
Abstract. Background/Aim: T2 weighted magnetic
resonance (MR) imaging is the gold standard for locally
advanced rectal cancer (LARC) staging. The potential
benefit of functional imaging, as diffusion-weighted MR
(DWI) and positron emission tomography-computed
tomography (PET-CT), could be considered for treatment
intensification strategies. Dose intensification resulted in
better pathological complete response (pCR) rates. This
study evaluated the inter-observer agreement between two
radiation oncologists, and the difference in gross tumor
volume (GTV) delineation in simulation-CT, T2-MR, DWI-
MR, and PET-CT in patients with LARC. Patients and
Methods: Two radiation oncologists prospectively delineated
GTVs of 24 patients on simul-CT (CTGTV), T2-weighted MR
(T2GTV), echo planar b1000 DWI (DWIGTV) and PET-CT
(PETGTV). Observers’ agreement was assessed using Dice

index. Kruskal-Wallis test assessed differences between
methods. Results: Mean CTGTV, T2GTV, DWIGTV, and
PETGTV were 41.3±26.9 cc, 25.9±15.2 cc, 21±14.8 cc, and
37.7±27.7 cc for the first observer, and 42.2±27.9 cc,
27.6±16.9 cc, 19.9±14.9cc, and 34.8±24.3 cc for the second
observer, respectively. Mean Dice index was 0.85 for CTGTV,
0.84 for T2GTV, 0.82 for DWIGTV, and 0.89 for PETGTV,
representative of almost perfect agreement. Kruskal-Wallis
test showed a statistically significant difference between
methods (p=0.009). Dunn test showed there were differences
between DWIGTV vs. PETGTV (p=0.040) and DWIGTV vs.
CTGTV (p=0.008). Conclusion: DWI resulted in smaller
volume delineation compared to CT, T2-MR, and PET-CT
functional images. Almost perfect agreements were reported
for each imaging modality between two observers. DWI-MR
seems to remain the optimal strategy for boost volume
delineation for dose escalation in patients with LARC.

Standard treatment for locally advanced rectal cancer
(LARC) is represented by neoadjuvant chemoradiotherapy
(CRT) followed by organ preservation surgery. It is well
known that clinical outcomes depend on the results of these
treatments, in particular related to pathological complete
response (pCR).

Response to neoadjuvant CRT is dose-dependent with
pCR rates reaching 20.4% using treatment intensification,
when dose escalation above 60 Gy are delivered (1).
Furthermore, both better dose distribution to the target as
well as sparing the adjacent small bowel and other organs at
risk (OARs) can be obtained with modern radiotherapy
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techniques, such as intensity-modulated radiotherapy (IMRT)
(1-3) and volumetric arc therapy (VMAT) with simultaneous
integrated boost (SIB) strategies. In this scenario, an accurate
definition of the target is required.
Despite its poor soft-tissue contrast, computed tomography
(CT) remains necessary for treatment planning. Instead,
magnetic resonance (MR) imaging, with its better resolution
compared to CT, is considered the gold standard for rectal
tumor staging and assessment after neoadjuvant CRT (4, 5).

Diffusion-weighted MR (DWI-MR) can detect areas with
high cellularity, and rectal tumors are densely cellular
compared to normal tissues, showing restricted diffusion (6,
7). This characteristic allows to predict tumor response
during and after CRT (8, 9).

Besides, positron emission tomography-computed
tomography (PET-CT) with 18Fluoro-deoxyglucose (18F-
FDG PET-CT) can identify both primary rectal lesion and
metastatic disease, providing metabolic information (10).
Standardized uptake value maximum changes between pre-
and post-treatment PET-CT can give information
regarding/predicting tumor response (10, 11). 

MR and 18F-FDG PET-CT have been studied for their
potentiality of defining a biological target volume based on
metabolic information (12-16), suggesting a potential benefit
of these images when a radiation boost dose is planned.

In these regards, we previously reported our results of 322
LARC patients treated in our Radiotherapy Department.
Dose escalation up to 55 Gy associated with
fluoropyrimidine chemotherapy obtained a significantly
higher tumor regression grade (TRG)1-2 rate of 59.4%
(p=0.046) compared to standard doses of 50 Gy with
fluoropyrimidine (TRG1-2: 42.2%). Furthermore, tumor
response as TRG1-2 was associated with statistically higher
rates of 5- and 10-year overall survival (OS) (p=0.001) and
disease-free survival (DFS) (p=0.014) (17).

With the aim of evaluating a biological target volume for
treatment intensification, we analyzed the difference in
volumes of gross tumor volume (GTV) delineation in simul-
CT, T2-MRI, DWI-MR, and 18F-FDG PET-CT of patients
with LARC and calculated the inter-observer agreement
between two radiation oncologists.

Patients and Methods
Study population. Twenty-four consecutive patients with LARC
were enrolled in this prospective study. All patients performed
colonoscopy and had a biopsy-proven non-mucinous rectal
adenocarcinoma, clinically staged as cT2-4, N0-2, M0 by a
diagnostic CT scan, 3T rectal MR, and 18F-FDG PET-CT before
starting treatment. All patients were treated with long-course CRT
(Capecitabine-based chemotherapy and radiotherapy with total dose
of 5500 cGy, 220 cGy/die with SIB-IMRT or SIB-VMAT
techniques). A CT scan simulation was performed for treatment
planning procedure. Patient characteristics are reported in Table I.

MR technique. The MR studies were performed on a 3T scanner
(Achieva, Philips Healthcare). For all patients, T2-weighted fast
spin-echo sequences were obtained in three orientations, sagittal,
coronal, and axial, perpendicular to the long axis of the tumor. DWI
echo planar images were acquired in the transverse plane. 

18F-FDG PET-CT technique. 18F-FDG PET-CT images were
acquired according to standard procedures (18), 60 minutes after
18F-FDG injection (5MBq/kg of body weight), using a GE
Discovery STE. Images were acquired from the base of the skull
to the proximal femur (3 min for bed position) and then
reconstructed using ordered subset expectation maximization
(OSEM)-based algorithms. The CT scanner was used both for
attenuation correction and anatomic localization of 18F-FDG
uptake. Fused 18F-FDG PET-CT images were displayed in coronal,
transverse, and sagittal planes.

Target volume delineation. Two radiation oncologists, both with
specific experience in rectal cancer diagnosis and treatment,
delineated GTV on simul-CT (CTGTV), T2 axial (T2GTV), echo
planar b1000 DWI (DWIGTV) axial sequences, and 18F-FDG PET-
CT (PETGTV) on RayStation platform (RaySearch Laboratories,
Stockholm, Sweden). They delineated the entire volume blinded and
independently from each other. They had the possibility to adjust
window- and level-settings for MR and 18F-FDG PET-CT. 

The tumor appeared as a hyper-intense signal on DWI
corresponding to the mass-like signal alteration on T2-weighted
MR. Regarding 18F-FDG PET-CT images, the tumor volume was
manually contoured using a visual interpretation technique in
collaboration with an experienced nuclear medicine physician. Any
area of abnormal FDG uptake, not explained by normal anatomic
structures was considered to be tumor tissue. Both MR and 18F-
FDG PET-CT were not co-registered with the CT scan simulation.

Statistical analysis. Descriptive statistics were expressed as the
mean and standard deviation (SD) for normally distributed variables
and as median and quartiles (q1=first quartile; q3=third quartile) for
not normally distributed; categorical variables were expressed as
frequencies and percentages (%). Dice similarity index (DICE) was
computed to assess the measures agreement between reader and
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Table I. Patient characteristics.

                                                                                              N=24 (100%)

Age (yr), mean±SD                                                                  69.3±11.1
Male/Female                                                                                 20/4
Distance from the internal anal verge (mm), mean±SD        26.3±20.5
Tumor length (mm), mean±SD                                               53.8±15.1
T stage, n (%)                                                                                   
   T2                                                                                             1 (4.2)
   T3                                                                                           23 (95.8)
N stage, n (%)                                                                                  
   N0                                                                                            2 (8.4)
   N1                                                                                          10 (41.6)
   N2                                                                                          12 (50.0)
M stage, n (%)                                                                                  
   M0                                                                                         24 (100.0)



method (19). The DICE was used as a statistical validation metric
to evaluate the spatial overlap accuracy of the different volume’s
delineations. Given two observers to contour volumes A and B,
DICE is defined as: DICE=2×(A∩B)/(A+B). The value of a DICE
is a scalar coefficient and ranges from 0, indicating no spatial
overlap, to 1, indicating complete overlap. From 0 to 1 with steps
of 0.2, slight, fair, moderate, substantial, and almost perfect
agreement are indicated.

The agreement between readers for the volume measurement was
assessed by Lin’s concordance correlation coefficient (CCC). The
CCC evaluates the degree to which pairs of observations fall on the
45˚ line through the origin. It contains a measurement of precision
ρ (the Pearson correlation coefficient, which measures how far each
observation deviates from the best-fit line) and accuracy Cb (a bias
correction factor that measures how far the best-fit line deviates
from the 45˚ line through the origin): ρc=ρCb; in addition, CCC
suggests a poor strength of agreement for values below 0.90,

moderate from 0.90 to 0.95, substantial from 0.95 to 0.99 and
perfect >0.99. The level for significance was set at p<0.05. 

Bland Altman analysis (mean difference, 95% limits of
agreement) was used to assess reliability between methods
evaluating the 95% limits of agreement (20). Indeed, the Kruskal-
Wallis test was used to assess the difference between methods and
the Dunn test with Bonferroni correction was used for multiple
comparisons. All tests were performed using the NCSS statistical
software. Before carrying out the non-parametric analysis, normality
was tested by De Agostino.

Results

Twenty-four LARC patients (20 males and 4 females), with
a mean age of 69 years (range=40-88 years), were included
in this study and prospectively analyzed. Each observer
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Table II. Mean and standard deviation (SD) for gross tumor volume (GTV) for simul-CT (CTGTV), T2-weighted MRI (T2GTV), echo planar b1000
DWI (DWIGTV), and PET-CT (PETGTV) by each observer. DICE index for CTGTV, T2GTV, DWIGTV, and PETGTV obtained by each radiation
oncologist, with its range.

                                             CTGTV (cm3)                                   T2GTV (cm3)                                 DWIGTV (cm3)                                PETGTV (cm3)

First observer                          41.3±26.9                                        25.9±15.2                                          21±14.8                                          37.7±27.7
Second observer                      42.2±27.9                                        27.6±16.9                                        19.9±14.9                                         34.8±24.3
DICE                                       0.85±0.08                                        0.84±0.08                                        0.82±0.09                                         0.89±0.12
                                               (0.72-0.95)                                      (0.63-0.96)                                      (0.50-0.93)                                       (0.36-0.97)

CT: Computed tomography; DWI: diffusion-weighted images; PET: positron emission tomography.

Figure 1. Graphic representation on simulation-computed tomography (CT) (Panel A), positron emission tomography-computed tomography (PET-
CT) (Panel B), magnetic resonance-T2 (MR-T2) (Panel C), and diffusion-weighted magnetic resonance (DWI-MR) (Panel D) for both observers.



analyzed 24 simul-CT, T2-weighted, b1000 DWI-MR, and
24 18F-FDG PET-CT. An example of a CTGTV, T2GTV,
DWIGTV, and PETGTV delineation performed by both
observers is shown in Figure 1.

As reported in Table II, mean CTGTV, T2GTV, DWIGTV,
and PETGTV were 41.3±26.9 cc (5.6-102.1), 25.9±15.2 cc
(3.1-53.1), 21±14.8 cc (2.4-52.6), and 37.7±27.7 cc (2.4-
104.5) for the first observer, and 42.2±27.9 cc (7-117.7),

27.6±16.9 cc (3.4-65.4), 19.9±14.9 cc (2.4-48.1), and
34.8±24.3 cc (2.9-102.2) for the second observer, respectively.
Mean Dice index was 0.85 for CTGTV, 0.84 for T2GTV, 0.82
for DWIGTV, and 0.89 for PETGTV, representative of an
almost perfect agreement (Table II). These values show the
feasibility of using all the modalities for both observers, with
a near complete overlap in CTGTV, T2GTV, DWIGTV, and
PETGTV delineation for the radiation oncologist.
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Figure 2. Lin’s concordance correlation coefficient (CCC) evaluated for each method between observers.



The inter-rater repeatability of the measurements
evaluated by the calculation of CCC showed a high strength
of agreement for all considered variables (Figure 2). In
particular, the CCC resulted in 0.968 (0.928-0.986) for
CTGTV, 0.962 (0.921-0.982) for T2GTV, 0.968 (0.928-0.986)
for DWIGTV, and 0.887 (0.766-0.947) for PETGTV. Because
of the high concordance between observers, we have
evaluated the agreement between methods considering the
mean of the measurement between the observers for each
method. 

The Bland Altman plots (Figure 3) showed some outliers
out of the limits of agreements, but globally the methods for
the two observers were in accordance. The bias (difference)
was 14.99±16.69 CTGTV vs. T2GTV, 6.33±6.90 for T2GTVvs.
DWIGTV, and 15.79±17.55 for DWIGTV vs. PETGTV. 

Indeed, the Kruskal-Wallis test showed a significant
difference between methods (p=0.009). Dunn test showed
that there were differences between DWIGTV vs. PETGTV
(p=0.040) and DWIGTV vs. CTGTV (p=0.008) (Table III).

Discussion

In patients with LARC, the potentiality of increasing doses
(more than 60 Gy) of neoadjuvant CRT, without compromising
toxicities, is an interesting approach, allowing a pCR increase
up to 20.4% (1, 2). Standard doses of 50 Gy compared to dose
intensification up to 55 Gy, both associated with
fluoropyrimidine-based chemotherapy, can achieve a higher rate
of pCR (TRG1-2 of 42.2% versus 59.4%, respectively) (17).

This approach could be useful in high-risk patients, with
non-resectable T4 tumor, tumor close to the mesorectal
fascia or extra-mesorectal lymph nodes involvement.
Furthermore, patients reporting ‘good’ clinical responses
on imaging restaging during and after neoadjuvant CRT (8,
9, 21, 22) can potentially increase, taking advantage from
a boost dose-escalation with SIB procedures (23, 24).

The use of SIB-IMRT with its high dose rate offers the
possibility to obtain high pCR, allowing also an OARs
sparing. Furthermore, considering the rectum and mesorectum
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Figure 3. Bland-Altman concordance plot between observer mean and methods difference. The lower and upper 95% limits of agreements are
represented as blue lines; the mean difference is represented as red line. 



as moving structures, as well as bladder filling variations, a
quantification of organ motion remains mandatory in case of
SIB-IMRT (25).

In this perspective of modern and precise radiotherapy
techniques, with increasingly predictive biomarker research
to facilitate a personalized treatment as well as a wait and
see strategy (26), good knowledge of target volume
definition and an accurate target delineation are required. 

Nowadays, CT remains the standard imaging modality for
target volume delineation and for conformal RT treatment
planning. MR imaging, instead, is superior in terms of rectal
tumor definition, defining the depth of tumor invasion
through the rectal wall into local structures and tumor
extension into the presacral space, and mesorectal fascia
involvement assessment, thanks to its high soft-tissue
contrast (27). Therefore, it is now considered the gold
standard for local staging and restaging of rectal tumors (28). 

Furthermore, new techniques offer the possibility to
evaluate a “biological target volume”, using the biological
information related both to the better image contrast based
on water mobility differences (DWI-MR) or to the better
definition of the tumor in respect to near organs (18F-FDG
PET-CT) (15).

In addition to MR imaging, there is also the potential of
18F-FDG PET-CT in detecting the primary lesion with its
metabolic activity, estimating tumor size, determining T and
N stages as well as synchronous metastases (10), and
predicting treatment response (8-10) in patients with LARC. 

DWI-MR has yet been studied and established as a valid
method to be used by non-expert readers, therefore radiation
oncologists with rectal cancer treatment expertise can use

DWI-MR even without a specific formation (29). Instead, the
use of PET-CT, also with novel tracers, could require further
validation before routine implementation, as reported in the
review of Gwinne et al. (27). These images modalities are
now studied for target volume delineation, particularly when
a radiation boost is planned (12-14, 16). In this perspective,
previous studies showed that CT may overestimate rectal
tumor volume in respect to T2-MR (30, 31).

Regarding the use of MR imaging, a comparison of tumor
definition using DWI has been already performed in respect
to T2-MRI. GTV delineated on DWI-MRI resulted in smaller
volumes compared to T2-MR, as reported by different
studies (12-14). Furthermore, T2 showed significantly larger
volumes also when rectal tumors were defined using both T2
and DWI (14). The feasibility of these methods was
confirmed by the good results obtained by the inter-observer
agreement, for radiologists and radiation oncologists. The
authors concluded that boost delineation, using DWI images,
could be interesting when dose intensification is required.

The inter-observer agreement was moderate (DICE index
of 0.666) between two radiation oncologists and two
radiologists for T2 weighted, DWI-MR, and co-registration
of T2/DWI-MR contours. The same moderate agreement
(DICE of 0.581) was observed regarding semi-automated
diffusion-based volume delineation. Also, semi-automated
delineation on specific ADC thresholds seemed to be able to
standardize rectal contouring in case of accurate co-
registration, applying this method in dose escalation or “dose
painting” protocols (32).

New evaluations emerged from MR and 18F-FDG PET-
CT comparison. Roels et al. evaluated 45 18F-FDG PET-CT
and 45 T2-MR exams from 15 LARC patients, obtained
before, during, and after preoperative CRT. Larger tumor
volumes were found on MR imaging compared to 18F-FDG
PET-CT, with an approximately 50% mismatch between the
18F-FDG PET-CT and the MR tumor volume at baseline and
during treatment (4). 

The same results in larger volumes obtained in T2
weighted MRI (111 cm3) compared to 18F-FDG PET-CT (87
cm3) (p<0.001) were reported in a prospective study on 68
patients with rectal cancer (6). The authors reported the
largest volumes on MRGTV and PET-CTGTV in the middle
third of the rectum, whereas the smallest were in the upper
third. The GTV including the union of MRGTV, with
information derived from both CT and MR imaging, and
PET-CTGTV became larger than the standard GTV in several
patients (6).

Considering CT and 18F-FDG PET-CT evaluation, 18F-
FDG PET-CT co-registered with planning CT resulted in
smaller volumes than CT alone, allowing also reduction in
the inter-observer variation (27, 33). The inter-observer
variability was analyzed by an Italian group using 18F-FDG
PET-CT images in two different cases of rectal cancer, treated
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Table III. Results of Kruskal-Wallis test and Dunn test with Bonferroni
correction used to assess differences between methods.

Methods                                              Median                   Kruscal-Wallis 
                                                            (q1, q3)                          p-Value

CT                                             36.11 (20.55, 53.25)                 0.009
T2-MRI                                     24.50 (15.02, 36.63)                      
DWI-MRI                                  16.53 (9.09, 29.95)                       
PET-CT                                     31.65 (17.50, 52.09)
                                                                  
Comparisons                                   p-unadjusted                   p-adjusted

DWI-MRI vs. PET-CT                         0.014                             0.040
DWI-MRI vs. T2-MRI                         0.163                             0.245
PET-CT vs. T2-MRI                             0.281                             0.337
DWI-MRI vs. CT                                 0.001                             0.008
PET-CT vs. CT                                     0.465                             0.465
T2-MRI vs. CT                                     0.071                             0.141

CT: Computed tomography; T2-MRI: T2-weighted-magnetic resonance
imaging; DWI-MRI: diffusion-weighted images-magnetic resonance
imaging; PET-CT: positron emission tomography-computed tomography.



with neoadjuvant radiotherapy. Five radiation oncologists
contoured the GTV and the clinical target volume (CTV) on
CT and another five contoured on 18F-FDG PET-CT images.
The authors concluded that using 18F-FDG PET-CT could
decrease variability in GTV size and position, increasing the
reproducibility of GTV delineation. Furthermore, the inter-
observer variability reduction on the GTV contoured using
18F-FDG PET-CT images could be important for
standardizing delineation modalities, guaranteeing more
reproducibility when a boost is necessary (16).

In respect to previous studies, we analyzed both
morphological and biological assessments represented by CT,
T2-MR, DWI-MR, and 18F-FDG PET-CT. To the best of our
knowledge, differently from other authors, we compared
DWI-MR and 18F-FDG PET-CT. We obtained the smallest
volume for DWIGTV for both observers (21±14.8 cm3 and
19.9±14.9 cm3), followed by T2GTV (25.9±15.2 cm3 and
27.6±16.9cm3), PETGTV (37.7±27.7 cm3 and 34.8±24.3 cm3)
and CTGTV (41.3±26.9 cm3 and 42.2±27.9 cm3). The Dun
test confirmed that DWIGTV resulted in smaller volumes
compared to PETGTV (p=0.040) and CTGTV (p=0.008).
Therefore, DWI-MR seems to remain the best imaging
modality for boost delineation, allowing a reduction in side
effects to near OARs, when a dose intensification is required.

Regarding the agreement between readers for all volumes,
both DICE and Lin’s concordance correlation coefficient
showed perfect agreement between observers for each
modality, with all values higher than 0.8. We underline the
feasibility of using DWI sequences and 18F-FDG PET-CT
images for radiation oncologists.

Our study has some limitations. Firstly, the number of
patients was relatively small. Secondary, it is known that 18F-
FDG PET-CT has the disadvantage of the limited resolution
of images, inter-observer variability, and dependence on the
experience of the physician (34). Despite these possible
difficulties, in accordance with our nuclear physicians, we
adjusted the background intensity to what was considered
normal based on FDG uptake in the liver, considering as
tumor tissue all areas with elevated FDG uptake. 

In conclusion, DWI-MR resulted in smaller volume
delineation compared to T2-weighted MR, 18F-FDG PET-CT,
and CT images. Almost perfect agreements, as reported
through DICE index, were reported for each imaging
modality between the two observers, both radiation
oncologists. As functional imaging, DWI obtained smaller
volumes compared to 18F-FDG PET-CT. DWI-MR seems to
remain the optimal strategy for boost volume delineation in
case of dose escalation. In case of impossibility to perform a
rectal MR, 18F-FDG PET-CT can provide biological
information for an accurate boost volume delineation
compared to CT. Both 18F-FDG PET-CT and DWI-MR are
used in target volume definition, although obtaining smaller
volumes in respect to CT alone, requires further validation.
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