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Yield of EEG features as markers of disease severity in Amyotrophic 

Lateral Sclerosis: a pilot study 

Objective: To clarify the role of electroencephalography (EEG) as a promising 

marker of severity in amyotrophic lateral sclerosis (ALS). 

We characterized the brain spatio-temporal patterns activity at rest by means of 

both spectral band powers and EEG microstates and correlated these features 

with clinical scores.  

Methods: Eyes closed EEG was acquired in 15 patients with ALS and spectral 

band power was calculated in frequency bands, defined on the basis of individual 

alpha frequency (IAF): delta-theta band (1-7 Hz); low alpha (IAF–2 Hz - IAF); 

high alpha (IAF - IAF+2 Hz); beta (13-25 Hz). EEG microstate metrics (duration, 

occurrence, coverage) were also evaluated. Spectral band powers and microstate 

metrics were correlated with several clinical scores of disabilities and disease 

progression. As a control group, 15 healthy volunteers were enrolled. 

Results: The beta-band power in motor/frontal regions was higher in patients 

with higher disease burden, negatively correlated with clinical severity scores and 

positively correlated with disease progression. Overall microstate duration was 

longer and microstate occurrence was lower in patients than in controls. Longer 

duration was correlated with a worse clinical status. 

Conclusions: Our results showed that beta-band power and microstate metrics 

may be good candidates of disease severity in ALS. Increased beta and longer 

microstate duration in clinically worse patients suggest a possible impairment of 

both motor and non-motor network activities to fast modify their status. This can 

be interpreted as an attempt in ALS patients to compensate the disability but 

resulting in an ineffective and probably maladaptive behaviour.     
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Introduction 

The diagnosis of Amyotrophic Lateral Sclerosis (ALS) is based on the presence 

of clinical findings in conjunction with investigations to exclude "ALS-mimic" 

syndromes. The presence of signs of combined upper and lower motor neurons (UMN 

and LMN) damage, that cannot be explained by any other disease processes, together 

with progression, is suggestive of ALS. Different diagnostic criteria (1–3) have been 

developed to aid in diagnosis and in classifying patients for research studies and drug 

trials. Markers of disease severity and progression are interesting targets, since they 

may provide objective measures to be used in clinical intervention and in randomized 

control-trial designs, and in turn, may bring to light targets for novel therapies. Clinical 

trial endpoints currently involve measures, such as survival or the revised ALS 

functional rating scale (ALSFRS-R  (4)). Such outcomes need to be monitored over 

long periods of time before a conclusion can be drawn, resulting in an expensive and 

ineffective process (5). Electrophysiological (Motor Unit Number Estimation, Motor 

Unit Number Index, neurophysiological indexes), as well as biochemical (oxidative 

stress, inflammatory indicators) and metabolic (proteomics, neurofilament proteins) 

biomarkers from serum and cerebral spinal fluid, have been proposed, but with different 

and sometimes conflicting results, requiring further investigation (5). 

Magnetic resonance imaging (MRI) does not involve ionizing radiations and is a 

non-invasive technique. There is a large body of published work in the context of ALS, 

mainly focused on the UMN, with fewer studies relating to the spinal cord, muscle and 

peripheral nerve (6–9). Moreover, by functional MRI (fMRI) several studies evidenced 

resting brain network degeneration in ALS patients, originating from the motor cortex 

and spreading to non-motor areas (10–14), and discriminating between fast and slow 

progression (15). 
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Electroencephalography (EEG) may also be a promising technique for capturing 

the brain activity at rest in ALS patients. Compared with MRI or fMRI, EEG is 

available in most neurology centres, has a good time resolution, is easily applicable, has 

no contraindications and is inexpensive. Moreover, EEG features and changes can be 

independent of selective UMN and LMN involvement. Until now, only few EEG 

studies investigated resting functional changes in ALS patients and their possible 

correlation with clinical measures. An increased connectivity was found in ALS patients 

with respect to healthy controls, in broad frequency band in the frontal and parietal 

regions (16,17), but these changes were not related to the clinical status. However, a 

tendency to deviate towards a more decentralized organization, correlating with 

disability, was found in the topology of resting-state functional networks in beta band 

(18). Moreover, an increase of functional connectivity in theta band between bilateral 

motor areas was associated with disease progression (19). Finally, a widespread 

decrease of low frequency band power, as well as a decrease in beta band in 

sensorimotor regions, was found in ALS patients with respect to controls (20). 

Furthermore, in both motor and non-motor brain networks, changes in functional 

connectivity, correlating with structural damage and clinical scores, were described 

(20). 

In ALS patients, non-motor areas involvement has been hypothesized (21), but 

their dynamics of interactions is not even clear. Nevertheless, the use of spectral EEG 

band powers to investigate the dynamics of brain spontaneous resting-state activity is a 

non-trivial task, as the signal of interest is of low amplitude and it may be difficult to 

characterize the underlying neural sources (22). To address this challenge, several 

previous studies investigated these dynamics by the sequence of EEG topographies, 

namely “microstates”. By microstate analysis, the whole brain activity is modelled by a 
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sequence of few scalp topographies, each associated with a functional brain state during 

the occurrence of specific neural processes  (23). Microstate analysis, compared to the 

classical EEG resting-state analysis, does not blur by averaging the activities of 

different brain networks, preserving their dynamics. Different studies of EEG at rest 

converged in finding four topographical map templates. The temporal features of these 

maps have been found to be modulated by awareness or behavioural/cognitive control 

(24–28) and altered in brain diseases (29–31).   

Considering few previous studies, with inconclusive results regarding the 

relation between EEG changes and clinical severity, we aimed to clarify the role of 

quantitative resting EEG. We investigated a possible link between spectral EEG band 

powers and several clinical scores of disability, as well as disease progression. Such 

characteristics may represent a promising electrophysiological marker of disease 

severity in ALS. Morevover, to our knowledge no microstate studies have been 

performed to assess changes of brain spatio-temporal patterns activity at rest, in ALS 

patients. If the microstate sequences describe the fluctuations across main states of brain 

networks (32), we can expect some changes of microstate typical in ALS patients. Such 

features may represent an attractive electrophysiological marker of involvement and 

progression of non-motor areas in ALS. 

 

Materials and Methods 

Patients and clinical evaluation 

Fifteen patients with ALS (see Table 1 for inclusion and exclusion criteria) and 15 age- 

and gender-balanced healthy controls were enrolled in the study. All but two patients 

were taking Riluzole at the time of the study. The two patients not taking Riluzole had 
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stopped the drug due to side effects. 

INSERT TABLE 1 HERE 

The experiment was conducted with the understanding and written informed consent of 

each participant, according to the Code of Ethics of the World Medical Association. 

Participants acknowledged that they cannot be identified via the study and that their 

data were fully anonymized. The experimental protocol was approved by the Ethics 

Committee for the Districts of L'Aquila and Teramo. 

Each patient underwent clinical evaluation at 2 times: after recruitment (T0) and 

at 3 months (T1). Clinical evaluation is summarized in Table 2. 

INSERT TABLE 2 HERE 

EEG recording and data analysis 

At time T1, five minutes of EEG activity at rest with eyes closed was recorded by a 128 

channels EEG system (Electrical Geodesic Inc, EEG System Net 300), while subject 

was sitting or lying. Skin/electrode impedance was measured before EEG recording and 

kept below 50 kΩ. EEG data were sampled at 250 Hz and processed off-line. 

Data were visually checked and bad epochs were excluded by the analysis. Bad 

channels were replaced by spline interpolation of neighbouring channels  (33). A 

semiautomatic Independent Component Analysis-based procedure (34,35) was applied 

to identify and remove cardiac and/or ocular artifacts. Scalp EEG recordings were 

filtered between 1 and 30 Hz (Butterworth filter of 2nd order, forward and back 

filtering) and referenced to the common average. 

The Power Spectral Density (PSD) was estimated for each EEG channel via the 

Welch procedure (frequency resolution of 0.25 Hz, Hanning windowing, 60% overlap). 

For each EEG electrode band power values were obtained as the mean of PSD in each 
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frequency band. The investigated frequency bands were individually defined on the 

basis of Individual Alpha Frequency (IAF, (36)): slow frequency band from 1 Hz to 7 

Hz (delta-theta), from IAF – 2 Hz to IAF (low alpha), from IAF to IAF + 2 Hz (high 

alpha), from 13 Hz to 25 Hz (beta). Band power values were log-transformed. 

For microstate analysis, the procedure detailed in Murray et al. (37) was 

followed. Briefly, the optimal number of templates was chosen for each subject by 

means of the  Krzanowski-Lai criterion (23)  and a two-step clustering procedure was 

applied to obtain microstate templates separately for the group of patients and healthy 

controls (38). Differences between the templates of the two groups were assessed by 

means of Topographical Analysis of Variance (TANOVA). Since no differences were 

found between the 2 groups, one set of “global” maps, representing the data of all 

subjects, was obtained by clustering the individual maps considering both patients and 

healthy controls. These global templates were fitted backward to the original data on the 

basis of the maximum spatial correlation between each template and the EEG 

topography at each time instant. Then, for each subject and for each microstate 

template, the following metrics were calculated (39): mean microstate duration (in 

milliseconds), mean occurrence per second and mean percentage of covered analysis 

time. Overall metrics (duration and occurrence) were also calculated as the average of 

the metrics of all microstate templates. 

Statistical Analysis 

The Wilcoxon signed-rank test was used to compare clinical scores in patients at T0 and 

T1.  

Band power statistical analysis  
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Difference between patients and healthy controls of spectral band power was 

assessed by a nonparametric cluster-based permutation procedure (12000 permutations), 

applied by means of the FieldTrip toolbox (40,41).  Spearman’s correlations were 

performed between each EEG frequency band power of each electrode and ALSFRS-R 

score. To take into account multiple comparisons across electrodes, the nonparametric 

cluster-based permutation procedure was also applied to correlation coefficients 

separately for each band (40, 41). IAF between patients and healthy controls was 

compared by means of the Mann-Whitney U test 

A further Spearman’s correlation was performed between the mean values of the 

band power of the significant clusters and Disease progression scores and the global 

average MRC scores, obtained as average of MRC across upper and lower limbs. 

Finally, to evidence differences in band power associated with clinical signs of disease 

progression, patients were split in 2 groups according to the King’s score values (<4, 7 

patients, =4, 8 patients) and band powers were compared between the 2 groups by 

means of a Mann-Whitney U test. The same comparisons were done classifying the 

patients in 2 groups according to MiToS scores (=1, 7 patients, >=2, 8 patients). 

Moreover, to evidence differences due to UMN involvement, patients were split in 2 

groups (prevalent damage of UMN or LMN, Table 1), not differing for age or clinical 

scores. Band powers were compared between the 2 groups by means of a Mann-

Whitney U test. 

 

Microstate statistical analysis 

The differences of microstate metrics  between patients and healthy controls were 

evaluated by means of the Mann-Whitney U test, both considering the overall metrics 
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and separately for each microstate. False Discovery Rate (FDR) correction (Benjamini–

Hochberg procedure) was applied including all microstate metrics within the same 

family. Microstate metrics were also compared between the 2 patient groups with 

different King or MiToS scores or prevalent UMN or LMN damage. The Spearman’s 

correlation across patients between overall microstate metrics and clinical scores 

(ALSFR-S, Disease progression and the global average MRC scores) were calculated 

and FDR was applied for multiple comparison correction. A percentile-based bootstrap, 

with 5000 replicate samples, was applied to assess the 95% confidence interval of 

Spearman’s rho-values.  

Spearman’s correlation was also calculated between beta power and microstate metrics. 

Results 

Clinical picture 

Patients showed clinical worsening at T1 with respect to T0, as indicated by lower 

scores of ALSFRS-R and MRC at T1 for each limb (Table 3). The patients did not 

present evident cognitive involvement (mean MOCA score 26). 

INSERT TABLE 3 HERE 

Band power 

Neither spectral power nor IAF showed difference between ALS patients and controls. 

A cluster of channels covering the centro-frontal regions was found with a significant 

negative correlation between ALSFRS-R scores and beta band (p=0.018, Fig.1a and 

Fig.1b). This correlation indicates that the patients with the higher beta power are those 

with worse clinical status. 

INSERT FIGURE 1 HERE 
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The beta band power of the cluster negatively correlated with the global MRC 

score values (rho=-0.606, p=0.017, Confidence limit: [-0.84,-0.15], Fig.1c), and 

positively correlated with  Disease Progression scores (rho=0.582, p=0.029, 

Confidence limit: [0.02,0.95], Fig.1d). The latter correlation evidenced that patients 

with higher beta power were those with higher clinical worsening at T1 with respect to 

T0. Finally, the beta power was higher in the group with higher disease burden (King’s 

score = 4) with respect to the group with lower disease burden (King’s score < 4): 

median [minimum-maximum]: 3.33 [2.19-3.60] vs 2.31 [1.21-3.12], respectively; Z=-

2.55, p=0.009. The same result was found classifying the patients according to MiToS 

scores. The comparison of beta power between the group with higher disease burden 

and healthy controls did not reach the significance (p=0.145), although the median 

value of the patients was higher than the value of healthy controls (2.63 [1.25-3.28]). 

The comparison between the least severe patients and healthy controls did not show 

differences or trends (p>0.200). No difference in band powers were found between 

patients with damage of prevalent LMN or UMN involvement. 

Microstates 

The optimal number of microstate templates was found to be equal to 4 for both 

patients (Fig.2a) and healthy controls (Fig.2b). The mean EEG variance across subjects 

explained by microstates was 83.6±2.3 % for patients and 84.8±4.4 % for healthy 

controls. TANOVA did not show difference between microstate topographies of 

patients and healthy controls. For this reason, microstate metrics were evaluated on 

global maps (Fig.2c). 

INSERT FIGURE 2 HERE 
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Microstate duration was longer in patients than in controls (Table 4). When looking at 

the single microstates, we found a difference between patients and healthy controls for 

microstate A and B duration (Table 4). Microstate occurrences of microstates A, C and 

D were lower in patients than in controls (Table 4). No difference between patients and 

healthy controls was found for microstate coverage. 

When looking at the correlation between overall microstate features and clinical scores, 

we found only a negative correlation between microstate duration and ALSFRS-R 

scores (Spearman’s rho=-0.662, p=0.008, Confidence limit: [-0.82,-0.16]), indicating 

that an increase of duration was paired to a worse clinical status.  

 

INSERT TABLE 4 HERE 

 

No difference in microstate metrics were found between patients with predominant 

LMN and UMN damage. Moreover, no relationship between microstate metrics and 

King’s or MiToS’s scores were found. 

Correlation between microstates and beta power 

No correlations between beta power and microstate features (duration, occurrence) were 

found. 

 

Discussion 

The goal of this study was to investigate the potential role of EEG features in 

defining a marker of disability in patients with ALS. Compared to other imaging 

techniques, the EEG has the advantage of being a direct measure of the neuronal 

activity, and as such it is an expression of functionality rather than of structure (42). We 
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showed a correlation between beta-band in motor/frontal regions and clinical severity, 

as captured by ALSFRS-R and MRC, as well as with Disease Progression. Differently 

from our results, previous EEG studies (19,20) did not find a direct correlation between 

EEG band powers and clinical status. This result can be explained by the clinical 

severity of the patient cohorts. Indeed, since we aimed at selecting a marker of 

disability, in this preliminary study we included a group of patients with more severe 

clinical conditions and longer disease duration than those examined in the previous 

EEG studies. The mean score (± standard deviation) of the ALSFRS-R scores in our 

patients was 28.5±9.2, while in (19) it was 36.0±7.8 and in (20) was 37.5±6.5.  

Although not reaching significant difference, the median of beta power was lower in 

healthy controls than in ALS patients with higher disease burden (King score values 

equal to 4). Future studies with adequate sample size are needed to assess whether beta 

power is higher in patients with higher disease burden. 

Beta band activity in the motor areas has been traditionally associated to the 

steady-state of motor system in the healthy adult (43). The beta band activity has been 

hypothesized to represent the signature of an active process, which is needed to 

maintain the actual motor or cognitive state by impeding the elaboration of new 

movements or cognitive processes (44). In this framework, beta band activity can be 

considered as a sort of ‘inertia’ of the system, which cancels the effects of potentially 

new or unexpected external events (44–48). In this context, we can interpret our result 

on the correlation of the beta power with the severity in ALS patients as a sort of up 

regulation of steady state motor system. In patients with greater disability, in which the 

power in the beta band is greater, we can hypothesize an inability of the motor system to 

fast changes. This aspect, found for the beta band in motor regions, can be extended to 

non-motor areas, looking at the microstate features. 
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A major advantage of microstate analysis, with respect to power or connectivity 

analysis, is that they estimate the global dynamics of widespread networks, with an 

informative framework on neural activity dynamics without any type of a priori 

hypothesis (e.g. electrode location or specific frequencies). Moreover, previous studies 

demonstrated that microstates can be estimated even with a low number of EEG 

channels, highlighting the potentiality of this kind of analysis in a clinical context. We 

found that microstate duration was longer in patients than in controls. Furthermore, the 

overall longer duration of the microstates is correlated with a worse clinical status. The 

mean duration of microstates has traditionally been interpreted to reflect the stability of 

brain dynamics (22). Thus, a higher microstate duration can be thought as a greater 

reluctance of the system to change state. Interestingly, the duration of the microstates 

correlates with the ALSFRS-R, but not with the MRC scores. It should be noted that the 

ALSFRS-R is a global functional index of disability, while the MRC is an index of 

muscle weakness and so of exclusively motor involvement. In accordance with previous 

findings (27,28,49), microstates have been associated with cognitive networks only. The 

possible impairment of both motor and non-motor network activities to fast modify their 

status can be interpreted as an attempt in ALS patients to compensate the disability but 

resulting in an ineffective and probably maladaptive behaviour. Finally, although future 

studies are needed to address this point, we can speculate on the role of the EEG as a 

possible marker of early cognitive-behavioral dysfunction in ALS patients who do not 

yet have cognitive alterations found on neuropsychological routine tests.  

No correlation between the microstates and the beta band was found, 

highlighting that both are independently associated with greater disability and could 

explain different aspects of disease severity. 



14 
 

In conclusion, our results showed that beta-band power and microstate metrics 

may be good candidates of disease severity and involvement in both motor and non 

motor regions, in ALS. Given the small number of patients enrolled, our preliminary 

results must be replicated and validated on a larger cohort of ALS patients. Moreover, 

in patients we studied, beta band increase correlated also with faster disease 

progression. Nevertheless, this result should be confirmed in follow-up studies, 

considering clinical scores and EEG features at different times. 
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Table 1. Patient and healthy control characteristic. 

 

 ALS patients (n = 15)  Healthy controls (n = 15) 

 
Mean Age  
(standard deviation) 

 
67.9 ± 10.9 years 

  
68.4 ± 8.0 years 

 
Gender 

 
12 M, 3 F 

  
11 M, 4 F 

 
Mean time delay 
(standard deviation) 
between diagnosis and 
EEG recording 

 
 

24.3 ± 17.9 months 
 

  

 
 
Inclusion criteria 

 
 
- ALS, probable ALS or ALS probable with 

support of laboratory data according to the 
revised El Escorial criteria 

   

 
Exclusion criteria 

 
- co-presence of other central nervous system 

diseases 
- previous polio infection 
- motor neuron diseases other than ALS 

(progressive bulbar paralysis, progressive 
muscle atrophy, primary lateral sclerosis) 

- clinical involvement of other neurological 
systems (sensory, extrapyramidal, oculomotor, 
cerebellar, vegetative) 

- other causes of significant focal or diffuse 
brain damage to conventional MRI 

- serious pathologies affecting any organ or 
system 

   

 
Median symptom 
duration at recruitment 
[min-max] 
 

27 months 
[12 – 64] 

   

Patients needed non-
invasive assisted 
ventilation 
 

8 
Period: 13months 
(1 – 36 months) 

   

Patients with prevalent 
damage of LMN or 
UMN 
 

9 LMN, 6 UMN 
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Table 2. Tests for clinical and neuropsychological evaluation  

 

Clinical/Neuropsycological Scale 
 

Description 
 

ALS Functional Rating 
Scale-Revised (4) 

 
ALSFRS-R 

 

 
Evaluation of disease. The scale has a range from 0 to 48 points 
(12 x 0-4, where 0 indicates a total loss of function). 

 

Manual muscle testing score MRC score 

 
Definition of the entity and the diffusion of the muscle deficit. 
Acquired for each upper (deltoid, biceps, common extensor of the 
fingers, interosseous muscles of the fingers) and lower limb 
(iliopsoas, quadriceps femoris, tibialis anterior, gastrocnemius). 
The scale has a range from 0 (total loss of function) to 5 points. 

 

Forced Vital Capacity FVC 
 

Spirometry 
 

 
ALS Assessment 

Questionnaire (33) 
(in the validated Italian 

version) 
 

ALSAQ-5 Assessment of subjective well-being of patients 

King’s score (34) King 

 
Clinical staging of disease progression. Five stages (from 1 to 5) 
are defined, based on disease burden as measured by clinical 
involvement and significant feeding or respiratory failure: stage 1 
corresponds to symptom onset and stage 5 to death. 
 

MiToS score (34) MiToS 

 
While the King’s clinical staging system is able to differentiate 
early to mid-disease well, the MiToS staging is able to differentiate 
late stages in detail. However, King’s staging is mostly focused on 
anatomical disease spread and significant involvement of 
respiratory muscles, whereas MiToS staging is aimed more towards 
the distinction of functional capabilities during the spread of the 
disease. 

 

Disease progression Diseasae 
Progression 

 
(ALSFRS ̵R at T0) − (ALSFRS ̵R at T1)

ALSFRS ̵R at T0
 

 
Since a decrement of score at T1 indicates a clinical and functional 
worsening, a positive value of Disease Progression score indicates 
a percentage of clinical worsening at T1 with respect to T0. 

 

Montreal Cognitive 
Assessment test (35) MoCA 

 
Neuropsychological evaluation, including a series of tests of 
visual-spatial/executive functions, naming, attention (selective and 
sustained attention, serial calculation), language (repetition and 
fluency), abstraction, deferred recall, orientation, for a total score 
of 30. 
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Table 3. Clinical scores (median, [minimum-maximum]) and Z-values [p-values] of 

Wilcoxon signed-rank test between T0 and T1 values. 

 

 T0 T1 Z value [p] 

ALSFRS-R 
 

31.0 
[24.8 – 34.0] 

 

 
27.5 

[22.8 – 32.0] 
 

 
-2.68 

[0.007] 

MRC right upper limb 4.10 
[2.08 – 4.80] 

 

4.00 
[1.68 – 4.70] 

 

-2.83 
[0.005] 

MRC left upper limb 4.00 
[2.30 – 4.93] 

 

3.60 
[1.68 – 4.20] 

 

-3.07 
[0.002] 

MRC right lower limb 4.40 
[3.60 – 5.00] 

 

4.40 
[2.30 – 4.85] 

 

-2.21 
[0.027] 

MRC left lower limb 4.45 
[3.75 – 5.00] 

 

4.45 
[2.23 – 4.85] 

 

-2.03 
[0.042] 

 

ALSAQ-5 
 

14.0 
[10.5-18.5] 

 

15.0 
[12.5 – 19.5] 

 

-2.41 
[0.016] 

Disease Progression 7 % 
[0 % – 25 %] 

 

 

MiToS score 
 

2 
[1 – 4] 

 

 

King’s score 
 

[2 – 4] 
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Table 4. Differences of microstate metrics between patients and healthy controls. 

 

  Overall A B C D 
 
 

DURATION 
[ms] 

ALS 82 
[72-114] 

 

85 
[68-116] 

 

84 
[65-124] 

 

87 
[70-126] 

 

70 
[61-97] 

 
HC 67 

[53-107] 
 

63 
[55-99] 

 

61 
[50-89] 

 

62 
[56-178] 

 

64 
[45-100] 

 
Z-value -2.32 -2.59 -3.13 -2.01 -1.51 
p-value 0.019* 0.008* 0.001* 0.045 0.137 

 
 

OCCURRENCE 
[micr/s] 

ALS 6.7 
[4.5-8.8] 

 

6.5 
[4.9-8.8] 

 

6.6 
[4.1-8.8] 

7.5 
[4.1-8.5] 

4.8 
[2.4-7.4] 

HC 9.7 
[4.7-21.4] 

 

9.3 
[4.0-25.9] 

 

8.6 
[3.4-19.3] 

10.0 
[4.4-25.8] 

10.5 
[3.4-19.2] 

Z-value -2.17 -2.30 -1.31 -2.39 -3.01 
p-value 0.029 0.021* 0.200 0.016* 0.003* 

 
 

COVERAGE 
[%] 

ALS - 25 
[11-27] 

 

21 
[9-29] 

31 
[12-54] 

22 
[10-44] 

HC - 27 
[15-41] 

 

25 
[18-37] 

31 
[17-37] 

18 
[10-25] 

Z-value - -0.22 -2.26 -0.23 -1.35 
p-value  >0.2 0.024 >0.2 0.187 
 

Median and 5-95 percentile of microstate metrics of patients (ALS) and healthy controls 
(HC) are displayed. The Z-value and uncorrected p-value of the Mann-Whitney U test 
are also shown. Asterisks indicate significant test after FDR correction. 
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Figure 1. a) Topography of Spearman’s rho values of the correlations between beta 

band power values and ALSFRS-R score values. Stars indicate significant clusters in 

the non-parametric permutation test. b) The cluster mean values of beta power over 

ALSFRS-R scores are shown. The regression line with R-value is also displayed. c) 

Beta power over global MRC scores. d) Beta power over global Disease Progression 

scores. 
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Figure 2. Topographic maps of the mean microstate templates as result of the clustering 

procedure applied to ALS patient group (a), healthy control group (b), the whole group 

of patients and controls (c). Red-blue colours indicate normalized positive-negative 

values. The microstate templates showed topographies similar to those obtained in 

previous studies: microstate A shows a left posterior to right frontal orientation; 

microstate B shows a right posterior to left frontal orientation; microstate C shows a 

symmetrical distribution between the two hemispheres, with an occipital to prefrontal 

orientation; microstate D shows a central activity. 
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