks tend to be concentrated at relatively low elevations (< –2000 

m), which may be consistent with the possible formation scenario of AHO chaos by melt-

ing of ground ice and outburst of liquid water. 

The spatial distributions of the chaos blocks recognized by our CTX and MOLA clas-

sifiers (Figure 7a,c) generally agree with the global map of chaotic terrain units on Mars 

recognized by geologists [24] (Figure 7d). On the other hand, our THEMIS classifier seems 

to overlook chaotic terrains in the chaotic terrain units near the dichotomy boundary, in-

cluding Cydonia Mensae, recognized by geologists [24]. A possible reason that the THE-

MIS classifier may overlook the chaos terrains around the dichotomy boundary is the oc-

currence of aeolian landforms, as discussed above. The general agreements of the chaotic 

blocks recognized by the CTX and MOLA classifiers and the previous chaotic terrain units 

by Martian geologists [24] support that our classifiers, especially the CTX classifier, have 

sufficient ability to identify and classify chaotic terrains on Mars. 
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Figure 7. Global distribution of the classified chaos blocks based on (a) the CTX classifier, (b) the 

THEMIS classifier, and (c) the MOLA classifier superimposed on a Martian topographic map. The 

pie charts represent the fractions classified in each category. The sizes of the pie charts represent the 

number of images at a given location. In panel (a), the locations of the images used in Figure 9, 10, 

13, and S9–S14 are shown. Panel (d) shows the global map of chaotic terrain units recognized by 

geology specialists [24] for comparison. The yellow and orange areas represent the chaotic terrain 

units on the Hesperian transition unit (Ht) and on the Hesperian and Noachian transition unit 

(HNt), respectively. 
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Figure 8. Histograms of numbers of recognized AHO chaos blocks (blue), AP chaos blocks (red), 

and non-chaos features (gray) as functions of latitude (a,d,g), longitude (b,e,h), and elevation (c,f,i) 

on Mars for the different classifiers; CTX (a–c), THEMIS (d–f), and MOLA (g–i). 

4.2. Comparison with Previously Proposed Formation Mechanisms 

In some chaos terrains where we applied our classifiers, previous studies offered hy-

potheses of their formation mechanisms based on detailed geological and geomorphic 

analyses [11,57]. These include Galaxias Chaos and Iani Chaos. In this section, we compare 

our results with previously proposed formation mechanisms. 

Galaxias Chaos, located between the northern Elysium Rise and the eastern Hecates 

Tholus (34°6′00′′N, 213°36′00′′W), is suggested to have formed through loss of ground ice 

due to heat from a capping lava unit [57]. This latter study showed that the elevations of 

blocks of Galaxias Chaos decreased as a function of increasing distance from Elysium Rise. 

The Vastitas Borealis Formation (VBF) beneath Galaxia Chaos is considered a residue of 

water-rich floods based on the similarity in the age of the outflow channels associated 

with Galaxia Chaos [60]. Given that the Elysium Rise lava unit overlies Galaxias Chaos, 

sublimation and melting of ice underlying the VBF would have been caused by heat from 

the lava unit [11,57]. Iani Chaos is also considered to have formed through the melting of 

subsurface ice. Iani Chaos is located to the southeast of Aram Chaos (3°48′36′′S, 

342°57′35′′E; Figure S10). Based on the presence of flood grooves and extensional fractures, 

Iani Chaos has also been suggested as having formed through extensional fracturing of 

the surface due to a pressurized aquifer located beneath a thickened cryosphere [11]. 

Our CTX, THEMIS, and MOLA classifiers have recognized blocks of chaos in Gal-

axias Chaos as AHO chaos blocks (Figure 9). Both the CTX and MOLA classifiers recog-

nized large parts of the blocks in Iani Chaos as AHO chaos blocks, combined with small 

numbers of possible AP chaos blocks (Figure 10). By contrast, the THEMIS classifier rec-

ognized them as a mixture of AHO and AP chaos blocks (Figure 10). These comparisons 

suggest that the results of the classification of chaos in Galaxias and Iani Chaos by our 

classifiers, especially by the CTX classifier, are generally consistent with the proposed for-

mation mechanisms suggested in previous studies. 
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Figure 9. Classification results of chaos blocks (locations shown by circles) in the Galaxias Chaos 

region by the (a) CTX, (b) THEMIS, and (c) MOLA classifiers superimposed on a THEMIS daytime 

infrared image. Circle colors indicate the classification result (blue: AHO chaos blocks; orange: AP 

chaos blocks; gray: non-chaos surface features). Regions surrounded by yellow dotted lines are 

chaos-like features. 
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Figure 10. Classification results of chaos blocks (locations shown by circles) for Iani Chaos: (a) CTX 

classifier; (b) THEMIS classifier; (c) MOLA classifier. Circle colors indicate the classification result. 

Circles showing both blue and orange reflect our suggestion that the probabilities of AHO and AP 

chaos blocks are approximately equal. Regions surrounded by yellow dotted lines are chaos-like 

features. 

4.3. Discussion of Possible Criteria for Classification 

Figure 11 shows Grad-CAM heat maps of AHO and AP chaos blocks for our classifi-

ers. Panels (a–c) and (g–i) compare typical images of large blocks (width > 7–8 km) of AHO 

and AP chaos blocks, respectively; panels (d–f) and (j–l) compare images of small blocks 

(width < 7–8 km) of AHO and AP chaos blocks, respectively. 

In the Grad-CAM heat maps, blocks and intervening troughs in both AHO and AP 

chaos blocks tend to be discerned by the CTX and THEMIS classifiers (Figure 11). In con-

trast, no particular features seem to be preferred by the MOLA classifier (Figure 11). In 
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the MOLA elevation maps, there is no systematic difference in the elevations of blocks 

between AHO and AP chaos blocks (Figure 11), which may lead to a lack of detection of 

blocks and troughs by the MOLA classifier. The fact that no feature seems to be preferred 

by the MOLA classifier suggests that the categorization by this classifier could be partly 

affected by large-scale slopes in target regions, seen as a graduation of color in MOLA 

elevation images. This could cause relatively low accuracies of the MOLA classifier (Table 

1). 

 

Figure 11. Grad-CAM heat maps and CTX geomorphic, THEMIS thermal inertia, and MOLA eleva-

tion images of blocks classified as (a–f) AHO chaos blocks and (g–l) AP chaos blocks. Panels (a–c) 

and (g–i) show typical images of large blocks (width > 7–8 km) of AHO and AP chaos blocks, re-

spectively. Panels (d–f) and (j–l) show typical images of small blocks (width < 7–8 km) of AHO and 

of AP chaos blocks, respectively. Images in panels (a), (i), and (j) were taken from Aureum Chaos, 

those in (b) and (f) were taken from Chryse Chaos, and those in (c), (e), (g), and (l) were taken from 

Aurorae Chaos, that in (d) was taken from the western area of chaos near Gale Crater, and those in 

(h) and (k) were taken from Eos Chaos. 

Comparing the morphology of large blocks in the CTX and THEMIS images, gradi-

ents at the edges of AHO chaos blocks tend to be steep (Figure 11a,b), whereas those of 

AP chaos blocks have gentle slopes (Figure 11g,h). Steep slopes tend to be bright in THE-

MIS thermal inertia images because of a lack of fine dust on the surface [61]. In addition, 

troughs between blocks tend to be linear in AHO chaos blocks (Figure 11a,b). The direc-

tions of linear troughs of AHO chaos blocks are generally parallel to the directions toward 

their associated outflow channels (Figure 11a,b). In contrast, troughs of AP chaos blocks 

are bent according to the blocks’ shapes (Figure 11g–i). 

Small blocks of both AHO and AP chaos blocks exhibit crest-topped shapes (Figure 

11d–f,j–l). There is often a mesa-like plateau on top of small AP chaos blocks (Figure 11j,k), 

whereas almost all of the small AHO chaos blocks are crest-topped without plateau tops, 

even when the block size is similar to that of the AP chaos blocks (Figure 11d–f). In addi-

tion, the gradients of the crest-topped AHO chaos blocks are steep, as are those of large 

AHO chaos blocks (Figure 11a,b). 

These differences in the morphology of blocks and troughs between AHO and AP 

chaos blocks are probably caused by different erosion mechanisms acting on the blocks. 

Massive outbursts of groundwater would have intensely eroded blocks upon formation 

of chaos, forming steep slopes at the edges of the blocks and linear troughs. In contrast, 

surface collapse triggered by draining magma chambers would not have caused any in-

tense erosion by intense fluid outflows. Although we cannot determine the classification 

criteria adopted by our classifiers solely based on the Grad-CAM heat map, these differ-

ences in block morphology might be important for the final classification. 
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We note that the brightness contrast in the THEMIS images we examined tends to be 

larger for AHO chaos blocks (Figure 11a,b) compared with that for AP chaos blocks (Fig-

ure 11g,h). The THEMIS images of large AHO chaos blocks indicate that parts of the 

blocks’ top plateaus have lower thermal inertia values than the floors of troughs (Figure 

11a,b). On the other hand, thermal inertia values of the top plateaus of AP chaos blocks 

are similar to those of the floors of troughs (Figure 11g,h). Given that both AHO and AP 

chaos blocks should have been formed through physically similar processes (i.e., surface 

collapse), the difference in thermal inertia contrast between these types of chaos blocks 

could be attributed to material property variations. One possibility is that the materials 

on the trough floors of AHO chaos blocks may contain smaller amounts of unconsolidated 

fine sand and dust than those associated with AP chaos blocks, a situation possibly ex-

plained by outflows of surface water and/or cementation of dust particles by salts upon 

evaporation of water. Such a difference inherent in the material properties could also be 

important for classification, especially for THEMIS classifiers. 

5. Implications for Geohydrology and the Cryosphere on Mars 

5.1. Types of Chaos Terrain Based on Machine Learning Classification 

In our classification, one chaos terrain often contains multiple images of blocks. 

Through image classification of blocks across a given chaos terrain, we identified two 

types of chaos terrain on Mars. One is a chaos terrain where both block images classified 

as AHO and AP chaos blocks co-exist (‘hybrid’ chaos terrain: see Section 5.2 for details). 

Hybrid chaos terrains are located predominantly around the circum-Chryse outflow 

channel region (Figure 12), including Aurorae Chaos (Figure S9), Aureum Chaos (Figure 

S10), Margaritifer Chaos (Figure S11), Iani Chaos (Figure 10), and Eos Chaos (Figure S12). 

The other type is a chaos terrain where images classified as AHO chaos blocks predomi-

nate (‘AHO-dominant’ chaos terrain: see Section 5.3 for details). AHO-dominant chaos 

terrains are distributed widely around the dichotomy boundary of the northern and 

southern hemispheres (Figure 7). There are no chaos terrains that are dominated by AP 

chaos blocks, except for the chaos terrains whose images were used for the training data 

of AP chaos blocks. 

5.2. Hybrid Chaos Terrains 

In the circum-Chryse outflow channel region, there are multiple hybrid chaos ter-

rains, i.e., Aurorae Chaos, Aureum Chaos, Margaritifer Chaos, Iani Chaos, and Eos Chaos 

(Figure 12). All of the CTX, THEMIS, and MOLA classifiers recognized the co-existence of 

both AHO and AP chaos blocks in these chaos terrains (Figure 12). 

Figure 12 shows that blocks classified as AP chaos blocks by the CTX and MOLA 

classifiers tend to be present near the edges of the chaos terrains adjacent to Arsinoes 

Chaos and Pyrrhae Chaos (Figure 12; i.e., the southeastern region of Aureum Chaos, the 

eastern region of Aurorae Chaos, and the western regions of Iani Chaos and Margaritifer 

Chaos). Arsinoes Chaos and Pyrrhae Chaos were used as training data for the AP chaos 

blocks (Section AP Chaos Blocks). 

Figure 12 also shows that blocks classified as AHO chaos blocks in the hybrid chaos 

terrains are connected to outflow channels. The outflow channels associated with the hy-

brid chaos terrains are located north of the chaos terrains, away from the regions of AP 

chaos blocks (Figure 12). These outflow channels are connected to chaos terrains (Aram 

Chaos, Hydaspis Chaos, Hydraotes Chaos) that were used as training data for AHO chaos 

blocks (Figure 11). The outflow channels are also connected to AHO-dominant chaos ter-

rains (Chryse Chaos) classified by the present study (Figure 12). These results suggest that 

outbursts of groundwater that formed the outflow channels have supplied large volumes 

of water to the downstream regions of these AHO-dominant chaos terrains. 

There are a few possible interpretations of the hybrid chaos terrains in the circum-

Chryse outflow channel region. One is that our three categories (i.e., AHO chaos blocks, 
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AP chaos blocks, and non-chaos surface features) are insufficient to classify all chaos-like 

terrains on Mars. If the chaos terrains in the circum-Chryse outflow channel region were 

formed via geological processes other than those formed AHO-type chaos and AP-type 

chaos, the chaos-like terrains might not be well classified in one category. 

 

Figure 12. Classification results of chaos blocks (locations shown by circles) for the circum-Chryse 

outflow channels chaos region based on the (a) CTX, (b) THEMIS, and (c) MOLA classifiers. Orange 

and blue shaded areas represent regions whose images were used as training data for the AP and 

AHO chaos blocks, respectively. Regions within yellow dotted lines represent chaos terrains. 
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Another possible interpretation is that the terrains were indeed formed by a combi-

nation of volcano–tectonic activities (AP chaos terrains) (e.g., [5–7,14]) and outflowing of 

groundwater (AHO chaos terrains) (e.g., [1,2,4,13,16,21]). If inflation of magma chambers 

through upwelling of magma occurred in the region [62], the upwelling of magma also 

increased the geothermal heat flux around this area. In regions where ground ice was 

present, the increased subsurface temperatures could have melted ground ice, resulting 

in outbursts of groundwater and the subsequent formation of catastrophic outflow chan-

nels (e.g., [1,2]). The source of ground ice may have been fluvial and glacial sediments 

deposited into a clastic wedge in the southern circum-Chryse region [63]. To conclude this 

scenario, more detailed geomorphic observations would be required. 

5.3. AHO-Dominant Chaos Terrains 

Our results show that AHO-dominant chaos terrains are present around highly brec-

ciated, fretted areas in Aeolis Mensae, Nepenthes Mensae, and Cydonia Mensae around 

the dichotomy boundary (Figure 7; see Figure 13 for Aeolis Mensae and Nepenthes Men-

sae; see Figure S13 for Cydonia Mensae). Previous work has proposed that the fretted 

areas would have formed in response to glacial erosion in the early Hesperian [64]. On 

Earth, many valleys in fretted terrains exhibit characteristics of glacial troughs (i.e., U-

shaped valleys), which also occur on these mensae on Mars [64]. However, previous work 

has suggested that the chaos terrains near these mensae would have formed through sur-

face collapses owing to the removal of subsurface volatiles, as there are no outflow chan-

nels associated with the chaos terrains (e.g., [16]). However, valleys are observed near the 

fretted terrains of Cydonia Mensae. Fretted terrains in Aeolis Mensae may be composed 

of friable sediments [65], which are interpreted as landforms that were attributed to ice 

and/or water activity. In addition to these previous studies, we find that the edges of chaos 

blocks in these fretted areas tend to be smooth (Figure S14), and crest-topped blocks are 

present in chaos terrains in these areas (Figure S14). These geomorphic features suggest 

that the surface/ground ice would once have been abundant in these areas and may have 

been a source of volatiles for AHO chaos terrains if AHO chaos terrains were formed by 

groundwater activities. 

In contrast to Cydonia Mensae, Aeolis Mensae, and Nepenthes Mensae, we found 

few water-related chaos block terrains associated with Deuteronilus Mensae and Protoni-

lus Mensae around the dichotomy boundary (Figure S15), except for a few images of Deu-

teronilus Mensae. Since most images from these regions are classified as non-chaos sur-

face features regardless of the classifier used, we consider that chaos-like features in these 

regions might have been formed by mechanisms other than outbursts of ground water or 

volcanic activity. 

The regions of AHO-dominant chaos terrain (i.e., Cydonia Mensae, Nepenthes Men-

sae, and Aeolis Mensae: Figure 7) seem to correlate well with the suggested regions of 

upwelling groundwater on Hesperian Mars [66]. It is suggested that the main stage of the 

hydrological cycles on Mars shifted from the near-surface to the subsurface around the 

Hesperian (e.g., [67]). Groundwater upwelling would have occurred at the dichotomy 

boundary between the southern highlands and the northern lowlands on Hesperian Mars 

[66]. Since the rise of Tharsis should have caused the uplift of the antipodal Arabia bulge 

(Figure 14), the regions between Tharsis and the Arabia bulge became topographic lows 

[68]. This includes the regions near Nepenthes Mensae, Aeolis Mensae, and Cydonia Men-

sae (Figure 14). Then, groundwater flows would have been concentrated in these topo-

graphic lows at the dichotomy boundary, resulting in a shallow groundwater table (Fig-

ure 14; [66]). 
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Figure 13. Classification results of chaos blocks (locations shown by circles) for the Aeolis Mensae 

and Nepenthes Mensae regions based on the (a) CTX, (b) THEMIS, and (c) MOLA classifiers. Re-

gions surrounded by yellow dotted lines are chaos-like features. Blue and pink areas, respectively, 

represent the Medusae Fossae Formation (MFF), with high water equivalent height (WEH) contents 

[69], and regions that are likely sources of a CH4 spike found in the Gale Crater, as suggested by the 

Global Circulation Model [70]. The black dotted circle represents the Gale Crater. 
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Figure 14. Schematic illustration of global groundwater flows on Hesperian Mars, based on An-

drews–Hanna et al. [66,71]. Groundwater is considered to have flowed from the southern highlands 

to the northern lowlands (cyan bold arrows). Groundwater would have upwelled at local steep 

slopes and impact craters at the dichotomy boundary. Owing to the rise of Tharsis and the antipodal 

topographic highs of the Arabia bulge (yellow dashed lines), groundwater flows would have been 

concentrated around the regions (Aeolis Mensae, Cydonia Mensae, and Nepenthes Mensae) be-

tween them (blue arrows). Blueish hatched areas represent regions where groundwater could have 

been concentrated. 

6. Conclusions 

Knowledge of the global distribution and activity of groundwater/ground ice is crit-

ical to understanding the evolution of hydrology, habitability, and in situ water resource 

use for future crewed missions to Mars. In the present study, we performed machine 

learning for the recognition and classification of Martian chaos terrain based on previ-

ously proposed formation mechanisms. To this end, we developed three distinct classifi-

ers (CTX, THEMIS, and MOLA) using different sources of remote-sensing data. We con-

sider that the CTX classifier is the most reliable for classifying chaos-like features. This is 

because both the CTX and THEMIS classifiers showed high accuracy rates in recognizing 

chaos, but the results of the THEMIS classifier tend to be influenced by recent surface 

coverage of dust or volcanic ash. We applied our newly developed classifiers to block 

landforms appearing in images of chaos terrains, chaos-like features, and FFCs on Mars. 

We obtained the global distribution of images of chaos blocks presumably formed by wa-

ter activity (AHO chaos blocks) and volcano–tectonic activity (AP chaos blocks) on Mars. 

Automated classification of geological features using machine learning remains chal-

lenging for remote-sensing data for planetary bodies. The major assumption in our study 

is that the origins of the chaos terrains used as training data are well-understood and re-

liable for our purpose. Therefore, the interpretations derived from our application depend 

heavily on this assumption. In addition, our three classes may be too few to explain all the 

chaos-like features on Mars. Despite these uncertainties, the results of the present study 

can be summarized as follows. 

1. Our new classifiers achieve high accuracy rates in recognizing chaos on Mars. The 

accuracies achieved are 93.5% ± 0.7%, 91.3% ± 2.6%, and 88.5% ± 2.1% for the CTX, 

THEMIS, and MOLA classifiers, respectively, with 4 Division images and a batch size 

of 64 (Table 1). 

2. The chaos terrains recognized by our classifiers are predominantly distributed in the 

circum-Chryse outflow channel region and near the dichotomy boundary (Figure 7). 

We identified two types of chaos terrain on Mars. One is hybrid chaos terrain, where 

images classified as both AHO and AP chaos blocks co-exist in one terrain. The other 

is AHO-dominant chaos terrain, where AHO chaos blocks are predominant. Hybrid 
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chaos terrains are located predominantly around the circum-Chryse outflow channel 

region, whereas AHO-dominant chaos terrains are distributed widely around the di-

chotomy boundary. 

3. We suggest that AHO chaos blocks tend to be more eroded than AP chaos blocks, 

possibly due to outbursts of groundwater flows. The detailed differences in morphol-

ogy of the blocks and troughs may be important for the final classification. 

4. Hybrid chaos terrains in the circum-Chryse outflow channels region could have been 

formed by a combination of uplift and infiltration of magma chambers and subse-

quent melting ground ice, although more detailed geomorphic observations are nec-

essary to conclude this hypothesis. 

5. The regions of AHO-dominant chaos terrains near Cydonia Mensae, Nepenthes 

Mensae, and Aeolis Mensae correlate with the suggested regions of upwelling 

groundwater on Hesperian Mars [66]. This further implies that the water source that 

formed the AHO-dominant chaos terrains at the dichotomy boundary might be rem-

nant frozen groundwater. 
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