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Abstract
Surgical resection is one of the most relevant practices in neurosurgery. Finding the correct surgical extent of the tumor is a 
key question and so far several techniques have been employed to assist the neurosurgeon in preserving the maximum amount 
of healthy tissue. Some of these methods are invasive for patients, not always allowing high precision in the detection of the 
tumor area. The aim of this study is to overcome these limitations, developing machine learning based models, relying on 
features obtained from a contactless and non-invasive technique, the thermal infrared (IR) imaging. The thermal IR videos 
of thirteen patients with heterogeneous tumors were recorded in the intraoperative context. Time (TD)- and frequency (FD)-
domain features were extracted and fed different machine learning models. Models relying on FD features have proven to be 
the best solutions for the optimal detection of the tumor area (Average Accuracy = 90.45%; Average Sensitivity = 84.64%; 
Average Specificity = 93,74%). The obtained results highlight the possibility to accurately detect the tumor lesion boundary 
with a completely non-invasive, contactless, and portable technology, revealing thermal IR imaging as a very promising 
tool for the neurosurgeon.
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Introduction

Surgical resection plays a central role in the management 
of brain tumors. The extent of resection is one of the most 
important predictors of patient outcome, together with the 
patient’s age and performance status, tumor histology, and 
molecular markers [1].

The extent of tumor resection affects the patient’s sur-
vival, quality of life, and the possible evolution time towards 
higher-grade neoplastic forms. However, especially in cases 
of tumors with infiltrative features like gliomas, the actual 
border of resection between tumor and healthy tissue can be 

sometimes hard to detect with standard microneurosurgical 
techniques. Therefore, some residual tumor tissue may be 
involuntary left in place, thus negatively influencing onco-
logical results. Moreover, brain does not allow an indiscrimi-
nate supramarginal resection of the tumor since patients may 
develop major neurological deficits.

To ensure an adequate extent of resection, several intra-
operative techniques have been introduced.

The more commonly used are neuronavigation, intraop-
erative ultrasound (iUS), 5-aminolevulinic acid (5-ALA) 
fluorescence, and intraoperative magnetic resonance (iMR). 
All these methods have some strengths and limitations. Neu-
ronavigation is widely available and easy to be interpreted, 
but relies on preoperative MR (which cannot be updated 
during the resection) and is limited by brain shift [2]. iUS is 
a cheap and effective on-line technique that can be boosted 
by some technological advances as neuronavigation and 
contrast-enhancement (CEUS), but is severely operator-
dependent and limited by residual tissue volume, surgery 
induced artifacts and previous treatments in cases of recur-
rent tumors [3]. 5-ALA fluorescence is also widely used and 
very effective to improve extent of resection in high grade 
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gliomas (HGGs) [4], with lower accuracy in other tumor 
types [5] and some limitations in recurrent HGGs cases [6]. 
iMR is the less diffused technology and is limited by high 
costs, need for dedicated operative room spaces and equip-
ment, and long interruptions of surgical work flow [7].

The difficulty given by the infiltrative nature of some 
types of tumors and the increasing need to use non-invasive 
imaging techniques in intraoperative contexts made ther-
mography an ideal candidate for the development of a new 
approach.

In the present study, intraoperative thermal infrared 
imaging (iIRI) has been used to assess tumor boundaries by 
means of a machine learning-based approach. IRI is based 
on a passive, non-contact assessment of the temperature 
pattern of the object of measurement relying on a thermal 
camera device. Relevant literature works are reported in the 
Literature Review section.

In the present work, different machine-learning based 
models have been compared relying on time and frequency 
domain input features, relative to thermal IRI of brains. The 
originality of the work consists mainly in relying on ther-
mal spectral features, which have proven to be more sensi-
tive to detecting tumors from healthy tissue. The developed 
approach reveals the capability of intraoperative thermal IRI 
to accurately detect the cancer lesion boundary with the aim 
to develop an integrative tool for conservative purposes in 
neurosurgery.

Literature review

The research field on image segmentation for diagnostic pur-
poses is broad and there is a huge variety of scientific works 
on new methodologies, ranging from liver [8, 9], to breast 
[10] and to vertebrae [11] segmentation.

With reference to the use of thermal IRI, there is a con-
sistent literature in the biomedical field, especially for diag-
nostic purposes. Several studies have been performed to 
detect breast cancer [12–15] and skin tumors, i.e. melanoma 
[16–18], whereas other studies investigated the capacity of 
the technique to classify different kind of diseases related to 
macro- or micro-circulatory impairment, i.e. Varicocele [19, 
20] or Raynaud Phenomenon [21, 22].

Although the literature about the application of thermal 
IRI in neurosurgery is sparse, it is known that the presence 
of brain neoplasms alters the thermal homeostasis of the 
surrounding tissue. Indeed, studies on animal and human 
models reported a lower temperature profile of primary 
tumors of glial origin than the surrounding parenchyma 
[23–25]. Gorbach et al. showed that glial tumors have a 
temperature 0.5–2.0 °C lower than the surrounding healthy 
brain parenchyma [24]. Numerous factors can determine the 
decrease in cerebral flow and / or metabolic activity and 
induce a decrease in the temperature of the lesion. Factors 

responsible for decreased local brain flow in primary brain 
neoplasms include low density of neoplastic microcircula-
tion, peritumor edema, poor metabolism of the cortex over-
lying the neoplastic lesion, and tumor necrosis. Reduced 
cerebral blood flow is characteristic of both primary and 
metastatic brain tumors, although the latter have, in most 
cases, a hyperthermic profile. Brain neoplasm has also been 
shown to induce a “disconnection effect” such that cortical 
gray matter metabolism is reduced in the area overlying the 
tumor [26].

Differently from tumors of glial origin, brain metastases 
are hyperthermic, as reported by Gorbach et al. [24] and 
Kateb et al. [27]. The latter, in a clinical case of intracor-
tical metastases from melanoma in a 76-year-old woman, 
documented a clear thermal demarcation between metas-
tases (36.4 °C) and healthy brain parenchyma (33.1 °C) as 
revealed by intraoperative measurements from a thermal 
imaging camera [27]. The biological heterogeneity of the 
neoplasms, however, influences the temperature pattern 
among the different lesions [24].

More recently Kastek et al. confirmed the possibility to 
use iIRI and observed an altered temperature pattern of the 
cancer area with respect to the healthy parenchyma. For 
instance, in a patient with a cyst due to a metastatic tumor, 
they reported a decrease of 2.6 °C in the surface of the cyst 
compared to the surrounding tissue [28].

Sadeghi-Goughari et al. performed intraoperative thermal 
imaging coupled with artificial tactile sensing and artificial 
neural network to develop a method for the diagnosis and 
localization of brain tumors and to estimate geometrical and 
thermal properties of the detected tumor. The procedure was 
validated on a patient with a parafalcine meningioma and 
thermal parameters extracted from thermal IRI process were 
utilized to train the proposed neural network to estimate 
tumor temperature and depth. The method reached an error 
equal to 0.0627 °C and 0.7015 mm, for thermal property and 
depth respectively [29].

Materials and methods

Participants

Thirteen patients (8 males; age range (61.46 ± 8.28) years 
old), diagnosed with a neoplastic brain lesion and eligible 
for surgical resection, were recruited in the Neurosurgery 
Unit of the Santo Spirito Hospital in Pescara, Italy.

The need for surgical intervention was established 
independently by using conventional clinical indications 
and surgery was performed blindly from iIRI recordings. 
Informed consent was obtained from all the patients, who 
were selected from a cohort of cases enrolled according to 
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the protocol approved by the Local Ethic Committee (pro-
tocol number 08/21.05.2020).

Table 1 resumes the information about location, volume 
and specific category of the tumors. Average thermal val-
ues and standard deviation of tumor and healthy tissues are 
reported in the Table 1 relatively to the baseline phase.

Procedure and data acquisition

During neurosurgery, a thermal infrared camera was used to 
assess the superficial temperature of the cortex. Specifically, 
a FLIR SC660 (FLIR, Wilsonville, OR, USA) (640 × 480 
bolometer FPA, sensitivity/noise equivalent temperature 
difference: < 30 mK @ 30 °C, field of view: 24° × 18°) was 
employed. The camera focused the exposed brain region at a 
distance of about 60 cm. Concurrently to the thermal imag-
ing acquisition, the visible imaging of the exposed region 
was acquired by Logitech C920 HD PRO camera, to seg-
ment the tumor region relying on the co-registration between 
visible and thermal imaging.

The experimental procedure is described in Fig.  1. 
Firstly, one minute of baseline (BL) was considered to 
measure the baseline temperature of the cortex (Fig. 1a). 
Subsequently, a cold physiological solution (at a tempera-
ture of 10 °C) was injected to provide a cold stress to 

the cortex (Fig. 1b), and finally, two minutes of recovery 
(REC) were contemplated to investigate the different ther-
mal behavior of the healthy and tumor tissue (Fig. 1c). 
Thermal imaging was acquired at a frame rate of 5 Hz (i.e. 
5 frames per second). Figure 1d shows the thermal signal 
of one random pixel of the exposed cortex.

During the whole experimental procedure, the envi-
ronmental conditions were kept stable (i.e. temperature: 
22 °C, humidity: 50–60%).

Tumor segmentation and optical co‑registration

Tumor boundary were defined by the neurosurgeon on the 
visible image of the exposed cortex on the basis of the 
projection of the tumor area on the brain surface, relying 
on the MRI of the patient.

To project the tumor area on the thermal imagery, a 
co-registration approach between the visible and thermal 
imagery was performed using the Control Point Selec-
tion Tool of Matlab 2021b. Corresponding couples of 
points between the two images of the exposed cortex were 
selected and then used to find the optimal affine geometri-
cal transformation between the two images, thus allowing 
to transfer the boundary of the tumor region from visible 
imaging to IR imaging (Fig. 2a and b).

Table 1  Demographic and tumor information of the patients. Basal temperature of tumor and healthy area

M male, F female, T temporal lobe, O occipital lobe, F frontal lobe, Cing cingulate gyrus, CC corpus callosum, P parietal lobe, R right hemi-
sphere, L left hemisphere, SCLC small cell lung cancer

Case Age Gender Tumor Location Tumor Side Pathology Tumor 
Volume 
 (cm3)

Tumor distance 
from cortical 
surface
(cm)

Basal temperature 
(mean ± standard devia-
tion)
(°C)

Tumor area Healthy area

1 73 M T–O R Glioblastoma 56.20 0 34.09 ± 1.12 33.62 ± 1.95
2 51 F T L Meningioma 2.00 0.6 33.32 ± 0.50 34.16 ± 0.78
3 68 M F L Glioblastoma 54.75 0 34.62 ± 0.86 33.73 ± 0.74
4 63 M F post-Cing-CC R Oligodendroglioma Grade 

III
32.80 0.6 29.06 ± 1.36 29.76 ± 1.37

5 67 F F–P L Metastasis
(Kidney carcinoma)

6.30 1.5 35.03 ± 0.47 35.09 ± 0.66

6 52 M F L Glioblastoma 1.25 0.6 36.72 ± 0.66 35.30 ± 1.22
7 56 M F R Astrocitoma

Grade II-III
34.50 0.3 32.39 ± 1.26 31.38 ± 2.07

8 62 M F L Glioblastoma 64.50 1.5 32.46 ± 0.83 32.70 ± 1.06
9 66 F P L Glioblastoma 21.60 0.3 32.87 ± 0.80 32.92 ± 0.93
10 52 F F–T R Glioblastoma 41.00 1.5 34.16 ± 0.64 33.95 ± 1.37
11 49 M F L Glioblastoma 60.00 0 34.17 ± 0.57 33.15 ± 1.09
12 75 M T R Metastasis (SCLC) 100.00 0 34.61 ± 0.68 34.52 ± 0.68
13 65 F P L Glioblastoma 32.60 0 31.07 ± 0.58 31.89 ± 1.05
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Thermal features extraction

Thermal signals from each pixel were analyzed through both 
time domain (TD) and frequency domain (FD) approaches.

Concerning the TD analysis, the following features were 
computed:

• Coefficients of the exponential fit (a, b, c): the thermal 
signal associated to the recovery phase was modelled 
through an exponential fit, and the coefficients of the 
model were considered as indicative of the thermal 
behavior. Figure 1d shows a typical thermal signal behav-
ior during the recovery after cold stress (highlighted in 
orange in the graphic). Specifically, the equation of the 
exponential fitting function is reported in Eq. 1:

• where, a represents the difference between the tem-
perature at the end and at the beginning of the recovery 
phase (i.e. the ideal asymptotic value after the thermal 
recovery), b is the inverse of the time constant (τ), and 

(1)y = a ∙
(

1 − ebx
)

+ c

c is the initial value of the temperature, after the cold 
saline injection. For each pixel, the fit has been consid-
ered only if the goodness of fit (R) is higher than 0.8, 
otherwise the exponential fit has been discarded for the 
specific pixel.

• Temperature Variation (Δ): difference between the aver-
age value of the signal in the first 10 s and in the last 10 s 
of the whole experimental procedure.

• Initial Temperature  (TINI): average value of the signal 
30 s before the cold stress.

• Standard Deviation  (STDBL,  STDBLREC): standard devia-
tion of the raw thermal signals evaluated in the baseline 
and recovery phases, respectively.

• Kurtosis  (KBL,  KREC): kurtosis of the raw thermal signals 
evaluated in the baseline and recovery phases, respec-
tively.

• Skewness  (SKBL,  SKREC): skewness of the raw thermal 
signals evaluated in the baseline and recovery phases, 
respectively.

• 90th percentile (90th  PercBL, 90th  PercREC): 90th percen-
tile of the raw thermal signals evaluated in the baseline 
and recovery phases, respectively.

Fig. 1  Experimental procedure 
consisting in a baseline (BL) 
phase (highlighed in green), 
cold physiological solution 
injection (highligheted in light 
blue) and recovery (REC) 
phase (highligheted in orange); 
(a),(b),(c) Thermal IR images 
of the exposed brain tissue rela-
tive to BL, injection and REC 
phases respectively; d) thermal 
signal of one representive pixel 
over time
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• Sample Entropy in the baseline and recovery phases 
 (SampEnBL,  SampEnREC): it is defined as the negative 
natural logarithm of the conditional probability U that 
signal subseries of length m (pattern length) that match 
pointwise within a tolerance r (similarity factor) also 
match at the m + 1 point (Eq. 2) [30].

• In this study, m=2 and r=0.2·SD (SD is the Standard 
Deviation of the signal) where chosen [31].

Concerning the frequency-domain (FD) analysis, the 
wavelet coherence (WCOH) between the average tempera-
ture time course of a randomized portion of pixels extracted 
from the tumor area and the temperature signals of each pixel 
of the thermal video was computed. WCOH is a measure of 

(2)SampEn(m, r,N) = −ln

[

Um+1(r)

Um(r)

]

the correlation between two signals in the time–frequency 
plane. In this particular case, WCOH was considered for 60 
frequency bands, in the range [0.015,2] Hz.

In detail, for each pixel a set of 60 values of WCOH were 
available, indicated as  WCOHf

BL and  WCOHf
REC, evaluated 

in the baseline and recovery phases, respectively.
The average over-time of the amplitude of the WCOH 

for each frequency band was considered as indicative of the 
thermal functioning of each pixel.

Definitively, both the TD and FD analysis were performed 
considering only the baseline and the whole time course 
(BL + REC) (Fig. 2).

TD and FD features analysis

Preliminarily to the application of machine learning 
approaches, input features, being them TD- or FD- based 
features, were inspected and statistical t-test were applied 

Fig. 2  Pipeline of the process-
ing approach developed in 
the present study. The optical 
co-registration between visible 
and thermal imaging is neces-
sary to have an indication of the 
boundary of the cancer area on 
IRI. Then, TD and FD fetaures 
are extracted for the only BL 
and BL + REC phases. Last, 
supervised machine learning 
approaches are developed to 
classify healthy tissue from 
cancer areas, for each patient



330 Physical and Engineering Sciences in Medicine (2023) 46:325–337

1 3

to understand the underlying phenomena. T-test were per-
formed for each features to test the significance of the 
comparison between class 0 (associated to healthy tissue) 
and class 1 (associated to the tumor pixels) relatively to 
each patient. The output was Bonferroni-corrected for 
multiple comparisons. Figure 3 shows the results for the 
t-test relative to each TD features.

The t-test comparisons were statistically significant for 
each feature except for some isolated cases. In particular, 
feature a was not significant for 2 subjects out of 13, fea-
ture b was not significant for 6 subjects out of 13, feature 
Δ was always significant except for 1 patient,  STDREC was 
not significant for 2 subjects out of 13 and  SKREC was not 
significant for 1 subjects out of 13.

Relatively to the FD features, t-test were performed 
to understand whether the 60 features could be repre-
sentative of a discriminant behavior between healthy pix-
els (class 0) and tumor pixels (class 1). The output was 
Bonferroni-corrected for multiple comparisons. The t-test 
comparisons were statistically significant for each feature. 
Figure 4 reports the results of the t-test in two separated 
plots (Fig. 4a and b). In Fig. 4a a whisker plot of the t 
values relative to the frequency bands for the comparison 
class 0 vs. class 1 is shown. Figure 4b is, instead, rela-
tive to the contrast class 1 vs. class 0, to facilitate the 
interpretation of results, being represented by a positive 
amount of t-values. In this figure, the average of t-values 
among subjects are reported and maximum values of t are 
highlighted with red asterisks. Particularly the maximum 
value of t is obtained for f = [0.69–0.73] Hz in the Cardiac 
band ([0.4–2] Hz).

Application of supervised machine learning

A Support Vector Machine (SVM) with radial basis function 
(RBF) kernel was employed to classify tumor pixels from 
healthy pixels [32]. Given the heterogeneity of the study 
sample, different models were developed for each partici-
pant. Particularly, for each patient, four different models 
were developed considering only the baseline or the entire 
time course relying on both time and frequency domain fea-
tures (Fig. 2).

A subset of pixels randomly selected was used as a train-
ing set (20% of the pixels), another was used as a test set 
(20%) and the remaining pixels were used as a validation 
test. The tumor pixels were labeled as 1, whereas the healthy 
pixels were labeled as 0. For the training and test set, the 
classes were balanced, to avoid overfitting effect. To this 
aim, the larger class of the two was randomly down-sampled, 
to ensure the same class dimensionality. To test the generali-
zation performances of the model, a k-fold cross-validation, 
with k = 10, was employed [33]. The cross-validation pro-
cess ensures the generalizability of the models, allowing to 
estimate the performances of the classifiers.

Results

Figure 5 reports the results obtained for an indicative patient 
in segmenting the tumor area from thermal imaging.

Specifically, Fig. 5a shows the classification performance 
obtained with time domain features when considering only 
the baseline  (TDBL), whereas Fig. 5b reports the classifi-
cation obtained employing the time domain analysis for 
the entire time course  (TDBL+REC). Figure 5c describes the 
segmentation reached using the frequency-domain features 

Fig. 3  Whisker plot of t-values 
resulted from statistical t-tests 
for each TD feature. The com-
parison is between the features 
values relatively to class 0 vs. 
class 1 pixels
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computed for the only baseline phase  (TDBL+REC), whereas 
Fig. 5d shows the results obtained with the same approach 
computed during the whole experiment  (TDBL).

The performances obtained by the different models 
developed across all the participants are reported in Fig. 6. 
Particularly, the accuracy (Fig. 6a), the sensitivity (Fig. 6b) 
and the specificity (Fig. 6c) were considered to describe the 
performances of the model. For the sake of clarity, the mean 
values and standard deviation of these descriptors relative to 
the four categories of models are reported in Table 2.

A statistical comparison between these parameters was 
performed through a repeated measure ANOVA. Concerning 
the accuracy F(3,12) = 6.21, p <  < 0.01; multiple comparison 

revealed a statistical difference of  FDBL+REC with respect 
to all the other groups (Fig. 6a) with the exception of the 
comparison with TD BL+REC for which there is a tendency 
towards significance (p = 0.076). With regard to sensitiv-
ity F(3,12) = 37.23, p <  < 0.01; multiple comparison analy-
sis showed significant differences between all the groups 
except  TDBL vs  FDBL (Fig. 6b). Concerning the specificity 
F(3,12) = 21.87, p <  < 0.01; multiple comparison showed 
significant differences of  FDBL+REC with respect to all the 
other groups (Fig. 6c).

Furthermore, an analysis of the dependence of the per-
formances of the  FDBL+REC models from the tumor cat-
egory was performed to deep understand the relationship 

Fig. 4  Representation of 
t-values resulted from statisti-
cal t-tests for each FD feature. 
a Whisker plot of t-values 
resulted from statistical t-tests 
for each FD feature. The com-
parison is between the features 
values relatively to class 0 vs. 
class 1 pixels. b Average of 
t-values among subjects. The 
comparison is between the fea-
tures values relatively to class 
1 vs. class 0 pixels, in order to 
have positive values. Maximum 
values are represented with red 
asterisks
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of the developed models to classify the different typologies 
of tumors.

The present analysis was limited to the  FDBL+REC mod-
els which revealed to perform better with respect to the 
other models. Figure 7 represents the values of average 
accuracy, sensitivity, and specificity for the five catego-
ries of tumor of the sample dataset. Among all the tumor 
categories,  FDBL+REC models seemed to perform better 
for metastatic tumors, with the highest values of accuracy 
and sensitivity.

Fig. 5  Outcome of classifica-
tion models for an exemplifica-
tive subject relaying on: a TD 
features of the only BL; b TD 
features of the whole experi-
ment (BL + REC); c FD features 
of the only BL; d FD features 
of the whole experiment 
(BL + REC). Black boundary 
is indicative of the tumor area 
whereas light grey pixels are the 
ones that the models classify as 
class 1 (i.e. tumor)

Fig. 6  Average performances of the developed classifers: a average accuracy, b average sensitivity, c average specificity for the four categories of 
classifiers. Significant comparison are reported on the graphics (** = p <  < 0.01)

Table 2  Mean values and standard deviations of the four categories 
of models relying on  TDBL,  TDBL+REC,  FDBL,  FDBL+REC features

Accuracy [%]
(mean ± stand-
ard deviation)

Sensitivity [%]
(mean ± stand-
ard deviation)

Specificity [%]
(mean ± stand-
ard deviation)

TDBL models 78.56 ± 12.82 30.87 ± 13.02 95.27 ± 2.97
TDBL+REC models 79.86 ± 11.81 63.49 ± 20.96 97.45 ± 2.60
FDBL models 72.30 ± 12.67 36.65 ± 14.42 75.45 ± 14.27
FDBL+REC models 90.45 ± 3.32 84.64 ± 7.15 93.74 ± 5.00
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Finally, to compare the results of the developed approach 
with the state-of-the-art works in the field of thermal IR 
imaging, a summary of the performances of the available 
methods is reported in Table 3.

From the analysis of Table 3, it is possible to observe 
the lack of studies in the field of neurosurgery of meth-
ods relaying on machine learning approaches. The present 
works thus represents the first development of a machine-
learning model, allowing also high accuracy, sensitivity and 

specificity in cancer detection and boundary identification 
of the lesion.

Discussion

In this study, a non-invasive and contactless methodology, 
thermal infrared imaging (IRI), has been used to accu-
rately detect the boundaries of the tumor tissue on the 

Fig. 7  Bar plot of the perfor-
mances indices of the  FDBL+REC 
models relatively to the tumor 
category

Table 3  Summary of the state-of-the-art works in the field of cancer detection using thermal infrared imaging

Authors Field of application Methodology Performances

Wishart [15] Breast cancer Comparison of Infrared imaging 
detection with the gold standard 
technique (i.e. mammography)

For women < 50 years:
sensitivity = 78%
specificity = 75%
For women aged 50–70 years:
sensitivity = 72%
specificity = 37%

Magalhaes [16] Melanocytic nevi Suppor vector machine (SVM) Accuracy = 84.2% Sensitivity = 91.3%
Namdari [19] Varicocele - Statistical t-test and ANOVA

- Comparison of the results with a 
gold standard methodology (i.e. 
Ultrasound method)

- Significant difference between the two groups of 
healthy samples and those with varicocele (p < 0.001)

- Accuracy = 76%

Filippini [21] Raynaud phenomenon Deep convolutional neural network Accuracy = 88% Sensitivity = 88%
Specificity = 94%

Gorbach [24] Humans’ brain cancer ANOVA Significant difference between the cortex overlying the 
tumor and the surrounding cortex (p < 0.01)

Papaioannou [25] Rats’ brain cancer ANOVA Significant difference between the cortex overlying 
the tumor and the surrounding cortex (p < 0.05) 
and between the tumor and the core temperature 
(p < 0.05)

Kastek[28] Humans’ brain and lung cancer No statistical analysis reported Observed temperature differences between the visual-
ized surfaces of cancerous and healthy tissues
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exposed cortex during neurosurgery. Thirteen subjects 
with heterogeneous tumors (Table 1) were enrolled. The 
experimental protocol consisted in a baseline (BL) phase, 
a cold stress phase, with cold physiological solution injec-
tion, and a recovery (REC) phase. Thermal imaging was 
acquired during the whole experiment.

After reporting the boundary location of the tumor 
lesion on thermal IR imaging by means of a co-registration 
with visible imaging, salient features were extracted in 
both time (TD) and frequency domain (FD) in the context 
of the only BL phase or relatively to the whole experiment 
(BL + REC). Different supervised machine learning based 
models were developed for each patient, given the hetero-
geneity of the tumors. The labels of the two classes (i.e., 
0 for the healthy tissue pixels and 1 for the tumor tissue 
pixels) were given on the basis of the boundary defined by 
the neurosurgeon relying on pre-operative MRI.

A preliminary inspection of the features revealed statis-
tical significance when comparing class 0 vs. class 1 pixels 
relatively to the values of both TD and FD features. In par-
ticular, referring to Fig. 3 the most influencing features in 
TD were the c parameter and the  STDREC. The c parameter 
is related to the initial value of the temperature of the pix-
els after the cold saline injection and on average the t value 
is positive, meaning that, in general, the starting tempera-
ture after cold stress of the healthy pixels is higher than the 
tumor area pixels. This finding could be interpreted as the 
tendency of the tumor pixels not to react quickly to cold 
stress and to remain in the perturbed condition longer than 
the healthy pixels. The other most influencing parameter in 
TD features inspection was the standard deviation of the 
thermal signals of the pixels during REC phase, i.e. after 
the cold saline injection. The t-value, in this case, is nega-
tive meaning that the STD of class 1 pixels is higher than 
the STD of class 0 pixels during the thermal recovery. This 
result shows the difference of thermal characteristics of the 
two areas of the brain and reflects the scattered behavior of 
the tumor area with respect to the healthy regions, which 
behaves more uniformly.

Referring to the FD features (Fig. 4), instead, t-tests 
results showed statistical significance for all the analyzed 
frequency bands, and the maximum of the average t-value 
was at f = [0.69–0.73] Hz, which is in the Cardiac band 
(Fig. 4b). This finding means that the wavelet coherence 
is able to discriminate tumor from healthy pixels more 
efficiently in the above mentioned frequency band with 
respect to all the other bands under consideration. Refer-
ring to Fig. 4b, the results are represented for the con-
trast class 1 vs. class 0, therefore a high value of t means 
that the wavelet coherence in the tumor area pixels is 
higher compared to the healthy pixels. This means that 
the healthy pixels behave differently from the tumor area 

pixels for all the analyzed frequency bands, especially with 
a high impact on the cardiac band.

Concerning the developed supervised machine learning 
approach, the results showed the possibility to segment the 
tumor lesion with respect to the healthy brain regions with 
high performances with every one of the developed models, 
reporting an accuracy that on average is always more than 
70% (Fig. 6a). Among the four models, the best in terms of 
accuracy was the FD based classifiers relaying on the whole 
experimental session features (BL + REC). In this case, the 
accuracy was on average 90.45%, whereas for FD based 
classifiers relaying on the only BL features it was 72.30%. 
With regard to TD based models the accuracies were 78.56% 
and 79.86% on average, for BL and BL + REC features 
respectively. Table 2 resumes the results of the developed 
classifiers.

Also, the sensitivity was higher for the FD classifi-
ers relaying on the whole experimental session features 
(BL + REC), with 84.64% that was notably higher than the 
other models (30.87% for  TDBL, 63.49% for  TDBL+REC and 
36.65% for  FDBL). The models with the highest specific-
ity, instead, were the TD classifiers relaying on the whole 
experimental session features (BL + REC), with 97.45% on 
average that was similar to the levels of specificity of  TDBL 
and  FDBL+REC models, with 95.27% and 93.74%. The low-
est specificity was reported for the  FDBL classifiers with a 
level of 75.45%.

The reported results demonstrated that FD classifi-
ers relaying on the whole experimental session features 
(BL + REC) performed better with respect to the other three 
developed models, with high accuracy and sensitivity. This 
result can certainly be traced back to the fact that the input 
features are multiple and offer greater detail on the observed 
phenomenon. To note, referring to Fig. 6 and Table 2, it is 
possible to observe that also the FD classifiers relying on the 
only BL features had good performances and it is an impor-
tant finding, because the classifier model would rely on a 
thermal imaging video of only 1 minute and without any 
additional measurement phase (i.e. cold stress), thus result-
ing more convenient during neurosurgical interventions.

In addition, an exploratory analysis was executed to 
relate the performances of the best models  (FDBL+REC) to 
the tumor categories in the sample dataset. Among all the 
tumor categories,  FDBL+REC models seemed to perform bet-
ter for metastatic tumors, with the highest values of accuracy 
and sensitivity. To note, the performances relative to the 
other classes of tumors were also very promising, being the 
values of accuracy, sensitivity and specificity always higher 
than 80%.

It is worth to note that the present work demonstrated that 
machine learning models based on FD features are more 
effective and performing that the TD features. This particular 
result can be traced back to the fact that the decomposition 
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into frequency bands makes it possible to evaluate the char-
acteristics of the signal, and in particular the specific correla-
tion of the thermal signals in detailed frequency bands, with 
greater specificity and refinement with respect to the tempo-
ral signal analysis. This finding is of paramount importance 
also to understand the application of thermal IR imaging 
in the biomedical field. In fact, the IR imaging allows to 
assess the integration of several physiological mechanisms, 
which all together, affect the thermal pattern of a tissue (e.g., 
micro- and macro-circulation, metabolic activity of the tis-
sue, exchange of heat with the environment) [34]. Frequency 
analysis of thermal signal permits of course to find the single 
most informative components of the underlying phenomena, 
allowing to obtain a more detailed insight on the dataset. 
Indeed, it has been largely employed in the field of thermal 
IR imaging applied on human studies [35–37]

It is of fundamental importance to observe that the 
present work is highly innovative given that it is the first 
time that a machine learning classifier relying on features 
extracted from a completely non-invasive and contactless 
technique has been used to segment the tumor area from the 
health tissue with outstanding performances. Table 3 shows 
a summary of the state-of-the-art works in the field of cancer 
detection and it is possible to note that the present model is 
the first machine-learning based approach ever developed in 
the IR imaging research context.

However, several limits affected the present study. The 
first is related to the limited sample size. Machine learn-
ing models are based on supervised learning and the per-
formances are highly affected by the numerosity of the 
study sample. Increasing the numerosity of the patients 
could reduce the overfitting risk. Of note, the results are 
cross-validated, hence the generalization performances of 
the model are indeed investigated, but enlarging the sample 
size could improve the classification outcomes. Moreover, 
the effect of the limited sample size can be also observed 
in Table 1, which shows that for some patients the thermal 
behaviour is not always in line with that reported in the lit-
erature, especially for patients affected by glioblastoma. In 
this case, many patients showed higher average basal tem-
perature of the tumor area compared to the healthy tissue. 
This result could be due to the inclusion of blood vessels 
in the region of interest of the tumor, thus increasing the 
average temperature of the area. However, this is beyond the 
scope of this work which focuses on identifying the bounda-
ries of the tumor area to support the neurosurgeon in brain 
resection. Indeed, this allows to highlight the good qualities 
of the developed models to classify the nature of the pixels, 
focusing on the single frequency components, thus allowing 
to consider various physiological aspects of the underlying 
process. In addition, related to the limited sample size, it has 
not been possible to apply more sophisticated and modern 
approaches, such as deep learning methods. In fact, deep 

learning approaches rely on a huge number of samples and 
it has been demonstrated that the sample size highly impacts 
on the model accuracy [38, 39].

Second, the best classifiers are obtained for features rely-
ing on a time period of acquisition of nearly three minutes 
and on an experimental session consisting on injection of 
cold physiological solution. This time slot could be reduced 
to one minute at the price of decreasing performances. How-
ever, spraying with saline is a common practice during neu-
rosurgery, thus constituting a mild limitation.

Conclusions

The present work describes a novel method for the tumor 
segmentation of the exposed cortex during neurosurgery. 
Comparing different typologies of supervised machine 
learning methods based on time domain or frequency 
domain features, it has been possible to define the best cat-
egory of classifiers relying on a non-invasive and contact-
less technique, the thermal infrared imaging. Model based 
on frequency domain features has revealed to be the best 
solution in terms of classification performance (Average 
Accuracy = 90.45%; Average Sensitivity = 84.64%; Aver-
age Specificity = 93,74%) with respect to the time domain 
features based model (Average Accuracy = 79.86%; Aver-
age Sensitivity = 63.49%; Average Specificity = 97.45%). 
An innovative tool is in this way now available for neuro-
surgeons, paving the way to new approaches for intra-oper-
ative assessment of tumor areas. Future perspective are in 
the direction of increasing the sample size, enrolling a more 
relevant number of patients, thus allowing to implement 
solutions based on deep learning methods, such as artificial 
neural networks. Relying on these models will allow and 
automatic and more accurate identification of the boundaries 
of the tumor lesion.

In conclusion, the most important contributions of the 
present work are highlighted below:

• A completely non-invasive, contactless, and portable 
technology (i.e., thermal IR imaging) has been employed 
to detect the tumor boundaries in an intraoperative con-
text.

• Machine learning approaches has been developed on both 
time and frequency domain features, extracted from IR 
imaging.

• The method based on frequency features revealed to be 
the best machine learning solution in terms of perfor-
mance.

• The model developed is an innovative solution relying 
on thermal IR imaging, allowing to identify with high 
accuracy the boundary of the tumor, at a pixel level.
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